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Abstract

Algorithms for bandit convex optimization
and online learning often rely on construct-
ing noisy gradient estimates, which are then
used in appropriately adjusted first-order algo-
rithms, replacing actual gradients. Depending
on the properties of the function to be opti-
mized and the nature of “noise” in the bandit
feedback, the bias and variance of gradient es-
timates exhibit various tradeoffs. In this paper
we propose a novel framework that replaces
the specific gradient estimation methods with
an abstract oracle. With the help of the new
framework we unify previous works, reproduc-
ing their results in a clean and concise fashion,
while, perhaps more importantly, the frame-
work also allows us to formally show that to
achieve the optimal root-n rate either the algo-
rithms that use existing gradient estimators, or
the proof techniques used to analyze them have
to go beyond what exists today.

1 Introduction

Convex optimization is widely studied under different
models concerning what can be observed about the ob-
jective function. These models range from accessing the
full gradient to only observing samples from the objec-
tive function (cf. [27, 13, 18, 29, 17, 1, 2, 28, 3, 22, 24,
33, 34, 14, 5, 15]). In this paper, we present and analyze
a novel framework for convex optimization with biased
gradient oracles, which encompasses most of what has
been done in the bandit framework where the algorithms
observe noisy point-evaluations of the objective function
and use these to construct gradient estimators.
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In our framework, an optimization algorithm can query
an oracle repeatedly to get a noisy and biased version
of the gradient (or a subgradient for non-differentiable
functions), where the algorithm querying the oracle also
sets a parameter that controls the tradeoff between the
bias and the variance of the gradient estimate.

Gradient oracles have been considered in the literature
before: Several previous works assume that the accu-
racy requirements hold with probability one [10, 4, 13]
or consider adversarial noise [31]. Gradient oracles with
stochastic noise, which is central to our development,
were also considered [21, 19, 16]; however, these pa-
pers assume that the bias and the variance are controlled
separately, and consider the performance of special algo-
rithms (in some cases in special setups).

The main feature of our model is that we allow stochas-
tic noise, control of the bias and the variance, and we
also consider lower bounds on the achievable error rates.
Our gradient oracle model applies to several gradient
estimation techniques extensively used in the literature,
mostly for the case when the gradient is estimated only
based on noisy observations of the objective function
[22, 24, 33, 34, 14, 5, 15]. A particularly interesting
application of our model is the widely studied bandit
convex optimization problem, mentioned above, where
most previous algorithms essentially use gradient esti-
mates and first-order methods [29, 17, 1, 2, 28, 3, 18].

In this paper, we consider the optimization accuracy in
both the stochastic and online bandit convex optimiza-
tion (BCO) setting. We provide upper and lower bounds
on the minimax optimization error (or regret) for sev-
eral oracle models, which correspond to different ways
of quantifying the bias-variance tradeoff of the gradient
estimate. In particular, we provide matching upper and
lower bounds for optimizing smooth, convex functions.
We do not claim to invent methods for proving upper
bounds, as the methods we use have been known previ-
ously for special cases (see the references above), but our
main contribution lies in abstracting away the properties
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of gradient estimation procedures, thereby unifying pre-
vious analysis, providing a concise summary and an ex-
planation of differences between previous works. More
importantly, our framework also allows to prove lower
bounds for any algorithm that relies on gradient estima-
tion oracles of the type our framework captures (earlier
work of Chen [9] considered a related lower bound on
the converge of the iterate instead of the function value).

Note that our oracle model does not capture the full
strength of the gradient estimates used in previous work,
but it fully describes the properties of the estimates that
so far have been used in their analysis. As a conse-
quence, our lower bounds show that the known minimax
regret of

√
T [7, 8, 32] of online and stochastic bandit

convex optimization cannot be shown to hold for any al-
gorithm that uses current gradient estimation procedures,
unless the proof exploited finer properties of the gradient
estimators than used in prior works. In particular, our
lower bounds even invalidate the claimed (weaker) up-
per bound of Dekel et al. [11].

The organization of the paper is as follows: We introduce
the oracle model in Section 2, upper and lower bounds
are provided in Section 3, with applications to online and
stochastic BCO in Sections 4 and 5. All proofs can be
found in the extended version of the paper [20].

2 Problem Setup

Notation: Capital letters will denote random variables.
For i ≤ j positive integers, we use the notation ai:j to
denote the sequence (ai, ai+1, . . . , aj).

We let ‖ · ‖ denote some norm on Rd, whose dual is de-
noted by ‖ · ‖∗. Let K ⊂ Rd be a non-empty closed
convex set. Given the function f : K → R which is
differentiable 1 in K◦ 2, f is said to be µ-strongly con-
vex w.r.t. ‖ · ‖ (µ ≥ 0) if µ

2 ‖x − y‖2 ≤ Df (x, y)
.
=

f(x) − f(y) − 〈∇f(y), x − y〉, for all x ∈ K , y ∈ K◦.
Similarly, f is µ-strongly convex w.r.t. a function R if
µ
2DR(x, y) ≤ Df (x, y) for all x ∈ K , y ∈ K◦, where
K◦ ⊆ dom(R) and R is differentiable over K◦. A
function f is L-smooth w.r.t. ‖ · ‖ for some L > 0 if
Df (x, y) ≤ L

2 ‖x − y‖2, for all x ∈ K , y ∈ K◦. This
latter condition is equivalent to that ∇f is L-Lipschitz
[27, Theorem 2.1.5]. We let FL,µ,R(K) denote the class
of functions that are µ-strongly convex w.r.t. R and L-
smooth w.r.t. some norm ‖ · ‖ on the set K. We also let
FL,µ(K) be FL,µ,R(K) with R(·) = 1

2‖ · ‖22. Then, the
set of convex and L-smooth functions is FL,0(K).

1Here we assume the differentiablity for simplicity of def-
inition, actually it is easy to generalize to non-differentiable
functions by using sub-gradient.

2For A ⊂ Rd, A◦ denotes the interior of A.
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Figure 1: The Interaction of the algorithms with the gra-
dient estimation oracle and the environment. For more
information, see the text.

In this paper, we consider convex optimization in a novel
setting, both for stochastic as well as online BCO. In
the online BCO setting, the environment chooses a se-
quence of loss functions f1, . . . , fn belonging to a set F
of convex functions over a common, non-empty convex
closed domain K ⊂ Rd. In the stochastic BCO setting,
a single fixed loss function f ∈ F is chosen. An al-
gorithm chooses a sequence of points X1, . . . , Xn ∈ K
in a serial fashion. The novelty of our setting is that
the algorithm, upon selecting point Xt, receives a noisy
and potentially biased estimate Gt ∈ Rd of the gradi-
ent of the loss function f (more generally, an estimate
of a subgradient of f , in case f is not differentiable
at Xt). To control the bias and the variance, the al-
gorithm can choose a tolerance parameter δt > 0 (in
particular, we allow the algorithms to choose the toler-
ance parameter sequentially). A smaller δt results in a
smaller “bias” (for the precise meaning of bias, we will
consider two definitions below), while typically with a
smaller δt, the “variance” of the gradient estimate in-
creases. Notice that in the online BCO setting, the algo-
rithm suffers the loss ft(Yt) in round t, where Yt ∈ K3

is guaranteed to be in the δt-vicinity of Xt. The goal
in the online BCO setting is to keep the expected regret,
Rn = E [

∑n
t=1 ft(Yt)] − infx∈K

∑n
t=1 ft(x), small. In

the stochastic BCO setting, the algorithm is also required
to select a point X̂n ∈ K once the nth round is over (in
both settings, n is given to the algorithms) and the algo-
rithm’s performance is quantified using the optimization
error, ∆n = E

[
f(X̂n)

]
− infx∈K f(x).

The main novelty of the model is that the information
flow between the algorithm and the environment (hold-
ing f , or f1:n) is mediated by a gradient estimation or-
acle. As we shall see, numerous existing approaches to
online learning and optimization based on noisy point-
wise information fit in this framework.

We will use two classes of oracles. In both cases,
the oracles are specified by two functions c1, c2 :
[0,∞) → [0,∞), which will be assumed to be contin-
uous, monotonously increasing (resp., decreasing) with
limδ→0 c1(δ) = 0 and limδ→0 c2(δ) = +∞. Typical
choices for c1, c2 are c1(δ) = C1δ

p, c2(δ) = C2δ
−q

with p, q > 0. Our type-I oracles are defined as follows:

3For simplicity, in some cases we allow f to be defined out-
side of K and allow Yt to be in a small vicinity of K.
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Definition 1 ((c1, c2) type-I oracle) We say that γ is a
(c1, c2) type-I oracle for F , if for any function f ∈ F ,
x ∈ K, 0 < δ ≤ 1, γ returnsG ∈ Rd and Y ∈ K random
elements such that ‖x− Y ‖ ≤ δ almost surely (a.s.),

1. ‖E [G]−∇f(x)‖∗ ≤ c1(δ) (bias); and

2. E
[
‖G− E [G] ‖2∗

]
≤ c2(δ). 2

The upper bound on δ is arbitrary: by changing the norm,
any other value can also be accommodated. Also, the
upper bound only matters when K is bounded and the
functions in F are defined only in a small vicinity ofK.

The second type of oracles considered is as follows:

Definition 2 ((c1, c2) type-II oracle) We say that γ is
a (c1, c2) type-II oracle for F , if for any function f ∈ F ,
x ∈ K, 0 < δ ≤ 1, γ returnsG ∈ Rd and Y ∈ K random
elements such that ‖x− Y ‖ ≤ δ a.s.,

1. There exists f̃ ∈ F such that ‖f̃ − f‖∞ ≤ c1(δ)
and E [G] = ∇f̃(x) (bias); and

2. E
[
‖G− E [G] ‖2∗

]
≤ c2(δ) (variance). 2

Note that our definition allows the same oracle γ to re-
spond to the same inputs (x, δ, f) with a differently con-
structed pair (e.g., to have memory), though most often
the oracles constructed in practice will map the triples
(x, δ, f) to a gradient estimate-point pair using a fixed
stochastic mapping.4 Examples will be discussed in Sec-
tion 4. We will denote the set of type-I (type-II) ora-
cles satisfying the (c1, c2)-requirements given a function
f ∈ F by Γ1(f, c1, c2) (resp., Γ2(f, c1, c2)).

Here, we will study the minimax regret in the online con-
vex optimization setting, while we study the minimax er-
ror in the stochastic convex optimization setting (some-
times, also called as the “simple regret”). Both are de-
fined with respect to a class of loss functions F , and the
bias/variance control functions c1, c2. The minimax ex-
pected regret for (F , c1, c2) with type-I oracles is

R∗F,n(c1, c2) = inf
A

sup
f1:n∈Fn

sup
γt∈Γ1(ft,c1,c2)

1≤t≤n

RAn ,

where A ranges through all algorithms that interact with
the loss sequence f1:n = (f1, . . . , fn) through the ora-
cles γ1:n (in round t, oracle γt is used), and we use RAn
to denote the expected regret of A (against f1:n, γ1:n).
The minimax regret for type-II oracles is defined analo-
gously.

4For oracles with memory, in the definition the expectation
should be replaced with an expectation that is conditioned on
the past.

In the stochastic BCO setting, the minimax error is de-
fined through

∆∗F,n(c1, c2) = inf
A

sup
f∈F

sup
γ∈Γ1(f,c1,c2)

∆An (f, γ) , (1)

where, again, A ranges through all algorithms that in-
teract with an oracle and ∆An (f, γ) is the optimization
error that A suffers after n rounds of interaction with f
through (a single) γ as described earlier. The minimax
error for type-II oracles is defined analogously.

When the set K is bounded and the function set F is in-
variant to linear shifts, every (c1, c2) type-I oracle is also
an (Rc1, c2) type-II oracle, where R = supx∈K ‖x‖:
simply consider f̃(y) = f(y) + (E [G] − ∇f(x))Ty,
where G is the gradient estimate returned by the or-
acle. Thus, if for some set ∆type−I

n , ∆type−II
n de-

note the appropriate minimax errors and R = 1 then
∆type−I
F,n (c1, c2) ≤ ∆type−II

F,n (c1, c2). As a result, when
proving lower bounds, we shall consider type-I, while
when proving upper bounds we will consider type-
II oracles. Also note that for either type of oracles,
∆∗F,n(c1, c2) ≤ R∗F,n(c1, c2)/n. This follows by the
well known construction that turns an online convex op-
timization method A for regret minimization into an op-
timization method by running the method and at the end
choosing as X̂n the average of the points X1, . . . , Xn

queried byA during the n rounds. Indeed, then f(X̂n) ≤
1
n

∑n
t=1 f(Xt) by Jensen’s inequality, hence the aver-

age regret of A will upper bound the error of choosing
X̂n at the end. A consequence of this relation is that a
lower bound for ∆∗F,n(c1, c2) will also be a lower bound
for R∗F,n(c1, c2)/n and an upper bound on R∗F,n(c1, c2)
leads to an upper bound on ∆∗F,n(c1, c2). This explains
why we allowed taking supremum over time-varying or-
acles in the definition of the regret and why we used a
static oracle for the optimization error: to maximize the
strength of the bounds we obtain.

3 Main Results

In this section we provide our main results in forms of
upper and lower bounds on the minimax error. First we
give an upper bound by analyzing a mirror-descent algo-
rithm given in Algorithm 1. In the algorithm, we assume
that the regularizer function R is α-strongly convex and
the target function f is smooth or smooth and strongly
convex. A standard analysis yields the following upper
bounds:

Theorem 1 (Upper bound) Consider the class FL,0 of
convex, L-smooth functions on the bounded, convex do-
main K 6= ∅, K ⊂ Rd. Assume that the regulariza-
tion function R is α-strongly convex w.r.t. some norm
‖ · ‖, and K◦ ⊆ dom(R). For any (c1, c2) type-II
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Oracle type Convex + Smooth Strongly Convex + Smooth

Upper bound Lower bound Upper bound Lower bound

δ-bias, δ−2-variance (
C2

1C2D

n

)1/4 (
C2

1C2d
2

n

)1/4 (
C2

1C2

n

)1/3 (
C2

1C2

n

)1/2

(p = 1, q = 2)

δ2-bias, δ−2-variance (
C1C2D

n

)1/3 (
C1C2

√
d3

n

)1/3 (
C1C2

n

)1/2 (
C1C2

n

)2/3

(p = 2, q = 2)

Table 1: Summary of upper and lower bounds for different smooth function classes and gradient oracles for the settings
of Theorem 1 and Theorem 2. Note that whenR is the squared norm and K is the hypercube (as in the lower bounds),
D = θ(d) in the upper bounds and also thatC1, C2 may hide dimension-dependent quantities for the common gradient
estimators, as will be discussed later.

Algorithm 1 Mirror Descent with Type-I/II Oracle.
Input: Closed convex set K 6= ∅, regularization func-
tion R : dom(R) → R, K◦ ⊂ dom(R), tolerance
parameter δ, learning rates {ηt}n−1

t=1 .
Initialize X1 ∈ K arbitrarily.
for t = 1, 2, · · · , n− 1 do

Query the oracle at Xt to receive Gt, Yt.
SetXt+1 = argminx∈K [ηt〈Gt, x〉+DR(x,Xt)] .

Return: X̂n = 1
n

∑n
t=1Xt .

oracle with c1(δ) = C1δ
p, c2(δ) = C2δ

−q , p, q >
0, if Algorithm 1 is run with ηt = α/(at + L) and

δ =
(

C2

4aC1

2p+q
p

n
n+1

) 1
p+q

n−
1

2p+q , where a2p+q =

2q−p
(

2 + q
p

)p (
1 + 1

n

)q ( α
D

)p+q
Cq1C

p
2 , at = at

p+q
2p+q ,

for t = 1, 2, · · · , n− 1, then the regret and the minimax
error can be bounded as

∆∗FL,0,n(c1, c2)≤
R∗FL,0,n(c1, c2)

n
=O



(
DC

q
p

1 C2

n

) p
2p+q

 ,

where D = supx,y∈KDR(x, y).

For the class F = FL,µ,R of µ-strongly convex (w.r.t.R)
and L-smooth functions, with α > 2L/µ, ηt = 2/(µt),

and δp+q =
C2

(
logn+1+

αµ
αµ−2L

)

2αµC1(n+1) , the regret and the
minimax error satisfy

∆∗FL,µ,R,n(c1, c2)

≤
R∗FL,µ,R,n(c1, c2)

n
= Õ



(
C
q
p

1 C2

n

) p
p+q

 .

In the bounds O(·) hides a constant that is a function of
p, q, α, L and µ.5 2

5In the second bound, Õ(f(n)) denotes O(log(n)f(n)).

We next state lower bounds for both convex as well
as strongly convex function classes. In particular, we
observe that for convex and smooth functions the up-
per bound for the mirror descent scheme matches the
lower bound, up to constants, whereas there is a gap for
strongly convex+smooth functions. Filling the gap is left
for future work.

Theorem 2 (Lower bound) Let n > 0 be an integer,
p, q > 0, C1, C2 > 0, K ⊂ Rd convex, closed, with
[+1,−1]d ⊂ K. Then, for any algorithm that observes
n random elements from a (c1, c2) type-I oracle with
c1(δ) = C1δ

p, c2(δ) = C2δ
−q , the minimax error (and

hence the regret) satisfies the following bounds:
FL,0(K) (Convex and smooth) with L ≥ 1

2 :

∆∗FL,0,n(c1, c2) ≥ K1

√
d

(
C
q
p

1 C2

n

) p
2p+q

,

where K1 = (2p+q)2

2q
q

2p+q (4p+q)
4p+q
2p+q

.

FL,1(K) (1-strongly convex and smooth) with L ≥ 1:

∆∗FL,1,n(c1, c2) ≥ K2

(
C
q
p

1 C2

n

) p
p+q/2

,

where K2 = 2
2p−q
2p+q

(2p+q)3

q
2q

2p+q (6p+q)
6p+q
2p+q

. 2

By continuity, the above claim can be extended to cover
the case of q = 0 (constant variance). For the special
case of p = 0 and C1 > 0, which implies a constant bias,
it is possible to derive an Ω(1) lower bound by tweaking
the proof. On the other hand, the case of p = 0 and
C1 = 0 (no bias) leads to an Ω(d/

√
n) lower bound. The

proof of the lower bound is obtained in the usual way by
presenting a family of functions and a type-I oracle such
that any algorithm suffers at least the stated error on one
of the functions. In particular, for FL,0 with L ≥ 1/2
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we use fv,ε(x) = ε (x− v) + 2ε2 ln
(

1 + e−
x−v
ε

)
with

v = ±1, ε > 0, and x ∈ K ⊂ R for appropriate ε. Note
that for any ε > 0, fv,ε ∈ F1/2,0 \ ∪0<λ<1/2Fλ,0.
Remark 1 (Scaling) For any function class F , by the
definition of the minimax error (1), it is easy to see that

∆∗n(µF , c1, c2) = µ∆∗n
(
F , c1/µ, c2/µ2

)
,

where µF denotes the function class comprised of func-
tions in F , each scaled by µ > 0. In particular, this re-
lation implies that the bound for µ-strongly convex func-
tion class is only a constant factor away from the bound
for 1-strongly convex function class. 2

Table 2 presents the upper and lower bounds for two spe-
cific choices of p and q (relevant in applications, as we
shall see later). These bounds can be inferred from the
results in Theorems 1 and 2. Some specific examples
will be discussed in the next section.

4 Applications to Stochastic BCO

The main application of the biased noisy gradient ora-
cle based convex optimization of the previous section is
bandit convex optimization. We introduce here briefly
the stochastic version of the problem, while online BCO
will be considered in Section 5. Readers familiar with
these problems and the associated gradient estimation
techniques, may skip this description to jump directly to
Theorem 4, and come back here only if clarifications are
needed.

In the stochastic BCO setting, the algorithm sequentially
chooses the points X1, . . . , Xn ∈ K while observing the
loss function at these points in noise. In particular, in
round t, the algorithm chooses Xt based on the earlier
observations Z1, . . . , Zt−1 ∈ R and X1, . . . , Xt−1, after
which it observes Zt, where Zt is the value of f(Xt)
corrupted by “noise”.

Previous research considered several possible constraints
connecting Zt and f(Xt). One simple assumption is
that {Zt − f(Xt)}t is an {Ft}t = {σ(X1:t, Z1:t−1)}t-
adapted martingale difference sequence (with favorable
tail properties). A specific case is when Zt−f(Xt) = ξt,
where (ξt) is a sequence of independent and identically
distributed (i.i.d.) variables. A stronger assumption,
common in stochastic programming, is that

Zt = F (Xt,Ψt), f(x) =

∫
F (x, ψ)PΨ(dψ) , (2)

where Ψt ∈ R is chosen by the algorithm and in par-
ticular the algorithm can draw Ψt at random from PΨ.
As in [15], we assume that the function F (·, ψ) is Lψ-
smooth PΨ-a.s. and the quantity LΨ =

√
E[L2

Ψ] is fi-
nite. Note that the algorithm is aware of PΨ, but does

not know how different values of ψ affect the noise
ξ(x, ψ) = F (x, ψ) − f(x). Nevertheless, as the algo-
rithm can control ψ and thus ξ, we refer to this as con-
trolled noise setting and to the others as the case of un-
controlled noise. As we will see, and is well known in
the simulation optimization literature [23, 15], this extra
structure allows the algorithm to reduce the variance of
the noise of its gradient estimates by reusing the same Ψt

in consecutive measurements, while measuring the gra-
dient at the same point, an instance of the method of the
method of common random variables. As creating an
estimate from K points (which is equivalent to the so-
called “multi-point feedback setup” from the literature
where K points are queried in each round) changes the
number of rounds from n to n/K, which does not change
the convergence rate as long as K is fixed.

4.1 Estimating the Gradient

A common popular idea in bandit convex optimization is
to use the bandit feedback to construct noisy (and biased)
estimates of the gradient. In the following, we provide
a few examples for oracles that construct gradient esti-
mates for function classes that are increasingly general:
from smooth, convex to non-differentiable functions.

One-point feedback Given x ∈ K, 0 < δ ≤ 1, com-
mon gradient estimates that are based on a single query to
the function evaluation oracle (the so-called “one-point
feedback”) take the form

G =
Z

δ
V, where Z = f(x+ δU) + ξ , (3)

where (U, V, ξ) ∈ Rd×Rd×R are jointly distributed ran-
dom variables, ξ is the function evaluation noise whose
distribution may depend on x+ δU but E[ξ|V ] = 0, and
G is the estimate of∇f(x) (f : K → R).

In all oracle constructions we will use the following as-
sumption:

Assumption 1 Let K ⊂ D◦ ⊂ Rd, where f : D →
R. For any x ∈ K, x + δU ∈ D a.s., and E

[
‖V ‖2∗

]
,

E
[
‖U‖3

]
< +∞.

Note that here the function domain D can be larger than
or equal to the set K, where the algorithm chooses x.
This is to ensure that the oracle will not receive invalid
inputs, that is, queries where f is not defined. When
the functions are defined over K only and K is bounded,
the above constructions only work for δ small enough.
In this case, the best approach perhaps is to use Dikin
ellipsoids to construct the oracles, as done by Hazan and
Levy [18].

The next proposition, whose proof is based on ideas from
Spall [33] shows that the above one-point gradient esti-
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mator leads to a type-I (and, hence, also type-II) oracle.

Proposition 1 Let Assumption 1 hold and let γ be the
one-point feedback oracle defined in (3). Assume further
that U is symmetrically distributed, V = h(U), where
h : Rd → Rd is an odd function, E [V ] = 0, and
E[V U T] = I . Then, in the uncontrolled noise case, γ
is a (c1(δ), c2(δ)) type-I oracle given in Table 2, where
C2 = 4E

[
‖V ‖2∗

] (
ess supE[ξ2|V ] + supx∈D f

2(x)
)
,

and C1 = L
2 E[‖V ‖∗‖U‖2] when f ∈ FL,0 and

C1 = B3

6 E
[
‖V ‖∗‖U‖3

]
for f ∈ C3 where B3 =

supx∈D ‖∇3f(x)‖T where ‖ · ‖T denotes the implied
norm for rank-3 tensors.

Another possibility is to use the so-called smoothing
technique [29, 17, 18] to obtain type-II oracles. Fol-
lowing the analysis in Flaxman et al. [17], one gets the
following result, which improves the bias of the previous
result from O(δ) to O(δ2) in the smooth+convex case:

Proposition 2 Let Assumption 1 hold and let γ be the
one-point feedback oracle defined in (3). Define V =

nW (U)
|∂W |
|W | , where W ⊂ Rn is a convex body

with boundary ∂W , U is uniformly distributed on ∂W ,
nW (U) denotes the normal vector of ∂W at U , and |·|
denotes the appropriate volume. Let C2 > 0 be defined
as in Proposition 1. Then, if f is L0-Lipschitz, γ is a
type-II oracle with c1(δ) = C1δ, c2(δ) = C2/δ

2 where
C1 = L0 supw∈W ‖w‖. Further, assuming W is sym-
metric w.r.t. the origin, if f is L-smooth, then γ is a type-
I (and type-II oracle) with c1(δ) = C1δ

2, c2(δ) = C2/δ
2

where C1 = (L/|W |)
∫
W
‖w‖2dw, and, if in addition f

is also convex (i.e., f ∈ FL,0) then γ is a type-I oracle
with c1(δ) = C1δ

2/2 and c2(δ) = C2/δ
2. 2

Note that the improvement did not even require convex-
ity. Also, the bias is smaller for smoother functions, a
property that will be enjoyed by all the gradient estima-
tors.

Two-point feedback While the one-point estimators
are intriguing, in the optimization setting one can also
always group two consecutive observations and obtain
similar smoothing-type estimates at the price of reduc-
ing the number of rounds by a factor of two only, which
does not change the rate of convergence. Next we present
an oracle that uses two function evaluations to obtain a
gradient estimate. As will be discussed later, this oracle
encompasses several simultaneous perturbation methods
(see 5): Given the inputs x ∈ K, 0 < δ ≤ 1, the gradient
estimate is

G =
Z+ − Z−

2δ
V , (4)

Noise → Controlled Uncontrolled
Function (see (2)) (see (5))

↓

Convex + Smooth (C1δ, C2)
Props 1,3: (C1δ,

C2
δ2

)

Prop 2: (C′1δ2,
C2
δ2

)

f ∈ C3 (C1δ
2, C2

δ2
) Props 1,3: (C1δ

2, C2
δ2

)

Table 2: Gradient oracles for different function classes
and noise categories. The constants C1, C

′
1, C2 are de-

fined in Propositions 1–3.

where Z± = f(X±) + ξ±, X± = x± δU , U, V ∈ Rd,
ξ± ∈ R are random, jointly distributed random variables,
U, V chosen by the oracle in the uncontrolled case and
chosen by the algorithm in the controlled case from some
fixed distribution characterizing the oracle, and ξ± being
the noise of the returned feedback Z± at points X±. For
the following proposition we consider 4 = 2 × 2 cases.
First, the function is either assumed to be L-smooth
and convex (i.e., the derivative of f is L-Lipschitz w.r.t.
‖ · ‖∗), or it is assumed to be three times continuously
differentiable (f ∈ C3). The other two options are either
the controlled noise setting of (2), or, in the uncontrolled
case, we make the alternate assumptions

E[ξ+ − ξ−|U, V ] = 0 and
E[(ξ+ − ξ−)2|V ] ≤ σ2

ξ <∞ . (5)
The following proposition, whose proof is based on [33,
Lemma 1] and [15, Lemma 1], provides conditions un-
der which the bias-variance parameters (c1, c2) can be
bounded as shown in Table 2:
Proposition 3 Let Assumption 1 hold and let γ be a
two-point feedback oracle defined by (4). Suppose fur-
thermore that E[V U T] = I . Then γ is a type-I oracle
with the pair (c1(δ), c2(δ)) given by Table 2. For uncon-
trolled noise and for controlled noise with f ∈ C3, C1 is
as in Proposition 1 and C2 is 4C2 from Proposition 1.
For the controlled noise case with f ∈ FL,0, C1 =
LΨ

2 E[‖V ‖∗‖U‖2] and C2 = 2B2
1 +

L
2
Ψ

2 E
[
‖V ‖2∗‖U‖4

]
,

with B1 = supx∈K ‖∇f(x)‖∗. 2

Popular choices for U and V :
• If we set Ui to be independent, symmetric ±1-valued
random variables and Vi = 1/Ui, then we recover the
popular SPSA scheme proposed by Spall [33]. It is easy
to see that E [V U T] = I holds in this case. When the
norm ‖ · ‖ is the 2-norm, C1 = O(d2) and C2 = O(d).
If we set ‖ · ‖ to be the max-norm, C1 = O(

√
d) and

C2 = O(d).
• If we set V = U with U chosen uniform at random
on the surface of a sphere with radius

√
d, then we re-

cover the RDSA scheme proposed by Kushner and Clark
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[24, pp. 58–60]. In particular, the (Ui) are identically
distributed with E [UiUj ] = 0 if i 6= j and E [U TU ] = d,
hence E

[
U2
i

]
= 1. Thus, if we choose ‖ · ‖ to be the

2-norm, C1 = O(d2) and C2 = O(d).
• If we set V = U with U the standard d-
dimensional Gaussian with unit covariance matrix, we
recover the smoothed functional (SF) scheme proposed
by Katkovnik and Kulchitsky [22]. Indeed, in this case,
by definition, E [V U T] = E [UU T] = I . When ‖ · ‖ is
the 2-norm, C1 = O(d2) and C2 = O(d). This scheme
can also be interpreted as a smoothing operation that con-
volves the gradient of f with a Gaussian density.

4.2 Achievable Results for Stochastic BCO

We now consider stochastic BCO with L-smooth func-
tions over a convex, closed non-empty domain K. Let F
denote the set of these functions. Duchi et al. [15] proves
that the minimax expected optimization error for the
functions F with uncontrolled noise is lower bounded
by Ω(n−1/2). They also give an algorithm which
uses two-point gradient estimates which matches this
lower bound for the case of controlled noise. For con-
trolled noise, the constructions in the previous section
give that for two-point estimators c1(δ) = C1δ

p and
c2(δ) = C2δ

−q with p = 1 and q = 0. Plugging this
into Theorem 1 we get the rate O(n−1/2) (which is un-
surprising given that the algorithms and the upper bound
proof techniques are essentially the same as that of Duchi
et al. [15]). However, when the noise is uncontrolled, the
best that we get is p = 2 and q = 2. From Theorem 2
we get that with such oracles, no algorithm can get bet-
ter rate than Ω(n−1/3), while from Theorem 1 we get
that these rates are matched by mirror descent. We can
summarize these findings as follows:

Theorem 3 Consider FL,0, the space of convex, L-
smooth functions over a convex, closed non-empty do-
main K. Then, we have the following:
Uncontrolled noise: Take any (δ2, δ−2) type-I oracle γ.
There exists an algorithm that uses γ and achieves the
rate O(n−1/3). Furthermore, no algorithm using γ can
achieve better error than Ω(n−1/3) for every (δ2, δ−2)
type-I oracle γ.
Controlled noise: Take any (δ, 1) type-I oracle γ. There
exists an algorithm that uses γ an achieves the rate
O(n−1/2). Furthermore, no algorithm using γ can
achieve better error than Ω(n−1/2) for every (δ, 1) type-I
oracle γ. 2

For stochastic BCO with uncontrolled noise, Agarwal
et al. [3] analyze a variant of the well-known ellipsoid
method and provide regret bounds for the case of con-
vex, 1-Lipschitz functions over the unit ball. Their re-
gret bound implies a minimax error (1) bound of or-

der O
(√

d32/n
)

. Liang et al. [25] provide an algo-
rithm based on random walks (and not using gradient
estimates) for the setting of convex, bounded functions
whose domain is contained in the unit cube and their al-
gorithm results in a bound of the order O

(
(d14/n)1/2

)

for the minimax error. These bounds decrease faster in
n than the bound available in Theorem 3, while showing
a much worse dependence on the dimension. However,
what is more interesting is that our results also shows
that anO(n−1/2) upper bound cannot be achieved solely
based on the oracle properties of the gradient estimates
considered. Since the analysis of all gradient algorithms
for stochastic BCO does this, it is no wonder that the
best known upper bound for convex+smooth functions is
O(n−1/3) [30]. (We will comment on the recent paper
of Dekel et al. [11] later.)

The above result also shows that the gradient oracle
based algorithms are optimal for smooth problems, un-
der a controlled noise setting. While Duchi et al. [15]
suggests that it is the power of two-point gradient esti-
mators that helps to achieve this, we need to add that
having controlled noise is also critical.

Finally, let us make some remarks on the early literature
on this problem. A finite time lower bound for stochas-
tic, smooth BCO is presented by Chen [9] for convex
functions on the real line. When applied to our set-
ting in the uncontrolled noise case, his results imply that
E
[
|X̂n − x∗|

]
, that is, the distance of the estimate to the

optimum, is at least Ω(n−1/3). Note that this is larger
than the error achieved by the algorithms of Liang et al.
[25], Bubeck et al. [7], Bubeck and Eldan [8], but the
apparent contradiction is easily resolved by noticing the
difference in their error measure: distance to the opti-
mum vs. error in the function value (in particular, com-
pressing the range of functions makes locating the mini-
mizer harder). Polyak and Tsybakov [29], who also con-
sidered distance to optimum, proved that mirror descent
with gradient estimation achieves asymptotically optimal
rates for functions that enjoy high order smoothness.

5 Applications to Online BCO

In the online BCO setting a learner sequentially chooses
the points X1, . . . , Xn ∈ K while observing the losses
f1(X1), . . . , fn(Xn). More specifically, in round t, hav-
ing observed f1(X1), . . . , ft−1(Xt−1) of the previous
rounds, the learner chooses Xt ∈ K, after which it
observes ft(Xt). The learner’s goal is to minimize its
expected regret E [

∑n
t=1 ft(Xt)− infx∈K

∑n
t=1 ft(x)].

This problem is also called online convex optimization
with one-point feedback. A slightly different problem
is obtained if we allow the learner to choose multiple
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points in every round, at which points the function ft
is observed. The loss is suffered at Xt. The points where
the function is observed (“observation points” for short)
may or may not be tied to Xt. One possibility is that
Xt is one of the observation points. Another possibility
is that Xt is the average of the observation points (e.g.,
Agarwal et al. [2]). Yet another possibility is that there is
no relationship between them.

The oracle constructions from the previous section also
apply to the online BCO setting where the algorithm
is evaluated at Yt, though in this case one cannot em-
ploy two-point feedback as the functions change be-
tween rounds. This also rules out the controlled noise
case. Thus, for the online BCO setting, one should con-
sider type-I (and II) oracles with c1(δ) = C1δ

p and
c2(δ) = C2δ

−q with p = q = 2. For these type of
oracles, the results from Theorem 2 give the following
result:

Theorem 4 Let FL,0 be the space of convex, L-smooth
functions over a convex non-empty domain K. No algo-
rithm that relies on (δ2, δ−2) type-I oracles can achieve
better regret than Ω(n2/3). 2

With a noisy gradient oracle of Proposition 2, Theorem 4
implies that this regret rate is achievable, essentially re-
covering, and in some sense proving optimality of the
result of Saha and Tewari [30]:

Theorem 5 For zeroth order noisy optimization with
smooth convex functions, the gradient estimator of
Proposition 2 together with mirror descent (see Algo-
rithm 1) achieve O(n2/3) regret. 2

This optimality result shows that with the usual analysis
of the current gradient estimation techniques, no gradient
method can achieve the optimal regret O(n1/2) for on-
line bandit convex optimization, established by Bubeck
et al. [7], Bubeck and Eldan [8]. Note that this shows
a contradiction to the recent result of Dekel et al. [11],
who claimed to achieve Õ(n5/8) regret with the same
(δ2, δ−2) type-II gradient oracle as Saha and Tewari [30],
but their proof only used the (δ2, δ−2) tradeoff in the bias
and variance properties of the oracle.

6 Related Work

Gradient oracle models have been studied in a number of
previous papers [10, 4, 31, 13]. A full comparison be-
tween these oracle models is given by Devolder et al.
[13]. For illustration, here we only review the model
of this latter paper as a typical example of these previ-
ous works. The model of Devolder et al. [13] assumes a
first-order approximation to the function with parameters
(δ, L). In particular, given (x, δ, L) and the convex func-
tion f , the oracle gives a pair (t, g) ∈ R × Rd such that

t+〈g, ·−x〉 is a linear lower approximation to f(·) in the
sense that 0 ≤ f(y)−{t+ 〈g, y − x〉} ≤ L

2 ‖y−x‖2+δ.
Devolder et al. [13] argue that this notion appears natu-
rally in several optimization problems and study whether
the so-called accelerated gradient techniques are still su-
perior to their non-accelerated counterparts (and find a
negative answer). The authors study both lower and up-
per rates of convergence, similarly to our paper. A ma-
jor difference between the previous and our settings is
that we allow stochastic noise (and bias), which the algo-
rithms can control, while the oracle in these previous pa-
per must guarantee that the accuracy requirements hold
in each time step with probability one. This is a much
stronger requirement, which may be impossible to sat-
isfy in some problems, such as when the only informa-
tion available about the functions is noise contaminated.

Some works, such as Schmidt et al. [31] allow arbitrary
sequences of errors and show error bounds as a function
of the accumulated errors. Our proof technique is ac-
tually essentially the same (as can be expected). How-
ever, the noisy case requires special care. For example,
Proposition 3 of Schmidt et al. [31] bounds the optimiza-
tion error for the smooth, convex case by O(1/n2(‖x1−
x∗‖2 + A2

n)) where An = O(
∑n
t=1 t‖et‖), et being the

error of the approximate gradient. This expression be-
comes Θ( 1

n2

∑n
t=1 t

2) ≈ n assuming that errors’ noise
level is a positive constant (in all our result, this holds).
This clearly shows that the noisy case requires (some-
what) special treatment.

Similar, but simpler noisy oracle models were introduced
[21, 19, 16], but these models lack the bias-variance
tradeoff central to this paper (i.e., they assume the vari-
ance and bias can be controlled independently of each
other). The results in these papers are upper bounds on
the error of certain gradient methods (also to some very
specific problem for [19]), and they correspond to the
bounds we obtained with q = 0.

7 Conclusions

We presented a novel noisy gradient oracle model for
convex optimization. The oracle model covers several
gradient estimation methods in the literature designed
for algorithms that can observe only noisy function val-
ues, while allowing to handle explicitly the bias-variance
tradeoff of these estimators. The framework allows to
derive sharp upper and lower bounds on the minimax op-
timization error and the regret in the online case. From
our lower bounds it follows that the current state of the
art in designing and analyzing noisy gradient methods for
stochastic and online smooth bandit convex optimization
are suboptimal.
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