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Abstract

We provide proofs for the theorems presented
in the main paper and additional numerical
examples.

1 Proofs of Theorems and Lemmas

1.1 Proof of Lemma 2.1

Proof First, we need to verify that the conditions in
(3)–(7) are satisfied. It follows directly from (14) that

F̄ (θ̂; θ̂) = F (θ̂) and ∇θF̄ |
θ=θ̂

= ∇θF |
θ=θ̂

so (4)–(5)
are satisfied. Also, by construction the entries of D
in (15) are non-negative so XDXT is a positive semi

definite matrix and (θ − θ̂)TXDXT (θ − θ̂) ≥ 0, so
F̄ (θ) ≥ F for any θ ∈ R

p, so (3) is satisfied. Note
that the majorization domain Ω̂M is a (non-empty)
convex polyhedron so the domain of the surrogate is
convex. Also, θ̂ ∈ int(Ω̂M ) and θ̂ ∈ ΩF by assump-
tion so (6)–(7) are satisfied. Lastly, we check that
the function is convex on Ω̂M . The Hessian of F̄ is
H(θ) = XDiag({f ′′

m(θTxm)}Mm=1)X
T +XDXT . From

the definition of D in (15) and (11) it follows that
H(θ) � 0 for θ ∈ Ω̂M , thus proving the convexity of F̄
on Ω̂M . �

1.2 Proof of Lemma 2.2

Proof Define the line L(α) := {λθ2 + (1 − λ)θ1|λ ∈
(0, α)}. Since θ1, θ2 ∈ ΩF and ΩF is convex, then
L(1) ⊆ ΩF and since θ1 ∈ int(ΩM ) there exits α0 > 0
such that ∅ 6= L(α0) ⊆ ΩM . For α0 ≤ 1, we also
have L(α0) ⊆ L(1) ⊆ ΩF and therefore L(α0) ⊆ ΩF ∩
ΩM . Let θ∗ := λθ2 + (1 − λ)θ1 with λ ∈ (0, α0), then
θ∗ ∈ L(α0) ⊆ ΩF ∩ ΩM . Since F is convex we have
F (θ∗) ≤ λF (θ2) + (1− λ)F (θ1) < F (θ1), where in the
last inequality we used F (θ2) < F (θ1). �
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1.3 Proof of Lemma 2.3

Proof Let g(w) : R → R be a convex function. From
Jensen’s inequality g(

∑
k w

k) = g(
∑

k r
k(wk/rk)) ≤∑

k r
kg(wk/rk) for any r = [r1; r2; . . . rK ] ∈ R

K with
1 ≤ K ≤ p, s.t. r � 0 and ‖r‖1 = 1. Now set gm(v) =

f̃m(θ̂Txm+v) (recall that f̃ in (16) is globally convex)

and rewrite f̃m(θTxm) = gm((θ − θ̂)Txm) and then

apply the above inequality with wk = (θk − θ̂k)Txk
m

for each m separately which leads to f̃m(θTxm) ≤∑
k r

k
mf̃m(θ̂Txm + (θk − θ̂k)Txk

m/rkm). For each m
we choose the rkm given in (20) which satisfies the
conditions of Jensen’s inequality. From (16), (12),
and (11) it follows that fm(θTxm) ≤ f̃m(θTxm) ≤∑

k r
k
mf̃m(θ̂Txm + (θk − θ̂k)Txk

m/rkm) for any m and

for any θ ∈ Ω̂M . Summing over m we obtain that
F ≤

∑
m Sm with Sm defined in (19) which proves

that (3) holds for Ω̂M . By using (12) and (16), it is
simple to check directly that (4)–(7) are satisfied. �

1.4 Proof of Lemma 3.2

Proof We have x∗ ∈ A(x∗) and the constraints as
specified by ΩF in (1) are qualified. Then there exit
Lagrange multipliers {η∗i }

I
i=1 ⊂ R and {µ∗

j}
J
j=1 ⊂ R

such that the following KKT conditions hold

∇C(x∗) +

I∑

i=1

η∗i∇gi(x
∗) +

J∑

j=1

µ∗

j∇hj(x
∗) = 0 (A1)

gi(x
∗) ≤ 0, η∗i ≥ 0, gi(x

∗)η∗i = 0, ∀i ∈ [I] (A2)

hj(x
∗) = 0, µ∗

j ∈ R, ∀j ∈ [J ], (A3)

where [I] = {1, 2, . . . , I} and [J ] = {1, 2, . . . , J},
and we used (5) so that ∇S(x∗) = ∇C(x∗).
Equations (A1)–(A3) are exactly the KKT condi-
tions for the program in (1) which are satisfied by
(x∗, {η∗i }

I
i=1, {µ

∗

j}
J
j=1), and therefore x∗ is a station-

ary point of (1). �

1.5 Proof of Theorem 3.3

Proof ΩF ⊂ R
p is assumed closed and bounded, and

it is therefore compact. θ(t) ∈ ΩF so θ(t) lies in a
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compact set for all t and (1) in Theorem 3.1 is satis-
fied. Let Γ be the set of all generalized fixed points
of A and let φ = C. Property 2(b) in Theorem 3.1
follows directly from the descent property in (9). To
obtain 2(a) in Theorem 3.1 (the case of θ(t) /∈ Γ),
note that it is equivalent to stating that if there exists
θ(t+1) ∈ A(θ(t)) such that C(θ(t+1)) = C(θ(t)) then
θ(t+1) ∈ Γ, i.e., θ(t+1) is a generalized fixed point,
which follows by definition. To prove the closeness of
A we break it into two maps A(θ(t)) = A2(A1(θ

(t)))
where A1 is the map obtained by the minimization

of the surrogate and A2 is the projection onto Ω
(t)
M .

The closeness of A1 follows from the existence of the
solution to {θ∗ = argminθ S(θ; θ

(t)) : θ ∈ ΩF }, the
continuity of S and proposition 7 in (Gunawardana
and Byrne, 2005). The closeness of A2 follows from
the continuity of the one-to-one mapping in (18). The
composition of two closed mappings is also closed, thus
2(c) in Theorem 3.1 is satisfied. Since ΩF is bounded
and closed, by the Bolzano-Weierstrass theorem there
exits a convergent subsequence of {θ(t)}∞t=1 in ΩF . By
Theorem 3.1, any such sequence will converge to a gen-
eralized fixed point, which is also a stationary point of
(1) by Lemma 3.2. �

2 Sigmoid-Loss SVM

Figure 1 shows a comparison between the loss func-
tions considered in this work

0-1: f(z) = (−sign(z) + 1)/2, (A4)

hinge: f(z) = max(0, 1− z), (A5)

logistic: f(z) = log(1 + exp(−z)), (A6)

sigmoid: f(z) = 1− tanh(z). (A7)
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Figure 1: A comparison between the 0-1, logistic,
Hinge, and Sigmoid loss functions.

3 Example for Choosing the

Majorization Domain

To illustrate the majorization-minimization procedure
proposed in the paper, a simple 1D example is shown
in Fig. 2, where the blue curve is the original ob-
jective, the green curve is the global surrogate when
[a, b] = (−∞,∞), and the red curve is the local surro-
gate when [a, b] are chosen according to Algorithm 4.1
and Algorithm 4.2 (“shallow region” case). It can be
seen in Fig. 2 that using the local surrogate with lower
curvature leads to taking a larger step than when using
a global surrogate. Note that at the iteration shown,
each surrogate leads to taking a step from the expan-
sion point (marked by an asterisk) to the minimum of
the surrogate (marked by circles). It should be noted
however, that the minimum for the high-dimensional
problem in (2) does not necessarily occur at the min-
imum points of fm. Also note that all surrogates are
convex but neither of them are quadratic.

4 Additional Details Regarding the

Numerical Experiments

Experiments performed on the MNIST dataset uti-
lize all the available examples for digit “3” (6131 for
training, and 1010 for testing) and for digit “5” (5421
for training, and 892 for testing). We used the stan-
dardized features for MNIST. For the 20Newsgroups
dataset, we also used all available examples for news-
group 1 (480 for training, and 318 for testing) and for
newsgroup 20 (376 for training, and 251 for testing).
The feature vectors from the 20 Newsgroups dataset
were transformed using the transformation log(1+ x),
which led to an improvement in performance. For the
TB dataset we split the data into 80% training and
20% testing examples, which amounts to 260 training
and 70 testing examples for HIV negative, and 133
training and 28 test examples for HIV positive. We
used the raw features of the TB dataset to keep their
interpretability (gene expression) which is important
for understanding which genes contribute to a good
prediction of HIV (feature selection). This also pro-
vides a good example for the scale-invariance of the
proposed PMM method. In order to determine the
regularization constant λ we use cross-validation with
a 80%− 20% split of the training set into training and
validation sets.

All algorithms were run till one of the following stop-
ping criteria was met: (1) the relative change in the
objective between two consecutive iterations was less
than 10−6; (2) the magnitude of the gradient was less
than 10−8; (3) the relative change in the norm of θ be-
tween two consecutive iterations was less than 10−2.
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Table 1: Classification accuracy (%) on test set us-
ing Logistic regression. LIBLIN uses an L1 penalty
and the rest of the methods use a nonconvex log-
penalty. For the latter, 10 different random ini-
tializations were used and the mean and standard
deviation are presented. GD=Gradient Descent,
RProp=RMSProp, AGrad=AdaGrad, PMM=Parallel
Majorization-Minimization, DRD=Dynamically Re-
stricted Domain.
Method MNIST 20 News TB
LIBLIN 96.69 79.61 89.69
LBFGS 96.13 ± 0.11 76.2 ± 1.06 88.45 ± 1.34
CG 96.4 ± 0.13 77.93 ± 0.85 85.57 ± 2.06
GD 95.6 ± 0.68 77.21 ± 3 87.63 ± 0.73
PSCA 89.54 ± 0 68.7 ± 0.36 46.19 ± 0.46
RProp 96.34 ± 0.11 83.18 ± 0.63 55.26 ± 25.05
AGrad 95.17 ± 0.08 81.3 ± 0.34 54.84 ± 24.67
PMM 96.27 ± 0 75.89 ± 0.32 90.72 ± 0
PMM-
DRD

96.49 ± 0.17 76.68 ± 0.17 90.72 ± 0

5 Additional Results

Table 1 shows the classification accuracy (%) on test

set using Logistic regression.
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Figure 2: Top: an example of the proposed local (red curve) and global (green curve) surrogate for a 1D function
(blue curve) given by f(x) = I exp(−x)+r−y log(I exp(−x)+r) with I = 105, y = 104, r = 10. Bottom: second
derivative of f . The expansion point (marked by an asterisk) is located at a “shallow region”. The majorization
domain for the local surrogate is [a, b] = (−∞, 7], which is computed by Algorithm 4.1 and Algorithm 4.2. The
right boundary b is chosen between the point of minimum curvature (marked by a square) and the expansion
point. Here we chose α = 0.5 and β = 0.3 for the parameters of Algorithm 4.1. The convex extension of the
local surrogate beyond b is not shown.


