Non-stochastic Best Arm Identification and Hyperparameter Optimization

A Proof of Theorem 1

Proof By employing the doubling trick described in the text, one can fix a budget B, run the algorithm with
that budget and output the recommended arm, then repeat with 2B, and so on. We consider a worst-case
analysis in the sense that on the current budget round, we make no assumptions as to the number of times an
arm has been pulled in the previous budget round. If a budget of B’ is necessary to succeed in finding the best
arm, by performing the doubling trick one will have only had to use a budget of 2B’ in the worst case without
ever having to know B’ in the first place. Thus, in what follows B is fixed and assumed to be sufficient to identify
the best arm.

First, we verify that the algorithm never takes a total number of samples that exceeds the budget B:
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For notational ease, define [-] = {{-}1=1}}_; so that [¢;;] = {{f;}21}},. Without loss of generality, we may

assume that the n infinitely long loss sequences [¢; ;] with limits {v;}}_; were fixed prior to the start of the game
so that the 7;(¢) envelopes are also defined for all time and are fixed. Let Q2 be the set that contains all possible

sets of n infinitely long sequences of real numbers with limits {v;}?_; and envelopes [¥(¢)], that is,
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where we recall that A is read as “and” and V is read as “or.” Clearly, [¢;.] is a single element of Q.

We present a proof by contradiction. We begin by considering the singleton set containing [¢; ;] under the
assumption that the Successive Halving algorithm fails to identify the best arm, i.e., Spog,(n)] # 1. We then
consider a sequence of subsets of 2, with each one contained in the next. The proof is completed by showing
that the final subset in our sequence (and thus our original singleton set of interest) is empty when B > zgg,
which contradicts our assumption and proves the statement of our theorem.

To reduce clutter in the following arguments, it is understood that S}, for all k in the following sets is a function
of [¢;,] in the sense that it is the state of S, in the algorithm when it is run with losses [¢];]. We now present
our argument in detail, starting with the singleton set of interest, and using the definition of Sj in Figure 3.
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where the last set relaxes the original equality condition to just considering the maximum envelope 7 that is
encoded in . The summation in Eq. 1 only involves the v;, and this summand is maximized if each S}, contains
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the first |S},| arms. Hence we have,
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since |Sk| < 2([|Sk|/2] +1). We note that we are underestimating by almost a factor of 2 to account for integer

effects in favor of a simpler form. By plugging in this value for Ry and rearranging we have that

where we use the definition of y~! in Eq. 2. Next, we recall that Ry = Zf:
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where the last equality holds if B > zgpy.

The second, looser, but perhaps more interpretable form of zgp is thanks to [16] who showed that
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where both inequalities are achievable with particular settings of the v; variables. ||

B Proof of Theorem 2

Proof Recall the notation from the proof of Theorem 1 and let i( [¢; ;]) be the output of the uniform allocation
strategy at timestep B with input losses [¢] ,].
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where the last equality follows from the fact that B > zy which implies /z\( [0;¢]) = 1. [ ]
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C Proof of Theorem 3

Proof Let §(t) be an arbitrary, monotonically decreasing function of ¢ with lim; .o, 8(t) = 0. Define ¢, =
v1 + B(t) and ¢;; = v; — B(t) for all i. Consider timestep B. Note that for all ¢, v;(t) = ¥(t) = 5(¢) so that
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D Proof of Theorem 4

Consider timestep B. We can guarantee for the Successive Halving algorithm of Figure 3 that the output arm 0
satisfies
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simply by inspecting how the algorithm eliminates arms and plugging in a trivial lower bound for Ry, for all &k in
the last step.



