Supplementary: Topic-Based Embeddings for Learning from Large
Knowledge Graphs

1 Gibbs Sampling for BPBFM-2

Just as we did for BPBFM-1, we can express each
latent count A}, in BPBFM-2 (which models each

A" as AT = ZM 1nerm) as a sum of the fol-

lowing form: Zkl ZkQZ Xikrkamj Where
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tive property of Poisson distribution
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With these defined, we proceed to give the update
equations for the Gibbs sampler for BPBFM-2.

Sampling A}: X7 is sampled just as in model-1.

Sampling X}, ;. ..2 X)) can be sampled as
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Sampling U. ;: Using Dirichlet-multinomial conju-

gacy, each column of U can be sampled as

ya+ Xyy..) (4)
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k, from Eq.,
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Marginalizing out G}
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mentation scheme proposed we used for BPBFM-1, d}"

can be sampled by first sampling
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and then sampling
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Sampling ¢: €™ can be sampled as
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Sampling G7"; : Using Gamma-Poisson conjugacy,
G}y, can be sampled by
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Sampling 7,,,: Using equation and Gamma-
Poisson conjugacy, 1,,, can be sampled by
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2 Online Gibbs Sampling

In this section, we provide the details of the online
Gibbs sampling algorithms for both of our models.
Our online Gibbs sampling algorithms are based on the
idea of the recently developed Bayesian Conditional
Density Filtering (BCDF) framework (Guhaniyogi
et al., [2014)). They key idea in BCDF is to process
data in small minibatches, and maintain and update
sufficient statistics of the model parameters with each
new minibatch of the data. In our models, these suffi-
cient statistics are the latent counts.

2.1 Online Gibbs Sampling for BPBFM-1

Denoting I; as indices of valid triplets in minibatch
selected at iteration t, and I as the indices of all
the valid triplets in training data. Define X” =
I I t
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and X7, = T Zi,jelt X} k,j+ Where |I] and I; are
cardinalities of the two sets. Then similar to batch
Gibbs Sampling, define following quantities for ¢ < 2:
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as used in other online inference algorithms, such
as stochastic variational inference (Hoffman et al.
2013). Here, tg > 0 and w € (0.5,1] are required to
guarantee convergence. With these defined, online
Gibbs sampling at iteration ¢ proceeds as:

Sampling U. ;: Each column of U can be sampled as

U.. ~Dirla+ X, ,a+ X% ,...,a+Xk) (11)

Sampling dj: dj can be sampled by first sampling
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Sampling €": € can be sampled as
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Sampling A} , : A}, can be sampled by
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X, € and X ., are sampled the same way as the

batch Gibbs sampling.

2.2 Online Gibbs Sampling for BPBFM-2

Similar to online BPBFM-1, we define X7,
=1 I R it
( )X +p% Zz] ijel, Z =1 Xlklkzmj’ Ao, =

klkzm
t—1 I
(1 —p)X +P|‘ ‘| D ijijel, Zkl 1Zk2 1 e kg
and Xz,j (1 p)X ik 4
I .

p\lltl\ Zkz lZJ lij€l, Zm 1Zr 1 lkkzm] With
these defined, we proceed to give the update equations
for the online Gibbs sampler for model-2:

Sampling U. ;: Each column of U can be sampled as

U.p ~Dir(a+ & Ja+ X0 ...,a+ Xy ) (16)

Sampling d: d; can be sampled by first sampling
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and then sampling
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Sampling G7"; : Using Gamma-Poisson conjugacy,
G}y, can be sampled by

quikz ~ (19)
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Sampling 7, 7m: can be sampled by
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Xy Xy kymy» € €™ can be sampled the same way as

the batch Gibbs sampling.
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