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A Proof of Lemma 1

This proof is based on the following lemma, which appears in [18]:
If two classifiers fi, fj are conditionally independent given the class label Y , then the covariance between them
is equal to

rij = (1− b2)(ψi + ηi − 1)(ψj + ηj − 1). (19)

In our model, if c(i) 6= c(j), then fi, fj are indeed conditionally independent (Fig. 1,right). The first part of

lemma 1 thus follows directly from Eq. (19), with voffi =
√

1− b2(ψi + ηi − 1).

To prove the second part of lemma 1, we note that according to our model, two classifiers fi, fj with c(i) = c(j)
are conditionally independent given the value of their latent variable α. Therefore, we can treat α as the class
label, and apply Eq. (19) with b replaced by the expectation of α, and the sensitivity and specificity ψi, ηi
replaced by ψαi , η

α
i respectively. Hence, Eq. (19) becomes,

rij = (1− E[α]2)(ψαi + ηαi − 1)(ψαj + ηαj − 1) = voni vonj , (20)

where voni =
√

1− E[α]2(ψαi + ηαi − 1), and α = αc(i).

B Proof of Lemma 2

We assume that von and voff are sufficiently different in the following precise sense: We require that for all 4
distinct indices i, j, k, l, voni · vonj · vonk · vonl 6= voffi · voffj · voffk · voffl .

Next, we elaborate on the relation between voffi and voni . Let us denote by ψyα, η
y
α the sensitivity and specificity

of the latent variable α. Let fi be a classifier that depends on α. Applying Bayes rule, its overall sensitivity and
specificity are given by,

ψi = ψyαψ
α
i + (1− ψyα)(1− ηαi ) ηi = ηyαη

α
i + (1− ηyα)(1− ψαi ).

Adding ψi and ηi we get the following,

ψi + ηi − 1 = (ψyα + ηyα − 1)(ψαi + ηαi − 1). (21)

If c(i) = c(j) we have the following dependency between (voffi , voffj ) and (voni , vonj ),[
voffi

voffj

]
= (1− b2)(ψiα + ηiα − 1)

[
(ψαi + ηαi − 1)
(ψαj + ηαj − 1)

]
=

(1− b2)(ψiα + ηiα − 1)√
1− E[α]2

[
voni
vonj

]
(22)

It follows that two elements voffi , voffj where c(i) = c(j) are linearly dependent with the corresponding elements
of voni , vonj . This fact shall be useful in proving the lemma.

To prove lemma 2 we analyze all various possibilities for the group assignments of the four indices i, j, k, l of

M(i, j, k, l) = det

(
rij ril
rkj rkl

)
.

1. c(i) = c(j) = c(k) = c(l): In this case M(i, j, k, l) = voni vonj vonk vonl − voni vonl vonk vonj = 0.

2. c(i) 6= c(j), and c(j) 6= c(k), and c(k) 6= c(l) and c(l) 6= c(i): Here M(i, j, k, l) = voffi voffj voffk voffl −
voffi voffl voffk voffj = 0.

3. c(i) = c(l) = c(k) 6= c(j): M(i, j, k, l) = voffi voffj vonk vonl − voni vonl voffk voffj = voffj vonl

(
voffi vonk − voni voffk

)
.

From the linear dependency shown in Eq. (22),
(
voffi vonk − voni voffk

)
= 0.

4. c(i) = c(j), c(k) = c(l) and c(i) 6= c(k): M(i, j, k, l) = voni vonj vonk vonl − voffi voffl voffk voffj 6= 0 from our
assumption.

It can be seen that Mijkl is equal to zero only if either three or more of the indices are equal (cases (1) and (2))
or all four pairs of indices which appear in the determinant belong to different groups (case (3)).
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C Algorithm for the ideal setting

An immediate conclusion from lemma 2, is that the indices i, j, k and l for which M(i, j, k, l) = 0 depend only
on the assignment function. This means we can compare the pattern of zeros for M(i1, j, k, l) and M(i2, j, k, l)
to decide if fi1 and fi2 belong to the same group. If c(i1) = c(i2) then M(i1, j, k, l) = 0 ⇐⇒ M(i2, j, k, l) = 0.
On the other hand if c(i1) 6= c(i2) and at least one of the indices i1 and i2 , w.l.o.g i1, belongs to a group with
more than one element, then there exist indices j, k and l such that M(i1, j, k, l) 6= 0 but M(i2, j, k, l) = 0. This
occurs when c(i1) = c(j), and c(i2) 6= c(j) 6= c(k) 6= c(l).

This means that by comparing the pattern of zeros, we can recover the assignment function. Notice, that
according to the algorithm, all singleton classifiers, that is, classifiers who are conditionally independent with the
rest of the ensemble, are grouped together under a common latent variable. This is not a problem, as our model
is not unique and this is an equivalent probabilistic model, with the associated latent variable being identical to
Y .

Algorithm 3 Check if c(i1) = c(i2)

1: Initialize (m− 2)× (m− 3)× (m− 4) arrays T1, T2 to zero
2: for j 6= k 6= l 6= i1, i2 do
3: if ri1jrkl − ri1lrkj = 0 then (T1(j, k, l) = 1)
4: end if
5: if ri2jrkl − ri2lrkj = 0 then (T2(j, k, l) = 1)
6: end if
7: end for
8: if (T1 = T2) then
9: c(i1) = c(i2).

10: else
11: c(i1) 6= c(i2).
12: end if

D Minimizing ∆ is a NP hard problem

We prove lemma 3 for the case of K = 2 clusters and known vectors vvvoff , vvvon. Our goal is to find a minimizer
for the following residual:

ĉ = argmin
c

∆(c) = argmin
c

∑
i,j

1c(i, j)(voni vonj − rij)2 + (1− 1c(i, j))(voffi voffj − rij)2 (23)

For the case of K = 2 we can simplify the residual considerably. Let us define a vector xxx ∈ {−1, 1}m where
xi = 1 if c(i) = 1 and xi = −1 if c(i) = 2. We can replace the indicator function 1(i, j) with the following,

1(i, j) =
(1 + xixj)

2
, 1− 1(i, j) =

(1− xixj)
2

. (24)

In addition, we can replace the minimization over c with a minimization over xxx,

x̂xx = argmin
xxx∈{±1}m

∑
i,j

(1 + xixj)

2
(voni vonj − rij)2 +

(1− xixj)
2

(voffi voffj − rij)2

= argmin
xxx∈{±1}m

∑
i,j

1

2

(
(voni vonj − rij)2 + (voffi voffj − rij)2

)
+
xixj

2

(
(voni vonj − rij)2 + (voffi voffj − rij)2

)
. (25)

The first term does not depend on xxx and we can omit it from the minimization problem. Let us also define the
matrix R̃,

r̃ij =

(
(voni vonj − rij)2 + (voffi voffj − rij)2

)
2

(26)
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We are left with the following minimization problem:

x̂xx = argmin
xxx∈{±1}m

∑
i,j

xixj r̃ij = argmin
xxx∈{±1}m

xxxT R̃xxx (27)

If there is a binary vector whose residual is precisely zero, then it can be found by computing the eigenvector with
smallest eigenvalue of the matrix R̃. If, however, the minimal residual is not zero, then eq. (27) is a quadratic
optimization problem involving discrete variables, which is well known to be a NP-hard problem.

E Proof of Lemma 4

We start by proving the first part of the lemma, where c(i) = c(j). The score matrix sij is a sum of all possible
2× 2 determinants,

si,j =
∑
k,l 6=i,j

|rijrkl − rilrjk| =
∑
k,l 6=i,j

sklij , (28)

where we define sklij as a single score element. The following table separates the various score elements sklij into
four types, and states the number of elements in each type.

Element type Number of elements
c(i) = c(j) 6= c(k) 6= c(l) m2

(
1− 3

K + 2
K2

)
c(i) = c(j) 6= c(k) = c(l) m2

(
1− 1

K

) (
1
K −

1
m

)
c(i) = c(j) = c(k) 6= c(l) 2m2

(
1
K −

2
m

) (
1− 1

K

)
c(i) = c(j) = c(k) = c(l) m2

(
1
K −

2
m

) (
1
K −

3
m

)
According to lemma 1, the contribution to the score from elements of the third and fourth type is exactly 0 (see
details in Sec. B). We will focus on analyzing the score elements of the first type c(i) = c(j) 6= c(k) 6= c(l),
which is the dominant factor assuming K ≥ 4. Let us denote by παi the balanced accuracy of classifier i with
relation to αc(i),

παi =
1

2
(ψαi + ηαi )

Recall, that we assume a symmetrical case where b = 0, and Pr(α = 1|y = 1) = Pr(α = −1|y = −1). These
assumptions imply that E[αk] = 0 for all k = 1...K.

Let us consider Lemma 1 in order to analyze the value of sklij ,

sklij = |rijrkl − rijrjk| = |(2παi − 1)(2παj − 1)(2πk − 1)(2πl − 1)− (2πi − 1)(2πj − 1)(2πk − 1)(2πl − 1)|
= |(2πk − 1)(2πl − 1)

(
(2παi − 1)(2παj − 1)− (2πi − 1)(2πj − 1)

)
| (29)

For simplicity of notation, let us denote by γ the ratio of true positives and negatives of the latent variables:

γ = Pr(αk = 1|Y = 1) = Pr(αk = −1|Y = −1) (30)

It can easily be shown that the following holds:

(2πi − 1) = (2γ − 1)(2παi − 1) (2πj − 1) = (2γ − 1)(2παj − 1) (31)

Inserting (31) into (29) we get,

sklij = |(2πk − 1)(2πl − 1)(2παi − 1)(2παj − 1)(1− (2γ − 1)2)| =
|4(2πk − 1)(2πl − 1)(2παi − 1)(2παj − 1)(γ(1− γ))| (32)

Let us now derive the values of the conditional covariance matrices C+, C−. First, In order to obtain C+, we
can apply the first part of Lemma 1,

C+ = E[(fi − µi)(fj − µj)|Y = 1] = (1− E[αc(i)|Y = 1]2)(2παi − 1)(2παj − 1) (33)
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A similar argument applies to C−, with E[αc(i)|Y = −1]. The conditional expectation of α is equal to,

E[α|Y = 1] = 2γ − 1 E[α|Y = −1] = 1− 2γ (34)

A simple derivation yields the following for both cases,

(1− E[α|Y = 1]2) = (1− E[α|Y = −1]2) = 4γ(1− γ) (35)

The value of c+ij is therefore equal to c−ij , and both are equal to the following,

c+ij = c−ij = 4γ(1− γ)(2παi − 1)(2παj − 1) (36)

Inserting (36) into (32) yields,

sklij = |(2πk − 1)(2πl − 1)c+ij | = |(2πk − 1)(2πl − 1)c−ij | (37)

For simplicity, since C+ = C−, we will use only C+. The total score contribution of the first type of elements is
therefore, ∑

k,l

sklij = |c+ij |
∑
k,l

|(2πk − 1)(2πl − 1)| (38)

Assuming (2πi − 1) > δ > 0, ∀i, the latter simplifies to,

sij = |c+ij |δ
2m2(1− 3

K + 2
K2 ) > |c+ij |δ

2m2(1− 3
K ) (39)

We next turn to proving an upper bound when c(i) 6= c(j). Once again we separate the different elements into
five types,

Element type Number of elements
c(i) 6= c(j) 6= c(k) 6= c(l) m2

(
1− 5

K + 6
K2

)
c(i) 6= c(j) 6= c(k) = c(l) m2

(
1− 2

K

) (
1
K −

1
m

)
c(i) 6= c(j) = c(k) 6= c(l) 4m2

(
1
K −

1
m

) (
1− 2

K

)
c(i) 6= c(j) = c(k) = c(l) 2m2

(
1
K −

2
m

) (
1
K −

2
m

)
c(k) = c(i) 6= c(j) = c(l) 2m2

(
1
K −

1
m

) (
1
K −

1
m

)
The contribution comes from the second,third and fourth types, as according to our model, if all indices come
from different groups, or if three come from the same group, the determinant is equal to 0 (see Sec. B). In
addition, since (2πi − 1) > δ > 0∀i, the values of rij are positive for all (i, j) pairs. Since 0 < rij ≤ 1 for all
score elements sklij = |rijrkl − rilrkj | ≤ 1. The total value of sij is bounded by the following

sij ≤ m2

(
1

K
− 1

m

)(
5− 8

K
− 2

m

)
<
m2

K

(
5− 8

K

)
. (40)

F Additional results

F.1 Artificial data

In Fig. 7 we present the probability of our spectral clustering based algorithm to recover both the correct
number of classes K and the correct assignment function c, as a function of |G1|. Up to |G1| = 6, our algorithm
successfully estimates c, with no errors. When |G1| > 7, the performance of the algorithm deteriorates. The
degradation in performance presented in Fig. 5, corresponds to the point where the algorithm fails to estimate
c correctly.

In Fig. 8 we present the mean squared error (MSE) in estimating the sensitivities and specificities of the m
classifiers, as a function of |G1|, defined as

MSE({ψi, ηi}mi=1) = 1
2m

m∑
i=1

(
(ψ̂i − ψi)2 + (η̂i − ηi)2

)
. (41)
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Fig. 7: Probability of estimating the exact assign-
ment function c as a function of the size of the
correlated group |G1|
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Fig. 9: Artifical data - The total number of classifiers equals m = 40. The graph presents the balanced accuracies
of several aggregation methods versus the size of the correlated group.

We compare the following three methods: (1) Majority vote ; (2) SML+EM; (3)L-SML. It can be seen that
the performance of the SML degrades very fast when the conditional independence assumption is violated. The
performance of the L-SML is almost perfect up to the point where |G1| = 6, where as we have seen in Fig. 7,
the model is still correctly estimated. The performance is still superior to other methods, even for large values
of |G1|. In Fig. 9 we repeat the same experiment described in Sec. 5.1 with m = 40 classifiers. Comparing Fig.
9 to Fig. 5 it can be seen that it is not the absolute value of the size of G1 that determines the performance, but
the ratio between |G1| and the number of classifiers m.

F.2 UCI results

For the magic dataset, Fig. 10 presents the conditional covariance matrix 1
2 (C+ +C−), which is unknown to us.

The group of SVM classifiers (12-16) are highly dependent, as well as the group of Naive Base classifiers (8-11).
The groups of Random Forest classifiers and logistic model trees are weakly dependent.

Fig. 11 presents an example of the estimated assignment function ĉ for the same dataset. The groups of SVM
classifiers were assigned together, as well as the Naive Base classifiers. Except for a single pair, the Random
Forest and logistic model trees were assigned to separate groups.
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Fig. 11: Magic database - The estimated group
return by our algorithm.

In figures 12,13 and 14 we present the results for the following 3 additional datasets from the UCI repository:

• Musk dataset - detection of certain types of molecules.

• Spam dataset - detection of spam from regular mail.

• Miniboo dataset - detection of electron neutrinos (signal) from muon neutrinos (background).

The base classifiers are identical to the ones used for the Magic dataset: (1) 4 Random Forest (2) 3 Logistic
Model Trees (3) 3 Naive Bayes (4) 4 SVM .

In figures 12-15, the x-axis is the L-SML balanced error, and the y-axis is the SML balanced error. The results
of multiple experiments, each time with the classifiers constructed using different random subset of labeled
examples, are presented as blue dots, while the red line represents the y = x line, i.e. when the error of the
L-SML and SML are the same. For the Magic dataset, figure 15, we add two lines which represent 2% and 4%
improvement over the standard SML.

We can see in the figures that the improvement due to explicit modeling of possible classifier dependencies is con-
sistent across all datasets. The amount of improvement changes, however from dataset to dataset. The following
table presents a summary of the different properties of the datasets together with the average improvement in
the balanced accuracy between the two methods.

Next, we compare the estimated error rates of the L-SML to the agreement based method (AR) proposed in [19].
Both methods were tested on the magic dataset, with the same ensemble described in Sec. 5.2. Fig. 16 presents
the estimated error versus. the true error rate for each of the classifiers in the ensemble. It can be seen that the
estimates of both methods contain a bias and are overly optimistic. However, the L-SML successfully identifies
the subsets of accurate and inaccurate classifiers.

Dataset Number of instances number of features Mean difference
Magic 19000 11 4%
Spam 4600 57 0.5%

Miniboo 130000 50 0.2%
Musk 6600 168 4.7%
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Fig. 12: UCI ’musk’ dataset, a comparison between
the balanced error of the SML and L-SML.
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tween the balanced error of the SML and L-SML.
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Fig. 14: UCI miniboo dataset, a comparison be-
tween the balanced error of the SML and L-SML.
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Fig. 16: Comparison to the agreement rates (AR) method presented in [19] on the magic dataset.


