A Appendix : Proofs

Proof of Theorem 1. Let $q \in \mathcal{Q}$. For ease of notation we define $L\left(q, A^{i, t}, b^{i, t}\right)$ as $\sum_{x \in X_{A} i, t_{b} i, t} q(x) \theta^{\prime} \phi(x)-q(x) \log q(x)$; this is the variational lower bound using q as the approximating distribution. From the non-negativity of the KL divergence we have that

$$
\log Z\left(A^{i, t}, b^{i, t}\right) \geq L\left(q, A^{i, t}, b^{i, t}\right)
$$

and, since q was arbitrary,

$$
\log Z\left(A^{i, t}, b^{i, t}\right) \geq \max _{q \in \mathcal{Q}} L\left(q, A^{i, t}, b^{i, t}\right)
$$

Thus

$$
\begin{equation*}
Z\left(A^{i, t}, b^{i, t}\right) \geq \exp \left(\max _{q \in \mathcal{Q}}\left\{L\left(q, A^{i, t}, b^{i, t}\right)\right\}\right) \triangleq \gamma^{i, t} \tag{12}
\end{equation*}
$$

We take the expectation of both sides to yield

$$
\begin{aligned}
\frac{Z}{2^{i}} & =\mathbb{E}\left[Z\left(A^{i, t}, b^{i, t}\right)\right] \\
& \geq \mathbb{E}\left[\exp \left(\max _{q \in \mathcal{Q}}\left\{L\left(q, A^{i, t}, b^{i, t}\right)\right\}\right)\right]=\mathbb{E}\left[\gamma^{i, t}\right]
\end{aligned}
$$

which proves the first part of the theorem.
We prove the second part by using the fact that our approximating family \mathcal{Q} contains the degenerate family \mathcal{D}, for which Theorem 2 (below) gives tight approximation bounds.
Since the conditions of Theorem 2 are satisfied, we know that equation (10) holds with probability at least $1-\delta$. From (10), since the terms in the sum are non-negative, we have that the maximum element is at least $1 /(n+1)$ of the sum:

$$
\begin{aligned}
\max _{i} \exp & \left(\underset{t \in[T]}{\operatorname{Median}}-\min _{q \in \mathcal{D}} D_{K L}\left(q \| R_{A^{i, t}, b^{i, t}}^{i}(p)\right)\right. \\
& \left.+\log Z\left(A^{i, t}, b^{i, t}\right)\right) 2^{i-1} \\
& \geq \frac{1}{32} Z \frac{1}{n+1}
\end{aligned}
$$

Therefore there exists m such that

$$
\begin{aligned}
\underset{t \in[T]}{\operatorname{Median}} & \left(-\min _{q \in \mathcal{D}} D_{K L}\left(q \| R_{A^{m, t}, b^{m, t}}^{m}(p)\right)+\log Z\left(A^{m, t}, b^{m, t}\right)\right) \\
& +(m-1) \log 2 \\
& \geq-\log 32+\log Z-\log (n+1)
\end{aligned}
$$

We also have

$$
\min _{q \in \mathcal{Q}} D_{K L}\left(q \| R_{A, b}(p)\right) \leq \min _{q \in \mathcal{D}} D_{K L}\left(q \| R_{A, b}(p)\right)
$$

because $\mathcal{D} \subseteq \mathcal{Q}$. Thus

$$
\begin{aligned}
\underset{t \in[T]}{\operatorname{Median}} & \left(-\min _{q \in \mathcal{Q}} D_{K L}\left(q \| R_{A^{m, t}, b^{m, t}}^{m}(p)\right)+\log Z\left(A^{m, t}, b^{m, t}\right)\right) \\
& +(m-1) \log 2 \\
& \geq-\log 32+\log Z-\log (n+1)
\end{aligned}
$$

From the definition of KL divergence, we have

$$
D_{K L}\left(q \| R_{A, b}^{m}(p)\right)=-L(q, A, b)+\log Z(A, b)
$$

Plugging in we get

$$
\begin{aligned}
& \underset{t \in[T]}{\operatorname{Median}}\left(\log \gamma^{m, t}\right)+(m-1) \log 2 \\
\geq & -\log 32-\log (n+1)+\log Z
\end{aligned}
$$

and also
$\underset{t \in[T]}{\operatorname{Median}}\left(\log \gamma^{m, t}\right)+m \log 2 \geq-\log 32-\log (n+1)+\log Z$
with probability at least $1-\delta$. Exponentiating both sides,

$$
\operatorname{Median}\left(\gamma^{m, 1}, \cdots, \gamma^{m, T}\right) 2^{m} \geq \frac{Z}{32(n+1)}
$$

and since the terms in the Median are nonzero,

$$
\frac{1}{T} \sum_{t=1}^{T} \gamma^{m, t} \geq \frac{1}{2} \operatorname{Median}\left(\gamma^{m, 1}, \cdots, \gamma^{m, T}\right)
$$

therefore with probability at least $1-\delta$

$$
\frac{1}{T} \sum_{t=1}^{T} \gamma^{m, t} 2^{m} \geq \frac{Z}{64(n+1)}
$$

which proves the lower bound.
From Markov's inequality we have

$$
\begin{gathered}
\mathbb{P}\left[Z\left(A^{i, t}, b^{i, t}\right) \geq c \mathbb{E}\left[Z\left(A^{i, t}, b^{i, t}\right)\right]\right] \leq \frac{1}{c} \\
\mathbb{P}\left[Z\left(A^{i, t}, b^{i, t}\right) 2^{i} \geq c Z\right] \leq \frac{1}{c}
\end{gathered}
$$

Since $Z\left(A^{i, t}, b^{i, t}\right) \geq \gamma^{i, t}$, setting $c=4$ and $i=m$ yields

$$
\mathbb{P}\left[\gamma^{m, t} 2^{m} \geq 4 Z\right] \leq \frac{1}{4}
$$

Applying Chernoff's inequality and selecting T as in the theorem statement gives

$$
\mathbb{P}\left[4 Z \geq \operatorname{Median}\left(\gamma^{m, 1}, \cdots, \gamma^{m, T}\right) 2^{m}\right] \geq 1-\delta
$$

The claim then follows from the union bound.

Proof of Proposition 1. For singleton marginals, when $k \in[m+$ $1, n], x_{k}$ is a free variable and thus $\mu_{k}=E_{q}\left[x_{k}\right]=q_{k}(1)$. When $k \in[1, m]$,

$$
\left(1-2 x_{k}\right)=\left(1-2 b_{k}\right) \prod_{i=m+1}^{n}\left(1-2 C_{k i} x_{i}\right)
$$

Take the expectation on both side and since x_{i} for $i \in[m+1, n]$ are free (independent) variables, we have

$$
\left(1-2 \mu_{k}\right)=\left(1-2 b_{k}\right) \prod_{i=m+1}^{n}\left(1-2 C_{k i} \mu_{i}\right)
$$

That is,

$$
\mu_{k}=\left(1-\left(1-2 b_{k}\right) \prod_{i=m+1}^{n}\left(1-2 C_{k i} \mu_{i}\right)\right) / 2
$$

For the binary marginal $\mu_{k l}$, there are three cases: both x_{k}, x_{l} are free variables; one is free and the other is constrained; both are constrained.
For the first case, $k, \ell \in[m+1, n]$, they are independent and thus

$$
\mu_{k l}=E_{q}\left[x_{k} x_{\ell}\right]=\mu_{k} \mu_{\ell}
$$

For the second case, $k \in[m+1, n], \ell \in[1, m]$. Define $X_{C_{l}}^{k}$ to be the set of x_{m+1}, \ldots, x_{n} that satisfy constraint l with x_{k} fixed to 1 ; that is, $X_{C_{l}}^{k}=\left\{x_{m+1}, \ldots, x_{n} \mid x_{k}=1,-1=\left(1-2 x_{l}\right)=\right.$ $\left.\left(1-2 b_{l}\right) \prod_{i=m+1}^{n}\left(1-2 C_{l i} x_{i}\right)\right\}$. Hence

$$
\mu_{k l}=\operatorname{Pr}\left[x_{k}=1, x_{l}=1\right]=\sum_{x_{m+1}, \ldots, x_{n} \in X_{C_{l}}^{k}} \prod_{i=m+1}^{n} q_{i}\left(x_{i}\right)
$$

When $C_{l k}=1$ the $1-2 C_{l k} x_{k}$ term in the product constraint on $X_{C_{l}}^{k}$ is -1 , so the product constraint is $1=(1-$ $\left.2 b_{l}\right) \prod_{i=m+1, i \neq k}^{n}\left(1-2 C_{l i} x_{i}\right)$. Define this constrained set as $X_{C_{l}}^{k=1}$ and bring $q_{k}\left(x_{k}=1\right)$ out of the product to yield

$$
\mu_{k l}=\mu_{k} \cdot \sum_{x_{m+1}, \ldots, x_{n} \in X_{C_{l}}^{k=1}} \prod_{i=m+1, i \neq k}^{n} q_{i}\left(x_{i}\right)
$$

Introducing a new binary variable u that satisfies the constraint

$$
(2 u-1)=\left(1-2 b_{l}\right) \prod_{i \neq k, i=m+1}^{n}\left(1-2 C_{l i} x_{i}\right)
$$

the above summation is over $x_{m+1}, \ldots x_{k-1}, x_{k+1}, \ldots, x_{n}, u$ such that $u=1$. Since $P(u=1)=E[u]$,

$$
\mu_{k l}=\mu_{k} E[u]=\mu_{k} \frac{1}{2}\left(1+\left(1-2 b_{l}\right) \prod_{i \neq k, i=m+1}^{n}\left(1-2 C_{l i} \mu_{i}\right)\right)
$$

as desired.
If $C_{l k}=0$, then x_{l} is independent of x_{k}, so $\mu_{k l}=\mu_{k} \mu_{l}$.
For the last case, $k, \ell \in[1, m]$.

$$
\left(1-2 b_{k}\right)\left(1-2 b_{\ell}\right) \prod_{i=m+1}^{n}\left(1-2 C_{k i} x_{i}\right) \prod_{i=m+1}^{n}\left(1-2 x_{k}\right)\left(1-2 x_{\ell}\right)=
$$

Taking the expected value of both side

$$
\begin{array}{r}
1-2 \mu_{l}-2 \mu_{k}+4 \mu_{k l}= \\
\left(1-2 b_{l}\right)\left(1-2 b_{k}\right) \prod_{i=m+1}^{n} E\left[1-x_{i}\left(2 C_{k i}+2 C_{l i}\right)+4 C_{k i} C_{l i} x_{i}^{2}\right]
\end{array}
$$

so

$$
\begin{array}{r}
\mu_{k l}=\frac{1}{4}\left(-1+2 \mu_{k}+2 \mu_{l}+\right. \\
\left.\left(1-2 b_{k}\right)\left(1-2 b_{l}\right) \prod_{i=m+1}^{n}\left(1-\mu_{i}\left(2 C_{k i}+2 C_{l i}-4 C_{k i} C_{l i}\right)\right)\right)
\end{array}
$$

Plugging in the result of μ_{k}, μ_{l} :

$$
\begin{array}{r}
4 \mu_{k l}-1= \\
\left(1-2 b_{k}\right)\left(1-2 b_{l}\right) \prod_{i=m+1}^{n}\left(1-\mu_{i}\left(2 C_{k i}+2 C_{l i}-4 C_{k i} C_{l i}\right)\right) \\
\left.-\left(1-2 b_{k}\right) \prod_{i=m+1}^{n}\left(1-2 C_{k i} \mu_{i}\right)-\left(1-2 b_{l}\right) \prod_{i=m+1}^{n}\left(1-2 C_{l i} \mu_{i}\right)\right)
\end{array}
$$

By inspection, all of the marginals $\mu_{k}, \mu_{k l}$ are linear in any particular free marginal $\mu_{m+1}, \ldots, \mu_{n}$. Hence, for any free marginal μ_{i} the objective function 11 contains a term linear in μ_{i} plus the entropy of a bernoulli random variable with parameter μ_{i}, which is concave in μ_{i}. Thus the coordinate ascent step for μ_{i} can be solved in closed form, as desired.

