
Tight Variational Bounds via Random Projections and I-Projections

A Appendix : Proofs

Proof of Theorem 1. Let q ∈ Q. For ease of notation we define
L(q, Ai,t, bi,t) as

�
x∈X

Ai,tbi,t
q(x)θ�φ(x)−q(x) log q(x); this

is the variational lower bound using q as the approximating dis-
tribution. From the non-negativity of the KL divergence we have
that

logZ(Ai,t, bi,t) ≥ L(q,Ai,t, bi,t)

and, since q was arbitrary,

logZ(Ai,t, bi,t) ≥ max
q∈Q

L(q, Ai,t, bi,t)

Thus

Z(Ai,t, bi,t) ≥ exp

�
max
q∈Q

�
L(q, Ai,t, bi,t)

��
� γi,t (12)

We take the expectation of both sides to yield

Z

2i
= E

�
Z(Ai,t, bi,t)

�

≥ E
�
exp

�
max
q∈Q

�
L(q, Ai,t, bi,t)

���
= E[γi,t]

which proves the first part of the theorem.

We prove the second part by using the fact that our approximating
family Q contains the degenerate family D, for which Theorem 2
(below) gives tight approximation bounds.

Since the conditions of Theorem 2 are satisfied, we know that
equation (10) holds with probability at least 1−δ. From (10), since
the terms in the sum are non-negative, we have that the maximum
element is at least 1/(n+ 1) of the sum:

max
i

exp

�
Median
t∈[T ]

−min
q∈D

DKL(q||Ri
Ai,t,bi,t(p))

+ logZ(Ai,t, bi,t)

�
2i−1

≥ 1

32
Z

1

n+ 1

Therefore there exists m such that

Median
t∈[T ]

�
−min

q∈D
DKL(q||Rm

Am,t,bm,t(p)) + logZ(Am,t, bm,t)

�

+ (m− 1) log 2

≥ − log 32 + logZ − log(n+ 1)

We also have

min
q∈Q

DKL(q||RA,b(p)) ≤ min
q∈D

DKL(q||RA,b(p))

because D ⊆ Q. Thus

Median
t∈[T ]

�
−min

q∈Q
DKL(q||Rm

Am,t,bm,t(p)) + logZ(Am,t, bm,t)

�

+ (m− 1) log 2

≥ − log 32 + logZ − log(n+ 1)

From the definition of KL divergence, we have

DKL(q||Rm
A,b(p)) = −L(q, A, b) + logZ(A, b)

Plugging in we get

Median
t∈[T ]

�
log γm,t�+ (m− 1) log 2

≥− log 32− log(n+ 1) + logZ

and also

Median
t∈[T ]

�
log γm,t�+m log 2 ≥ − log 32− log(n+ 1) + logZ

with probability at least 1− δ. Exponentiating both sides,

Median
�
γm,1, · · · , γm,T

�
2m ≥ Z

32(n+ 1)

and since the terms in the Median are nonzero,

1

T

T�

t=1

γm,t ≥ 1

2
Median

�
γm,1, · · · , γm,T

�

therefore with probability at least 1− δ

1

T

T�

t=1

γm,t2m ≥ Z

64(n+ 1)

which proves the lower bound.

From Markov’s inequality we have

P
�
Z(Ai,t, bi,t) ≥ cE[Z(Ai,t, bi,t)]

�
≤ 1

c

P
�
Z(Ai,t, bi,t)2i ≥ cZ

�
≤ 1

c

Since Z(Ai,t, bi,t) ≥ γi,t, setting c = 4 and i = m yields

P
�
γm,t2m ≥ 4Z

�
≤ 1

4

Applying Chernoff’s inequality and selecting T as in the theorem
statement gives

P
�
4Z ≥ Median

�
γm,1, · · · , γm,T

�
2m

�
≥ 1− δ

The claim then follows from the union bound.

Proof of Proposition 1. For singleton marginals, when k ∈ [m+
1, n], xk is a free variable and thus µk = Eq[xk] = qk(1). When
k ∈ [1,m],

(1− 2xk) = (1− 2bk)
n�

i=m+1

(1− 2Ckixi)

Take the expectation on both side and since xi for i ∈ [m+ 1, n]
are free (independent) variables, we have

(1− 2µk) = (1− 2bk)
n�

i=m+1

(1− 2Ckiµi)

That is,

µk =

�
1− (1− 2bk)

n�

i=m+1

(1− 2Ckiµi)

�
/2
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For the binary marginal µkl, there are three cases: both xk, xl are
free variables; one is free and the other is constrained; both are
constrained.

For the first case, k, � ∈ [m+1, n], they are independent and thus

µkl = Eq[xkx�] = µkµ�

For the second case, k ∈ [m + 1, n], � ∈ [1,m]. Define Xk
Cl

to
be the set of xm+1, . . . , xn that satisfy constraint l with xk fixed
to 1; that is, Xk

Cl
= {xm+1, . . . , xn|xk = 1, −1 = (1− 2xl) =

(1− 2bl)
�n

i=m+1(1− 2Clixi)}. Hence

µkl = Pr[xk = 1, xl = 1] =
�

xm+1,...,xn∈Xk
Cl

n�

i=m+1

qi(xi)

When Clk = 1 the 1 − 2Clkxk term in the product con-
straint on Xk

Cl
is −1, so the product constraint is 1 = (1 −

2bl)
�n

i=m+1,i�=k(1 − 2Clixi). Define this constrained set as
Xk=1

Cl
and bring qk(xk = 1) out of the product to yield

µkl = µk ·
�

xm+1,...,xn∈Xk=1
Cl

n�

i=m+1,i�=k

qi(xi)

Introducing a new binary variable u that satisfies the constraint

(2u− 1) = (1− 2bl)
n�

i�=k,i=m+1

(1− 2Clixi)

the above summation is over xm+1, ...xk−1, xk+1, ..., xn, u such
that u = 1. Since P (u = 1) = E[u],

µkl = µkE[u] = µk
1

2
(1 + (1− 2bl)

n�

i�=k,i=m+1

(1− 2Cliµi))

as desired.

If Clk = 0, then xl is independent of xk, so µkl = µkµl.

For the last case, k, � ∈ [1,m].

(1− 2xk)(1− 2x�) =

(1− 2bk)(1− 2b�)
n�

i=m+1

(1− 2Ckixi)
n�

i=m+1

(1− 2C�ixi)

Taking the expected value of both side

1− 2µl − 2µk + 4µkl =

(1− 2bl)(1− 2bk)
n�

i=m+1

E[1− xi(2Cki + 2Cli) + 4CkiClix
2
i ]

so

µkl =
1

4
(−1 + 2µk + 2µl+

(1− 2bk)(1− 2bl)
n�

i=m+1

(1− µi(2Cki + 2Cli − 4CkiCli)))

Plugging in the result of µk, µl:

4µkl − 1 =

(1− 2bk)(1− 2bl)
n�

i=m+1

(1− µi(2Cki + 2Cli − 4CkiCli))

−(1− 2bk)
n�

i=m+1

(1− 2Ckiµi)− (1− 2bl)
n�

i=m+1

(1− 2Cliµi))

By inspection, all of the marginals µk, µkl are linear in any par-
ticular free marginal µm+1, . . . , µn. Hence, for any free marginal
µi the objective function 11 contains a term linear in µi plus the
entropy of a bernoulli random variable with parameter µi, which
is concave in µi. Thus the coordinate ascent step for µi can be
solved in closed form, as desired.


