Tight Variational Bounds via Random Projections and I-Projections

A Appendix : Proofs

Proof of Theorem 1. Let ¢ € Q. For ease of notation we define
L(g, AV 0" as 3o ek o, a(2)0d(x) —g(w) log q(x); this
is the variational lower bound using ¢ as the approximating dis-
tribution. From the non-negativity of the KL divergence we have
that

log Z(A™,b"") > L(g, A", b"")

and, since ¢ was arbitrary,
log Z(Ai’t, bi’t) > max L(q, Abt bi’t)
qeQ
Thus
Z(A™6) > exp (mag{L(q, Al’ibl‘t)}) 2972
q€

We take the expectation of both sides to yield

Z _
2

>E {exp <1;1€a5 {L(q, AP, b”)}ﬂ =ERH"

E [Z(Ai’z,bi’t)]

which proves the first part of the theorem.

We prove the second part by using the fact that our approximating
family Q contains the degenerate family D, for which Theorem 2
(below) gives tight approximation bounds.

Since the conditions of Theorem 2 are satisfied, we know that
equation (10) holds with probability at least 1—4. From (10), since
the terms in the sum are non-negative, we have that the maximum
element is at least 1/(n + 1) of the sum:

max exp (N{g([i%z]in —min Drcr(ql|Ri.e it (p))

4 IOgZ(Aiyt, bi,t))Qi—l
1 1

> —7Z

—32 n+1

Therefore there exists m such that

B . m m,t 3gm,t
Median (= mig D al| R e () + 108 2047 57) )

+(m—1)log2
> —log32+1log Z — log(n + 1)

We also have

. < m
min Dxr(¢l| Ra,p(p)) < min Dkr(q||Rap(p))
because D C Q. Thus

Median ( —min D At pm, log Z(A™", ™"
tedion (i Dice 0l 9) + o Z(A™ 67 )
+ (m—1)log2
> —log32+log Z — log(n + 1)
From the definition of KL divergence, we have

Dxr(q||RAs(p)) = —L(g, A, b) 4 log Z (A, )

Plugging in we get
Median (logv™") + (m — 1) log 2
fedie (logy™") + (m — 1) log
> —log32—log(n+1)+1logZ

and also

Me([li;im (log vm’z) +mlog2 > —log32 —log(n+1) +log Z
te[T

with probability at least 1 — §. Exponentiating both sides,

Median (’ym’l, e ,’ym‘T) 2m > z

~32(n+1)

and since the terms in the Median are nonzero,

1

el

= 1
Z'ym’t >3 Median ('ym’l, e ,'ym’T)
t=1
therefore with probability at least 1 — ¢

T
]- m,tom Z
il tom 2
T;7 = 64(n+ 1)

which proves the lower bound.

From Markov’s inequality we have

P[2(A%67) = cElZ(A™ 5] <

ol

P [Z(Ai’t,bi’t)Qi > cZ] < %

Since Z(A%*,b"t) > "', setting ¢ = 4 and i = m yields
Pymtom > 7] < &
- !

Applying Chernoft’s inequality and selecting 7" as in the theorem
statement gives

P [42 > Median ('ym"17 - ,7’”) 2’”] >1-4

The claim then follows from the union bound. O

Proof of Proposition 1. For singleton marginals, when k € [m +
1,n], xy, is a free variable and thus ur = Eq4[zk] = qr(1). When
ke [1,m)],

(1 — ka) = (1 — Qbk) ﬁ (1 — 201“'.’171')

i=m+1

Take the expectation on both side and since z; for i € [m + 1, n]
are free (independent) variables, we have

n

(1=2u) = (1—2bx) [ (1—2Ckim)

i=m-+1

That is,

e = (1 — (1 —2by) ﬁ (1- 2C’m‘lli)> /2

i=m-+1
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For the binary marginal px;, there are three cases: both zy, x; are
free variables; one is free and the other is constrained; both are
constrained.

For the first case, k, £ € [m+1, n], they are independent and thus
prr = Eqlxrxe] = pirpoe

For the second case, k € [m + 1,n], £ € [1,m]. Define X¢&, to
be the set of 41, . . ., Trn that satisfy constraint [ with xj, fixed
to 1; that is, Xa ={Zm+1,.- |z =1, -1=(1—-2x) =
(1 —=2b) 1,1 (1 = 2Cz;)}. Hence

> | JIRED)

937n+1a--~:Tn€Xél i=m+1

k= Prizy =12, =1] =

When Cj, = 1 the 1 — 2Ci,z) term in the product con-
straint on Xél is —1, so the product constraint is 1 = (1 —
2b1) 171,426 (1 — 2Ci2i). Define this constrained set as

X’éfl and bring ¢ (xx = 1) out of the product to yield

2 I1

Tom41s--:Tn EX]élzl i=m+1,i#k

Bkl = Mk - qi(w:)

Introducing a new binary variable w that satisfies the constraint

n

Qu—-1)=(1-20) [ @1 —2Cux)
iZk,i=m-+1
the above summation is OVer Ty 41, ...Lk—1, Lkt1, .-+, Tn, U such

that w = 1. Since P(u = 1) = E[u],

1
pt = pnElu] = pe5 (1 + (1 = 2br) [T -2Cum))
ik, i=mt1

as desired.
If Ci; = 0, then x; is independent of x, SO g = pk -
For the last case, k,{ € [1,m].
(1 —2zx)(1 — 2x¢) =
(1—2bx)(1—2b) [ (1=2Ckiz:) [] (1 -2Cuz:)
i=m-+1 i=m+1
Taking the expected value of both side
1— 2 — 2pk +4pp =
(1—2b)(1—2bx) [] E[ - i(2Cki +2Cu) + 4CkiCriz?]
i=m+1

SO

ot = i(fl + 20 + 200+
(1 — 2b;)(1 — 2b;) f[ (1 = pi(2Ck; + 2C1; — 4CiCi)))
i=m+1
Plugging in the result of ., :
App — 1=
(1 — 2bg)(1 — 2b;) ﬁ (1 = pi(2Cks 4+ 2C1; — 4CiCli))

i=m+1

—(1=2bp) ] 0 =2Ckim)—(—26) ] (1-2Cum))

i=m41 i=m+1

By inspection, all of the marginals p, p; are linear in any par-
ticular free marginal ftm+1, . . ., tn. Hence, for any free marginal
s the objective function 11 contains a term linear in p; plus the
entropy of a bernoulli random variable with parameter 1;, which
is concave in p;. Thus the coordinate ascent step for p; can be
solved in closed form, as desired.

O



