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Abstract

Information projections are the key building
block of variational inference algorithms and are
used to approximate a target probabilistic model
by projecting it onto a family of tractable distri-
butions. In general, there is no guarantee on the
quality of the approximation obtained. To over-
come this issue, we introduce a new class of ran-
dom projections to reduce the dimensionality and
hence the complexity of the original model. In
the spirit of random projections, the projection
preserves (with high probability) key properties
of the target distribution. We show that informa-
tion projections can be combined with random
projections to obtain provable guarantees on the
quality of the approximation obtained, regard-
less of the complexity of the original model. We
demonstrate empirically that augmenting mean
field with a random projection step dramatically
improves partition function and marginal proba-
bility estimates, both on synthetic and real world
data.

1 Introduction

Probabilistic inference is a core problem in machine learn-
ing, physics, and statistics [Koller and Friedman, 2009].
Probabilistic inference methods are needed for training,
evaluating, and making predictions with probabilistic mod-
els [Murphy, 2012]. Developing scalable and accurate in-
ference techniques is the key computational bottleneck
towards deploying large-scale statistical models, but ex-
act inference is known to be computationally intractable.
The root cause is the curse of dimensionality – the num-
ber of possible scenarios to consider grows exponentially
in the number of variables, and in continuous domains,
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the volume grows exponentially in the number of dimen-
sions [Bellman, 1961]. Approximate techniques are there-
fore almost always used in practice [Murphy, 2012].

Sampling-based techniques and variational approaches
are the two main paradigms for approximate infer-
ence [Andrieu et al., 2003, Wainwright and Jordan, 2008].
Sampling-based approaches attempt to approximate in-
tractable, high-dimensional distributions using a (small)
collection of representative samples [Gogate and Dechter,
2011, Ermon et al., 2013a, Maddison et al., 2014]. Un-
fortunately, it is usually no easier to obtain such samples
than it is to solve the original probabilistic inference prob-
lem [Jerrum and Sinclair, 1997]. Variational approaches,
on the other hand, approximate an intractable distribution
using a family of tractable ones. Finding the best approxi-
mation, also known as computing an I-Projection onto the
family, is the key ingredient in all variational inference al-
gorithms. In general, there is no guarantee on the quality
of the approximation obtained [Globerson and Jaakkola,
2007, Ruozzi, 2013, Weller et al., 2014]. Intuitively, if the
target model is too complex with respect to the family used,
then the approximation will be poor.

To overcome this issue, we introduce a new class of ran-
dom projections [Vadhan, 2011, Goldreich, 2011, Ermon
et al., 2013b]. These projections take as input a probabilis-
tic model and randomly perturb it, reducing its degrees of
freedom. The projections can be computed efficiently and
they reduce the effective dimensionality and complexity of
the target model. Our key result is that the randomly pro-
jected model can then be approximated with I-projections
onto simple families of distributions such as mean field
with provable accuracy guarantees, regardless of the com-
plexity of the original model. Crucially, in the spirit of ran-
dom projections for dimensionality reduction, the random
projections affect key properties such as the partition func-
tion in a highly predictable way. The I-projection of the
projected model can therefore be used to accurately recover
properties of the original model with high probability.

We demonstrate the effectiveness of our approach by us-
ing mean field augmented with random projections to es-
timate marginals and the log partition function on models
of synthetic and real-world data, empirically showing large
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improvements on both tasks.

2 Preliminaries

Let p(x) = 1
Z

∏
α ψα({x}α) be a probability distribu-

tion over n binary variables x ∈ {0, 1}n specified by an
undirected graphical model1, where α ranges over the fac-
tors in the model and {x}α are the variables to which
factor ψα is connected [Koller and Friedman, 2009].
We further assume that p(x) is a member of an expo-
nential family of distributions parameterized by θ ∈ Rd
and with sufficient statistics φ(x) [Wainwright and Jor-
dan, 2008], i.e., p(x) = exp(θ′φ(x))/Z. The constant
Z =

∑
x∈{0,1}n exp(θ′φ(x)) is known as the partition

function and ensures that the probability distribution is
properly normalized. Computing the partition function is
needed to evaluate likelihoods and to compare compet-
ing models of data. This computation is known to be in-
tractable (#-P hard) in the worst-case. Intuitively, the is-
sue is that the sum is defined over an exponentially large
number of terms, and is therefore hard to evaluate unless
there is special structure [Valiant, 1979, Koller and Fried-
man, 2009]. While several strategies for approximating the
partition function are possible, we focus on variational ap-
proaches.

2.1 Variational Inference and I-projections

The key idea of variational inference is to approximate the
intractable probability distribution p(x) with one that is
more tractable. The approach is to define a family Q of
tractable distributions and then to find a distribution in this
family that minimizes a notion of divergence from p. Typi-
cally, the Kullback-Leibler divergence DKL(q||p) is used,
which is defined as follows

DKL(q||p) =
∑

x

q(x) log
q(x)

p(x)
(1)

=
∑

x

q(x) log q(x)− θ ·
∑

x

q(x)φ(x) + logZ

A distribution q∗ ∈ Q that minimizes this divergence,
q∗ = arg minq∈QDKL(q||p), is called an information pro-
jection (I-projection) ontoQ. Intuitively, q∗ is the “closest”
distribution to p among all the distributions inQ. Typically,
one chooses Q to be a family of distributions for which in-
ference is tractable so that (1) can be evaluated efficiently.
The simplest choice, which removes all conditional depen-
dencies, is to let Q be the set of fully factored probabil-
ity distributions over X , namely QMF = {q(x)|q(x) =∏
i qi(xi)}. This is known as the mean field approxima-

tion. Even when Q is tractable, computing an I-projection

1We restrict ourselves to binary variables for the ease of expo-
sition. Our approach applies more generally to discrete graphical
models.

is a non-convex optimization problem which can be diffi-
cult to solve.

Since the KL-divergence is non-negative, equation (1)
shows that any distribution q ∈ Q provides a lower bound
on the value of the partition function

logZ ≥ max
q∈Q

{
−
∑

x

q(x) log q(x) + θ ·
∑

x

q(x)φ(x)

}

(2)

The distribution q∗ that minimizes DKL(q||p) is also the
distribution that provides the tightest lower bound on the
partition function by maximizing the RHS of equation (2).
The larger the setQ is, the better q∗ can approximate p and
the tighter the bound becomes. If Q is so large that p ∈ Q,
then minq∈QDKL(q||p) = 0, because when q∗ = p,
DKL(q∗||p) = 0. In general, however, there is no guar-
antee on the tightness of bound (2) even if the optimization
can be solved exactly.

2.2 Random Projections

We introduce a different class of random projections that
we will use for probabilistic inference. Let P be the set of
all probability distributions over {0, 1}n. We introduce a
family of operators RmA,b : P → P , where m ∈ [0, n],
A ∈ {0, 1}m×n, and b ∈ {0, 1}m. RmA,b ∈ R maps p(x) =
1
Z exp(θ′φ(x)) to a new probability distribution RmA,b(p)
whose support is restricted to {x : Ax = b mod 2} and
whose probability mass function is proportional to p. For-
mally,

RmA,b(p)(x) =
1

Z(A, b)
exp(θ′φ(x)) (3)

with
Z(A, b) =

∑

x|Ax=b mod 2

exp(θ′φ(x)) (4)

These operators are clearly idempotent and can thus be in-
terpreted as projections on P .

When the parameters A, b are chosen randomly, the opera-
tor RmA,b can be seen as a random projection. We consider
random projections obtained by choosing A ∈ {0, 1}m×n
and b ∈ {0, 1}m independently and uniformly at random,
i.e., choosing each entry by sampling an independent unbi-
ased Bernoulli random variable. This can be shown to im-
plement a strongly universal hash function [Vadhan, 2011,
Goldreich, 2011]. Intuitively, the projection randomly sub-
samples the original space, selecting configurations x ∈
{0, 1}n pairwise independently with probability 2−m. It
can be shown that

E[Z(A, b)] = 2−mZ (5)

where the expectation is over the random
choices of A, b, and that V ar [Z(A, b)] =
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1
2m

(
1− 1

2m

)∑
x exp(θ′φ(x))2 [Ermon et al., 2013b,

2014]. As we will formalize later, this random projection
simplifies the model without losing too much information
because it affects the partition function in a highly pre-
dictable way (controlling the expectation and the variance
is sufficient to achieve high probability bounds).

To gain some intuition on the effect of the random projec-
tion, we can rewrite the linear system Ax = b mod 2 in
reduced row-echelon form [Ermon et al., 2013b]. Assum-
ing A is full-rank, we perform row reduction on A and b
simultaneously to obtain the row reduced C = [Im|A′] and
b′. Here Im is them×m identity matrix,A′ is them×n−m
sub-matrix ofA that remains after the row reduction proce-
dure, and b′ is the result of performing the same operations
on b as they are performed on A. Thus the system Ax = b
is equivalent to Cx = b′. For notational simplicity, how-
ever, we continue to use b instead of b′. We can equivalently
rewrite the constraints Ax = b mod 2 as the following set
of constraints

x1 =
n⊕

i=m+1

c1ixi ⊕ b1, · · · , xm =
n⊕

i=m+1

cmixi ⊕ bm

where ⊕ denotes the exclusive-or (XOR) operator. Thus,
the random projection reduces the degrees of freedom of
the model by m, as the first m variables are completely de-
termined by the last n − m. For later development it will
also be convenient to rewrite these linear equations mod-
ulo 2 as polynomial equations by changing variables from
{0, 1} to {−1, 1}:

(1− 2xk) =
n∏

i=m+1

(1− 2Ckixi)(1− 2bk) (6)

for k = 1, · · · ,m.

3 Combining Random Projections with
I-Projections

Given an intractable target distribution p and a candidate
set of tractable distributions Q, there are two main issues
with variational approximation techniques: (i) p can be far
from the approximating family Q in the sense that even
the optimal q∗ = arg minq∈QDKL(q‖p) can have a large
divergence DKL(q∗‖p) and therefore yield a poor lower
bound in Eq. (2), and (ii) the variational problem in Eq.
(2) is non-convex and thus difficult to solve exactly in high
dimensions. Our key idea is to address (i) by using the ran-
dom projections introduced in the previous section to “sim-
plify” p, producing a projection RmA,b(p) that provably is
closer to Q. Crucially, because of the statistical properties
of the random projection used, variational inferences on the
randomly projected model RmA,b(p) reveal useful informa-
tion about the original distribution p. Randomization plays

a key role in our approach, boosting the power of varia-
tional inference. A pictorial representation is given in Fig-
ure 1.

A similar approach combining variational inference with
random projections has been recently introduced by Zhu
and Ermon [2015]. They analyze the first and second mo-
ments of (4), and provide a family of probabilistic bounds
on the partition function based on ideas from variational in-
ference. These bounds, however, are not guaranteed to be
tight, i.e., they suffer from the same limitations of tradi-
tional variational bounds. Further, these bounds hold only
in expectation, and the variance can be too high to guar-
antee concentration around the mean using a small num-
ber of samples. In contrast, we introduce a novel analysis
based on information geometry (KL-divergences, see Fig-
ure 1) which provides new estimators with provably tight
bounds. These bounds are valid with high probability and
can be computed with a small number of samples. Further,
our information geometric approach leads to new algorith-
mic ideas to take advantage of the reduced dimensionality
space introduced by the random projection.

3.1 Provably Tight Variational Bounds on the
Partition Function

Let D = {δx0|x0 ∈ X} denote the set of degenerate prob-
ability distributions over {0, 1}n, i.e. probability distribu-
tions that place all the probability mass on a single con-
figuration. There are 2n such probability distributions and
the entropy of each is zero. Given any probability distri-
bution p, its projection on D, i.e., arg minq∈DDKL(q||p),
is given by a distribution that places all the probability
on arg maxx∈X log p(x). Thus computing the I-projection
on D is equivalent to solving a Most Probable Explana-
tion query which is NP-hard in the worst-case [Koller and
Friedman, 2009].

Let Q be a family of probability distributions that con-
tains D. Our key result is that we can get provably tight
bounds on the partition functionZ by taking an I-projection
onto Q after a suitable random projection. The proof re-
lies on Theorem 2, which states that p can be approximated
using a small number of configurations obtained by ran-
domly projecting p and solving a Most Probable Explana-
tion query Ermon et al. [2013c]. Interpreted variationally,
p can be approximated using a small number of degenerate
distributions that can be computed by taking random pro-
jections followed by I-projections onto D. Observing that
the family of degenerate distributions D is contained in Q,
we can show that I-projecting ontoQ after suitable random
projections yields a provably accurate approximation of the
target distribution p.

Theorem 1. Let Ai,t ∈ {0, 1}i×n iid∼ Bernoulli( 1
2 ) and

bi,t ∈ {0, 1}i iid∼ Bernoulli( 1
2 ) for i ∈ [0, n] and t ∈ [1, T ].

Let Q be a family of distributions such that D ⊆ Q. Let
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Figure 1: Pictorial representation of the approach. p is the target intractable distribution. Each gray oval labeled RmA,b
represents the family of distributions induced by projecting p onto m parity constraints. The small circles inside the ovals
represent the projections for particular choices of parity constraint matrices A, b; these circles are themselves probability
distributions. The I-projection from p to QMF (bottom solid arrow) can yield inaccurate estimates of the partition function
of p. Theorem 1 states that there exists an m such that by projecting p onto RmA,b (dashed red lines) we obtain a distribution
that can be well-approximated by some distribution in D (and therefore in QMF as well). Since the random projection
alters the partition function of p in a predictable way, we can combine these two projections to yield a provably tighter
approximation of the original distribution.

γi,t = exp

(
max
q∈Q

θ ·
∑

x:Ai,tx=bi,t

q(x)φ(x)

−
∑

x:Ai,tx=bi,t

q(x) log q(x)

)
(7)

be the optimal solutions for the projected variational infer-
ence problems. Then for all i ∈ [0, n] and for all T ≥ 1
the rescaled variational solution is a lower bound for Z in
expectation

E

[
1

T

T∑

t=1

γi,t2i

]
= E[γi,t2i] ≤ Z

There also exists an m such that for any ∆ > 0 and posi-
tive constant α ≤ 0.0042, if T ≥ 1

α (log(n/∆)) then with
probability at least (1− 2∆)

1

T

T∑

t=1

γm,t2m ≥ Z

64(n+ 1)
(8)

4Z ≥ Median
(
γm,1, · · · , γm,T

)
2m ≥ Z

32(n+ 1)
(9)

Proof. We present a sketch of the proof; see the Appendix
for the formal derivation. For the first part of the theorem,
notice that γi,t is the standard variational lower bound on
Z(Ai,t, bi,t), the partition function of the randomly pro-
jected model. The inequality Z(Ai,t, bi,t) ≥ γi,t holds for
any realization of the random matrices Ai,t, bi,t; therefore,

if we consider the expected value and use (5) we obtain the
desired result E[γi,t2i] ≤ Z.

For the second part, the upper bound 4Z ≥
Median

(
γm,1, · · · , γm,T

)
2m is an immediate conse-

quence of Markov’s inequality, given that E[γi,t2i] ≤ Z.
For the lower bound, notice that by assumption the condi-
tions of Theorem 2 are satisfied. Therefore, we know that
equation (10) holds with probability at least 1 − ∆. Since
the terms are all nonnegative the maximum element is at
least 1/(n+ 1) times the sum, so we apply (10) to get

max
i

exp

(
Median
t∈[T ]

−min
q∈D

DKL(q||RiAi,t,bi,t(p))

+ logZ(Ai,t, bi,t)

)
2i−1 ≥ 1

32
Z

1

n+ 1

Equality holds if all terms in the sum are equal. Therefore
there exists m such that

Median
t∈[T ]

−DKL(q∗||RmAm,t,bm,t(p)) + logZ(Am,t, bm,t)

+(m− 1) log 2 ≥ logZ − log 32(n+ 1)

where q∗ is the I-projection of RmAm,t,bm,t(p) onto D. This
is the key result: one can always find a small number of
T degenerate distributions such that with proper rescaling
they account for at least a 32(n + 1) fraction of the value
of Z with high probability.

We rely on the fact that Q contains the degenerate family
D which implies that the lower bound can only improve if
we optimize over the larger family:

min
q∈Q

DKL(q||RA,b(p)) ≤ min
q∈D

DKL(q||RA,b(p))
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The final high probability bound then follows by Cher-
noff’s inequality.

This proves that appropriately rescaled variational lower
bounds obtained on the randomly projected models (aggre-
gated through median as in Equation (9)) are within a factor
n of the true value Z, where n is the number of variables in
the model. This is an improvement on prior variational ap-
proximations which can either be unboundedly suboptimal
or provide guarantees that hold only in expectation [Zhu
and Ermon, 2015]; in contrast, our bounds are tight and re-
quire a relatively small number of samples proportional to
log n/∆. The proof, reported in the appendix for space rea-
sons, relies on the following technical result which can be
seen as a variational interpretation of Theorem 1 from [Er-
mon et al., 2013c] and is of independent interest:

Theorem 2. For any ∆ > 0, and positive constant α ≤
0.0042, let T ≥ 1

α (log(n/∆)). Let Ai,t ∈ {0, 1}i×n iid∼
Bernoulli( 1

2 ) and bi,t ∈ {0, 1}i iid∼ Bernoulli( 1
2 ) for i ∈

[0, n] and t ∈ [1, T ]. Let

δi,t = min
q∈D

DKL(q||RiAi,t,bi,t(p))

Then with probability at least (1−∆)

n∑

i=0

exp

(
Median
t∈[T ]

(
−δi,t + logZ(Ai,t, bi,t)

))
2i−1 (10)

is a 32-approximation to Z (that is, at least Z/32 and at
most 32Z).

Intuitively, Theorem 2 states that one can always find a
small number of degenerate distributions (which can be
equivalently thought of as special states or samples that
can be discovered through random projections and KL-
divergence minimization) that are with high probability
representative of the original probabilistic model, regard-
less of how complex the model is. Theorem 1 extends this
idea to more general families of distributions such as mean
field.

Proof of Theorem 2. For ease of notation we define
XA,b = {x ∈ {0, 1}n : Ax = b mod 2}. Thus

min
q∈D

DKL(q||RiA,b(p))

= min
δx0∈D

H(δx0)−
∑

x∈XA,b

δx0(x)θ′φ(x) + logZ(A, b)

= min
x∈XA,b

−θ′φ(x0) + logZ(A, b)

since H(δx0) = 0 for any x0. Therefore

−min
q∈D

DKL(q||RiAi,t,bi,t(p)) + logZ(Ai,t, bi,t)

= max
x∈XAi,t,bi,t

θ′φ(x)

We can substitute this into Eq. (10) to rewrite it as

n∑

i=0

exp

(
Median
t∈[T ]

(
max

x∈XAi,t,bi,t

θ′φ(x)

))
2i−1

=

n∑

i=0

(
Median
t∈[T ]

exp

(
max

x∈XAi,t,bi,t

θ′φ(x)

))
2i−1

=
n∑

i=0

(
Median
t∈[T ]

(
max

x∈XAi,t,bi,t

exp(θ′φ(x))

))
2i−1

The result then follows directly from Theorem 1 from [Er-
mon et al., 2013c].

3.2 Solving Randomly Projected Variational
Inference Problems

To apply the results from Theorem 1 we must choose a
tractable approximating family D ⊆ Q for the I-projection
part and incorporate our random projections into the opti-
mization procedure. We focus on mean field (Q = QMF )
as our approximating family, but the results can be eas-
ily extended to structured mean field [Bouchard-Côté and
Jordan, 2009]. For simplicity of exposition we consider
only probabilistic models p with unary and binary factors
(e.g. Ising models, restricted Boltzmann machines). That
is, p(x) = exp(θ · φ(x))/Z, where φ(x) are single node
and pairwise edge indicator variables.

Recall that our projection RmA,b(p) constrains the distribu-
tion p to {x|Ax = b mod 2}. The projected variational op-
timization problem (7) is therefore

logZ(A, b) ≥ max
q

θ ·
∑

x|Ax=b mod 2

q(x)φ(x)

−
∑

x|Ax=b mod 2

q(x) log q(x)

Or, equivalently,

logZ(A, b) ≥ max
µ

θ · µ+
n∑

i=m+1

H(µi) (11)

where µ is the vector of singleton and pairwise marginals of
q(x) and H(µi) is the entropy of a Bernoulli random vari-
able with parameter µi. To solve this optimization problem
efficiently we need a clever way to take into account the
parity constraints, for running traditional mean field with
message passing as in [Zhu and Ermon, 2015] would fail in
the normalization step because of the presence of hard par-
ity constraints. The key idea is to consider the equivalent
row-reduced representation of the constraints from (6) and
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define

q(x1, · · · , xn) =

n∏

i=m+1

qi(xi)·

m∏

k=1

I

{
(1− 2xk) =

n∏

i=m+1

(1− 2Ckixi)(1− 2bk)

}

where we have a set of independent “free variables” (wlog.,
the last n−m) and a set of “constrained variables” (the first
m) that are always set so as to satisfy the parity constraints.
Since the variables x1, . . . , xm are fully determined by
xm+1, . . . , xn, we see that the marginals µ1, . . . , µm are
also determined by µm+1, . . . , µn, as shown by the follow-
ing proposition:
Proposition 1. The singleton and pairwise marginals in
(11) can be computed as follows:

Singleton marginals: for k ∈ [m + 1, n], µk = Eq [xk] =
qk(1). For k ∈ [1,m],

µk =

(
1− (1− 2bk)

n∏

i=m+1

(1− 2Ckiµi)

)
/2

Pairwise marginals: for k, ` ∈ [m + 1, n], µkl =
Eq[xkx`] = µkµ`. For k ∈ [m+ 1, n], ` ∈ [1,m],

µkl =





µk
1
2 (1 + (1− 2bl)

∏n
i 6=k,i=m+1(1− 2Cliµi))

if Clk = 1

µkµl otherwise

For k ∈ [1,m], ` ∈ [1,m],

µkl =
1

4

(
1− (1− 2bk)

n∏

i=m+1

(1− 2Ckiµi)+

(1− 2bk)(1− 2bl)
n∏

i=m+1

(1− µi(2Cki + 2Cli − 4CkiCli))

−(1− 2bl)
n∏

i=m+1

(1− 2Cliµi)

)

The derivation is found in the appendix. We can therefore
maximize the lower bound in (11) by optimizing only over
the “free marginals” µm+1, . . . , µn, as the remaining one
are completely determined per Proposition 1. Compared to
a traditional mean field variational approximation, we have
a problem with a smaller number of variables, but with ad-
ditional non-convex constraints.

4 Algorithm: Mean Field with Random
Projections

Theorem 1 guarantees that the approximation to Z has a
tight lower bound only if we are able to find globally op-
timal solutions for (11). However, nontrivial variational in-
ference problems (2) are non-convex in general even with-
out any random projections and even when Q is simple,

e.g., Q = QMF . We do not explicitly handle this noncon-
vexity, but nevertheless we show empirically that we can
vastly improve on mean field lower bounds. The key insight
for our optimization procedure is that the objective function
is still coordinate-wise concave, like in a traditional mean-
field approximation:

Proposition 2. The objective function θ · µ +∑n
i=m+1H(µi) in (11) is concave with respect to

any particular free marginal µm+1, . . . , µn.

Proof. By inspection, all the marginals in Proposition
1 are linear with respect to any specific free marginal
µm+1, . . . , µn. Since the entropy term is concave, the RHS
in (11) is concave in each free marginal µm+1, . . . , µn.

Since (11) is concave in each variable we devise a
coordinate-wise ascent algorithm, called Mean Field with
Random Projections (MFRP), for maximizing the lower
bound in (11) over the free marginals defined in Proposition
1. The pseudocode is reported as Algorithm 1. It takes as
input an (intractable) discrete probability distribution p(x)
and a number of parity constraints m. It returns a proba-
bilistic lower bound for the partition function of p(x).

The algorithm proceeds as follows. Starting from a random
initialization, we iterate over each free marginal µk and
maximize (11) with the rest of the free marginals fixed by
setting the gradient with respect to µk equal to 0 and solv-
ing for µk. Because the overall optimization problem is not
concave the algorithm may converge at a local maximum;
therefore, we use J random initializations and use the best
lower bound found across the J runs of the ascent algo-
rithm. For a given m, we repeat this procedure T times and
return the median across the runs. Each coordinate ascent
step for free marginal µi takes O(m+ n+ |Ecc|(n−m))
steps in expectation where Ecc is the number of variables
co-occurring in a parity constraint. Recomputing the con-
strained marginals takes O(m(n−m)) steps.

The algorithm returns the maximum of MFRP(p(x),m)
over m ∈ [0, n]. If MFRP finds a global optimum, then
Theorem 1 guarantees it is a tight lower bound for logZ
with high probability. Since MFRP uses coordinate-wise
ascent we cannot certify global optimality; however, our
experiments show large improvements in the lower bound
when compared to existing variational methods.

5 Experiments

We investigate MFRP’s empirical performance on Ising
models and on Restricted Boltzmann Machines. In particu-
lar, we are interested in the log partition function estimates
and in the quality of the marginal estimates. Although our
theoretical results only apply to the partition function, it is
believed that better partition function estimates lead to bet-
ter marginal estimates. This relationship is however gener-
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Algorithm 1 MFRP(p(x) ∝ exp(θ′φ(x)),m)

for t = 1, · · · , T do . Do T random projections
Generate parity bits b(t) iid∼ Bernoulli( 1

2 )m . Generate random projection Rm
A(t),b(t)

Generate matrix A(t) iid∼ Bernoulli( 1
2 )m×n

Row reduce A(t),b(t) to yield C = [I|A(t)′ ] and b . Compute constraints
Z̃(t) ← 0
for j = 1, · · · , J do . Try different initializations

Initialize µ(j,t) iid∼ Unif(0, 1)n

for l = 1, · · · ,m do . Compute constrained marginals
µ(j,t) ←

(
1−∏n

i=m+1(1− 2Cliµ
(j,t)
i )(1− 2bl)

)
/2

end for
while not converged do . Stop when the increment is small or timeout

for k = m+ 1, · · · , n do . Coordinate ascent over free marginals
µ
(j,t)
k ← arg maxµk

θ · µ(j,t) +
∑n
i=m+1H(µ

(j,t)
i )

for l = 1, · · · ,m do
µ
(j,t)
k ←

(
1−∏n

i=m+1(1− 2Cliµ
(j,t)
i )(1− 2bl)

)
/2 . Update constrained marginals

end for
end for

end while
end for
Z̃(t) ← maxj exp(θ · µ(j,t) +

∑n
i=m+1H(µ

(j,t)
i )) . Pick best over initializations

end for
Return 2mMedian

(
Z̃(1), . . . , Z̃(T )

)
. Aggregate across projections

No. Hidden Nodes 100 100 100 200 200 200
CD-k 1 5 15 5 15 25

MF logZ 501 348 297 203 293 279
MFRP logZ 501 433 342 380 313 295

MF µ

MFRP µ

Table 1: Log partition function (logZ) and marginals for the visible units (µ) estimates across two RBMs trained with
contrastive divergence (CD) using different sampling parameters. MFRP provides improved lower bounds on the partition
function and qualitatively better marginal estimates.

ally poorly understood, even for standard variational meth-
ods. Where applicable, exact ground truth estimates are ob-
tained with the libDAI implementation of Junction Tree
[Mooij, 2010]. Upper bounds are calculated with Tree-
Reweighted Belief Propagation (TRW-BP) [Wainwright,
2003], also implemented in libDAI. All methods are com-
pared to mean field (MF) optimized with coordinate-wise
ascent and random restarts.

5.1 Ising Models

We consider n× n binary grid Ising models with variables
xi ∈ {−1, 1} and potentials ψij(xi, xj) = exp(wijxixj +
fixi+fjxj). In particular, we look at mixed models where
the wij’s are drawn uniformly from [−10, 10] and the fi’s
uniformly from [−1, 1].

Figure 2 compares the log partition function estimates from
mean field, junction tree, MFRP, and TRW-BP. For each
grid size, we generated five different grids and computed
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Figure 2: Ising grids: for each size, we plot the
ratios of the estimates from each method to the
mean field estimate, with standard error bars
based on 5 runs. The mean field line is 0 and flat
because results are reported as a log ratio over the
mean field estimate.

Figure 3: Runtimes for MFRP across differ-
ent grid sizes and constraints. Empirically, both
methods scale linearly in the number of variables
in the model (n2 in the Ising model case).

the mean field estimate for each as a baseline lower bound.
For each of the five grids we also computed the best MFRP
lower bound over m ∈ [0, 20] with T = 5 trials each. For
comparison we include the exact log partition calculation
from Junction Tree up to n = 20 and the TRW-BP up-
per bounds for all n. We plot the mean and standard error
bars of the log ratio of each estimate over mean field for
each method over the five grids. All results are reported
as log ratios with respect to the MF estimate, thus the MF
line is zero and constant. Note that for large grid sizes,
the lower bound provided by MFRP is hundreds of orders
of magnitude better than than those found by mean field.
We also report results from solving the discrete problem to
optimality using the optimization package CPLEX as the
WISH line in Figure 2, following [Ermon et al., 2013c].
The accuracy of this method suggests that the approxima-
tion gap of our algorithm is due to the difficulty of opti-
mizing over the highly nonconvex energy landscape with
randomly-restarted coordinate ascent.

Finally, we consider the empirical runtime of the method
for varying grid sizes n and number of constraints m in
Figure 3. As expected, the runtime for mean field grows
linearly in the number of variables in the graph (quadrati-
cally with the side length n) and there is a linear slowdown
as constraints are added to the optimization problem solved
by MFRP. These experiments show that MFRP scales well
(with a small overhead with respect to mean field) and can
potentially be applied in a wide range of application do-
mains where traditional mean field is used.

5.2 Restricted Boltzmann Machines

We train Restricted Boltzmann Machines (RBMs) [Hinton
et al., 2006] using Contrastive Divergence (CD) [Welling

and Hinton, 2002, Carreira-Perpinan and Hinton, 2005] on
the MNIST hand-written digits dataset. In an RBM there
is a layer of nh hidden binary variables h = h1, · · · , hnh

and a layer of nv binary visible units v = v1, · · · , vnv .
The joint probability distribution is given by P (h, v) =
1
Z exp(b′v+c′h+h′Wv). We use nh ∈ {100, 200} hidden
units and nv = 28 × 28 = 784 visible units. We learn the
parameters b, c,W using CD-k for k ∈ {1, 5, 15}, where
k denotes the number of Gibbs sampling steps used in the
inference phase, with 15 training epochs and minibatches
of size 20.

We then use MF and MFRP to estimate the log partition
function and also consider the aggregate marginals of the
visible units. Results are reported in Table 1. For most of
the cases we see a clear improvement in both the log parti-
tion lower bounds and in the marginals, with the marginal
for h = 100,CD-k = 15 similar visually to an average
over all digits in the dataset.

6 Conclusions

We introduced a new, general approach to variational infer-
ence that combines random projections with I-projections
to obtain provably tight lower bounds for the log partition
function. Our approach is the first to leverage universal
hash functions and their properties in a variational sense.
We demonstrated the effectiveness of this idea by extend-
ing mean field with random projections and empirically
showed a large improvement in the partition function lower
bounds and marginals obtained on both synthetic and real
world data. Natural extensions to the approach include ap-
plications to other variational methods, like the Bethe ap-
proximation, and the use of better optimization techniques.
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