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Abstract

We propose an optimization framework for
nonconvex problems based on majorization-
minimization that is particularity well-suited
for parallel computing. It reduces the opti-
mization of a high dimensional nonconvex ob-
jective function to successive optimizations of
locally tight and convex upper bounds which
are additively separable into low dimensional
objectives. The original problem is then bro-
ken into simpler parallel sub-problems while
still guaranteeing the monotonic reduction of
the original objective function and conver-
gence to a local minimum. Due to the low
dimensionality of each sub-problem, second-
order optimization methods become compu-
tationally feasible and can be used to accel-
erate convergence. In addition, the upper
bound can be restricted to a local dynamic
convex domain, so that it is better matched
to the local curvature of the objective func-
tion, resulting in accelerated convergence.

1 Introduction

We consider the following optimization problem

θ∗ = arg min
θ∈ΩF

C(θ), (1)

where ΩF is a closed convex set and C is generally
non-convex and has the following form

C(θ) =
M∑

m=1

F (θ;xm, ym) + λR(θ)

=

M∑

m=1

fm(θTxm) + λR(θ), (2)
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where F (θ;xm, ym) represents the data-mismatch for
the mth data point (xm, ym) ∈ Rp × Rd and θ ∈ Rp

are the parameters (latent variables) to be learned. fm
is a twice continuously differentiable function R → R
(possibly nonconvex) that depends on ym. Here R rep-
resents a penalty due to prior knowledge (e.g., the 2-
norm penalty) that is separable and twice continuously
differentiable (possibly non-convex). The class of opti-
mization problems in (1) appears in various fields such
as machine learning, signal/image processing, imaging
and bioinformatics, to name a few.

Often, these problems can be of huge size (large p)
and involve big datasets (large M). There is a grow-
ing need for faster algorithms that can deal with large
problems in a numerically efficient way. The avail-
ability of high performance multi-core computing plat-
forms makes it increasingly desirable to develop par-
allel optimization methods.

A general optimization principle that often leads to
parallelizable algorithms is majorization-minimization
(MM) (Lange, 2000), also known as optimization
transfer. The idea is essentially to replace a difficult
optimization problem by a sequence of simpler prob-
lems. At each iteration, the original objective function
is approximated by a locally tight upper bound surro-
gate so that minimizing the surrogate ensures that the
objective function is decreased. The motivation for us-
ing MM can be to simplify the optimization process,
make it more suitable for parallel computing, or both.
The global convergence of this type of algorithms has
been established for several cases (Lanckriet and Sripe-
rumbudur, 2009; Mairal, 2015; Ahn et al., 2006; Ja-
cobson and Fessler, 2007). Various well known ap-
proaches can be interpreted from an MM point of view,
such as expectation-maximization (EM) algorithms in
statistics (Dempster, 1977; Neal and Hinton, 1998)
and difference-of-convex programming (Lanckriet and
Sriperumbudur, 2009). The MM procedure has been
successfully used in tomographic imaging (Ahn et al.,
2006; Kaganovsky et al., 2015), image processing (Sot-
thivirat and Fessler, 2002), and matrix factorization
(Lee and Seung, 2001), to name a few.
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A related principle is Successive Convex Approxima-
tions (SCA) (Razaviyayn et al., 2013; Razaviyayn et
al., 2014), where as opposed to MM, the surrogate is
not necessarily a global upper bound of the objective
so that the monotonic reduction of the objective is not
guaranteed. However, due to additional assumptions
such as Lipchitz smoothness, convergence can be guar-
anteed if the step sizes are chosen to satisfy certain
criteria related to the Lipchitz constant of the gradi-
ent. Well known examples that use this approach are
gradient-based proximal methods (Beck and Teboulle,
2009; Combettes and Pesquet, 2011). Recently, Raza-
viyayn et al. (2014) proposed an SCA method for
non-convex optimization with parallel block updates
(PSCA) while still guaranteeing convergence.

A class of parallelizable MM algorithms using
partitioned-separable paraboloidal surrogates for non-
convex optimization was proposed by Erdogan and
Fessler (1999) and also Sotthivirat and Fessler (2002).
In this approach, the objective is approximated by a
high-dimensional quadratic global upper bound and
then an additional upper bound is created by using
Jensen’s inequality to obtain a block coordinate de-
scent algorithm. This approach allows one to update
blocks of variables in parallel while still guarantee-
ing the monotonic decrease of the original objective
and also convergence. A limitation of this method is
that it relies on positivity constraints to construct the
quadratic upper bound.

The contributions of this work are as follows:

• We propose a new type of parallelizable local
majorization-minimization for nonconvex opti-
mization which uses successive optimizations of
convex surrogates. The domain of the surrogate
is controlled at each iteration to better match it
to the local curvature of the objective function,
resulting in accelerated convergence when using
second-order methods.

• Similar to Erdogan and Fessler (1999) and Sot-
thivirat and Fessler (2002), and in contrast to
Razaviyayn (2014), our method guaranteesmono-
tonic decrease of the objective function. This has
the advantage that deviation from monotonicity
serves as indication of error in the code.

• In contrast to Erdogan and Fessler (1999), Sot-
thivirat and Fessler (2002), and Razaviyayn
(2014), our method uses surrogates that are
matched to a local compact region of the objective
function rather than globally. Also, in contrast to
the first two methods, our method does not re-
quire positivity constraints.

• The proposed method leads to parallel block

coordinate descent algorithms, where blocks are
updated simultaneously on different processors
while still automatically guaranteeing the reduc-
tion of the original objective function. Each of
the blocks can be reduced to a small enough size
such that second-order methods are practical and
can be used to accelerate convergence.

• The proposed method can be used with an ar-
bitrary block size. This enables more flexibility
to better explore the trade-off between conver-
gence rate per iteration, and the time per itera-
tion (including parallelization costs such as com-
munication between different processors), at the
price of a more restrictive class of problems than
Razaviyayn (2014). Note that the method by
Razaviyayn (2014) is practically limited to small
block sizes since it requires computing the low-
est eigenvalue of the feature/system sub-matrix
corresponding to each block, which becomes com-
putationally expensive as the block size increases.

• We derive guarantees for global convergence of the
proposed class of algorithms.

• We test the proposed framework on noncon-
vex support vector machines based on a sigmoid
loss function (similar to the “ramp-loss” used by
Ertekin et al. (2011)) and on logistic regression
with nonconvex penalties (Mairal, 2015).

• The proposed method is shown to yield compara-
ble or superior classification accuracy relative to
many prior methods for non-convex optimization
such as PSCA, and popular stochastic optimiza-
tion methods, e.g., AdaGrad, and RMSProp, but
without the need for tuning learning rates.

2 Majorization Minimization with
Dynamically Restricted Domains

2.1 Overview of Majorization Minimization

We begin with some basic definitions of the
majorization-minimization procedure (MMP) that
will be considered in this paper. Unless otherwise
stated, all functions are Rp → R.

Definition S(θ; θ̂,ΩM ) is said to be a local first-
order surrogate of a function C around an expansion
point θ̂ if the following conditions are satisfied

S(θ; θ̂) ≥ C(θ) ∀θ ∈ ΩM , (3)

S(θ̂; θ̂) = C(θ̂), (4)

∇θS|θ=θ̂ = ∇θC|θ=θ̂, (5)

ΩM ∩ ΩF 6= ∅, (6)

θ̂ ∈ Int(ΩM ), (7)
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where ΩM is called the majorization domain, Int(·)
denotes the interior of a set and ΩF is the feasible set
in the original problem in (1). If S(θ; θ̂) is also convex
with respect to θ on some convex set containing ΩM , it
is said to be a convex local first-order surrogate.

The condition in (3) states that S is an upper bound of
C in ΩM . The conditions in (4)–(5) state consistency
of the values of the functions and their gradients at the
expansion point θ̂. Condition (6) is added to ensure
that a feasible solution exists. The condition in (7)

ensures that θ̂ is in ΩM and not a boundary point.

The basic idea in MMP is to replace the hard problem
in (1) by a sequence of easier subproblems

θ(t+1) ∈ argmin
θ
{S(θ; θ(t),Ω(t)

M ) : θ ∈ ΩF ∩ Ω
(t)
M }, (8)

where S(θ; θ̂,ΩM ) is the surrogate for the cost function

C in (1) with the expansion point θ̂ chosen according

to the last iteration θ̂ = θ(t) and the majorization do-

main ΩM = Ω
(t)
M can also change with iteration. Also

note that we do not require S to be strongly convex, so
it can have multiple minima; accordingly, in the def-
inition of (8) we use ∈ instead of equality. This MM
procedure is guaranteed to decrease the original objec-
tive function (or leave it unchanged) if the surrogate
is decreased (or unchanged), since

C(θ(t+1)) ≤ S(θ(t+1); θ(t)) ≤ S(θ(t); θ(t)) = C(θ(t)),
(9)

where the first inequality follows from (3), the sec-
ond inequality follows from (8) and the equality fol-
lows from (4). We will also show in Sec. 3 that under
some mild conditions, this procedure is guaranteed to
converge to a local minimum of C.
The definition in (3)–(7) includes, as a special case, the
paraboloidal surrogates used by Erdogan and Fessler
(1999) and also Sotthivirat and Fessler (2002), where
the feasible set is assumed to be ΩF = Rp

+, the ma-
jorization is on the entire feasible region ΩM = ΩF and
the surrogate S is restricted to a particular quadratic
form. However, to the best of our knowledge, the
possibility of changing the majorization domains s.t.
ΩM ⊂ ΩF has not been significantly explored. It
should be noted that this idea has been mentioned by
Jacobson and Fessler (2007), albeit without any spe-
cific algorithm that actually uses this approach. As we
shall show below, there are important practical advan-
tages to using local convex surrogates with dynamic
majorization domains.

2.2 Convex Local Majorization

The first step of our MM procedure is to construct
a convex local first-order surrogate to the noncon-

vex cost function by utilizing the specific structure in
(2). Specifically, our approach relies on the observa-
tion that in most models of the form in (2) the scalar
functions fm and R and their derivatives are given in
closed-form. Thus, we first construct a convex sur-
rogate for the scalar functions fm(z), where later we
will substitute z = θTxm. We note that since the set
of functions fm generally depend on ym they can be
different for different m.

Let fm : R→ R be a twice continuously differentiable
nonconvex function with its second derivative bounded
below, i.e.,

min f ′′
m(z) > −∞ ∀m, (10)

where f ′′
m is the second derivative of fm. Define the

minimum second derivative on the interval [am, bm]

cm(am, bm) := min
am≤z≤bm

f ′′
m(z). (11)

We now define f̄m as

f̄m(z; ẑ) := fm(z) + [−cm(am, bm)]+(z − ẑ)2/2, (12)

where [x]+ = max(0, x). It is easy to verify that for
any particular m, the function f̄m(z; ẑ) in (12) is a
global first-order surrogate for fm(z) (see definition in
Sec. 2.1), i.e., f̄m(z; ẑ) ≥ fm(z) with equality at z = ẑ
and f̄ ′

m = f ′
m at z = ẑ. Also, convexity, i.e., f̄ ′′

m ≥ 0,
is guaranteed only on the domain [am, bm], so in ac-
cordance with the definitions in Sec. 2.1, to obtain a
convex surrogate the majorization domain should be
chosen as ΩM = {θ | am ≤ θTxm ≤ bm, ∀m}. Note
that for (am, bm) = (−∞,∞), [−cm(am, bm)]+ in (12)
equals the absolute value of the global minimum of
f ′′
m if the minimum is negative and zero otherwise,
so f̄m in (12) is convex on the entire real line. Fig-
ure 1 illustrates the need for the local surrogate in-
troduced in (12) and why one should consider choos-
ing am > −∞ and bm < ∞. When the expansion
point ẑ is located at a convex region (f ′′

m > 0), adding
[−minz∈R f ′′

m(z)]+(z − ẑ)2 to the function fm(z) can
lead to very high positive curvature of the surrogate
and to small steps when minimizing the surrogate us-
ing second-order methods. In order to achieve faster
convergence, we restrict the surrogate to the interval
[am, bm] and choose cm in (11) according to the local
minimum of f ′′

m (if it is negative), which can result in a
much lower curvature of the surrogate. The proposed
modification leads to wider surrogates which enable
taking larger steps (if needed) when using second-order
methods, as illustrated by the red curve in Fig. 1. In
fact, if [am, bm] is contained in a convex region, then
the quadratic term in (12) is dropped and the original
function can be used in this region.

To appreciate the difficulty in choosing the majoriza-
tion domains ΩM or [am, bm], note that the Hessian
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Figure 1: Illustration of first-order convex global
(blue) and local (red) surrogates for a nonconvex cost
function (black). The minimum of the local surrogate
is seen to be closer to the minimum of the nonconvex
function than the global surrogate. All surrogates are
constraint to have the same function value and gradi-
ent as the nonconvex function at the expansion point.

of the nonconvex objective in (2) with respect to θ
has the form H(θ) = XΛ1X

T + λΛ2, where X ∈
Rp×M is the column-wise concatenation of the vec-
tors xm for different m, Λ1 = Diag({f ′′

m(θTxm)}Mm=1)
with Diag({vm}Mm=1) denoting a diagonal matrix in
which the entries on the main diagonal are specified
by v1, v2, ..., vM , and Λ2 is the Hessian of the penalty
term. Accordingly, it is generally possible that a local
minimum point θmin, whereH(θmin) � 0, can also sat-
isfy f ′′

m(θTminxm) < 0 for some m. Therefore, choosing
[am, bm] in (12) is not a trivial task as solutions with
f ′′
m < 0 must also be allowed. We propose a principled
approach to tackle this problem in Sec. 4.

Based on the scalar surrogates in (12), we construct
a multivariate convex surrogate to a function of the
form

∑
m fm(θTxm) (see (2)) by substituting

zm = θTxm, ẑm = θ̂Txm, (13)

for eachm separately, where zm and ẑm are the current
and reference values of the argument of fm, respec-
tively. This is summarized in the following lemma.

Lemma 2.1 Let F (θ) =
∑

m fm(θTxm) with fm a
twice continuously differentiable (possibly nonconvex)
function. Define

F̄ (θ; θ̂) := F (θ) +
1

2
(θ − θ̂)TXDXT (θ − θ̂), (14)

where θ̂ ∈ ΩF is an expansion point, X ∈ Rp×M is a
matrix with the mth column equal to xm and D is a
diagonal matrix

D := Diag({[−cm(am, bm)]+}Mm=1), (15)

where cm(am, bm) is defined in (11). The function

F̄ (θ; θ̂) is a convex local first-order surrogate (see

(3)–(5)) for F on the majorization domain ΩM :=
{θ | am ≤ θTxm ≤ bm, ∀m} when am, bm are chosen

such that θ̂ ∈ Int(ΩM ). (See proof in supplementary
material).

F̄ in (14) is generally not convex outside ΩM . In order
to allow the use of any general algorithm for convex
functions, we extend the surrogate to be globally con-
vex. This extension will also be essential for our de-
composition method in Sec. 2.3 that relies on Jensen’s
inequality and requires the function to be globally con-
vex. First, we introduce an extension to f̄ from (12) in
Eq. (16) (see next page), where f̄ ′

m(z; ẑ) and f̄ ′′
m(z; ẑ)

denote the first and second derivatives of f̄m with re-
spect to z. Note that f̃m in Eq. (16) is globally convex
even in regions where it is not an upper bound of fm
and it is also twice continuously differentiable. The
extension of F̄ from (14) can now be written as

F̃ (θ; θ̂) =
∑

m

f̃m(θTxm; θ̂Txm). (17)

The proposed MMP with Dynamically Restricted ma-
jorization Domains (DRD) is summarized in Algo-
rithm 2.1. It is important to note that it is not neces-
sary to solve the surrogate subproblem in (8) exactly.
It is sufficient just to decrease the value of the sur-
rogate which will result in the decrease of C in (1).
Since the surrogate is a local approximation of C it
might explore a small region in θ space and it is more
beneficial to re-expand the surrogate at a new point
than to minimize the current surrogate exactly. In ad-
dition, the extra constraint due to ΩM in (8) might
make the problem more difficult to solve. Instead, we
first minimize the surrogate in Algorithm 2.1 without
constraining the solution to lie inside the majorization
domain ΩM and then check if it lies in ΩM . If not,
we project the solution to the boundary of ΩM along
the line connecting the current solution θ(t+1) and the
previous one θ(t). The following lemma asserts that
this projection always exists and necessarily leads to a
decrease of the surrogate which implies the decrease of
C. We also note that ΩM can be modified as needed, so
in cases where these projections slow down the conver-
gence, one can expand ΩM to allow larger step sizes.

Lemma 2.2 Let ΩF and ΩM be non-empty convex
sets with ΩF ∩ ΩM 6= ∅ and ΩM := {θ | am ≤ θTxm ≤
bm, ∀m}. Let θ1 ∈ ΩF ∩ ΩM and let θ2 ∈ ΩF with
θ2 /∈ ΩM s.t. F (θ2) < F (θ1) with F a convex func-
tion. In addition, assume am, bm are chosen such
that θ1 ∈ int(ΩM ). Then there exists λ ∈ (0, 1) s.t.
θ∗ := λθ2+(1−λ)θ1 satisfies θ∗ ∈ ΩF ∩ΩM . Further-
more, any such point satisfies F (θ∗) < F (θ1). (Proof
is provided in the supplementary material).
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f̃m(z; ẑ) :=

{ f̄m(am) + f̄ ′
m(am)(z − am) + f̄ ′′

m(am)(z − am)2/2, z < am
f̄m(z; ẑ), am ≤ z ≤ bm
f̄m(bm) + f̄ ′(bm)(z − bm) + f̄ ′′(bm)(z − bm)2/2, z > bm

(16)

✎

✍

☞

✌

Algorithm 2.1: MM-DRD

for t← 1 to T (or until converged)



for m← 1 to M



Choose [a
(t)
m , b

(t)
m ]

comment: see Sec. 4 for details

Compute c
(t)
m in (11) using [a

(t)
m , b

(t)
m ]

Find θ(t+1) ∈ argminθ∈ΩF
{F̃ (θ; θ(t),Ω(t)

M )}
comment: F̃ is given in Eq. (17)

Let Ω
(t)
M := {θ | a(t)m ≤ θTxm ≤ b(t)m , ∀m}

if θ(t+1) /∈ Ω
(t)
M then

Find λ ∈ (0, 1) s.t.

θ∗ = λθ(t+1) + (1− λ)θ(t) ∈ Ω
(t)
M ∩ ΩF

set θ(t+1) = θ∗

return (θ(t+1))

One practical solution to performing the projection is
to use the point on the boundary of ΩM along the line
connecting the previous and current solution, which
has the following simple solution

λ = min

({
b
(t)
m − xTmθ(t)

xTm(θ(t+1) − θ(t)) ,

a
(t)
m − xTmθ(t)

xTm(θ(t+1) − θ(t))

}M

m=1

∩ (0, 1)

)
. (18)

It should be noted that the convex surrogate in (17)
can be minimized by any standard software package for
convex optimization which is already more convenient
than minimizing the original nonconvex cost function.

2.3 Jensen-Type Decomposition for Parallel
Block Coordinate Descent

As shown in Sec. 3, a necessary condition for Algo-
rithm 2.1 to converge is that the surrogate is decreased.
This requires one to repeatedly evaluate the surro-
gate in order to determine the step-size (line-search).
However, for high dimensional problems, with a large
number of variables and data points, this operation is
extremely time consuming. In order to alleviate this
difficulty, we make use of a powerful decomposition
procedure that is based on Jensen’s inequality (Boyd
and Vandenberghe, 2004) and originally proposed by
De Pierro (1994) that results in a surrogate that is ad-
ditively separable with respect to blocks of variables
(Erdogan and Fessler, 1999). This leads to a parallel
block coordinate descent algorithm where all blocks

are updated simultaneously while still guaranteeing
the decrease of the objective function. Since the opti-
mization using each block potentially involves a small
number of variables, it allows the use of second-order
methods. Note that naively minimizing the objective
with respect to blocks of variables in parallel without
using the decomposition we present here would not
guaranty the decrease of the objective.

We can now introduce the above mentioned decom-
position. Separate θ = [θ1; θ2; . . . ; θK ] into K arbi-
trary blocks. Define Sk as the set of all indexes used
in the kth block with the corresponding variables de-
noted by the column vector θk and |Sk| as the number
of variables in θk. We define the following function

Sm(θ; θ̂) :=
K∑

k=1

Skm(θk; θ̂, rkm, x
k
m)

:=

K∑

k=1

rkmf̃m(θ̂Txm + (θk − θ̂k)Txkm/rkm), (19)

where f̃m is defined in (16), xkm ∈ R|Sk| is a subset of
xm corresponding to θk and rkm is defined as

rkm = ‖xkm‖1/‖xm‖1. (20)

Note that Sm is an additively separable function with
respect to the blocks (Skm corresponds to the kth
block), so it naturally leads to a parallel block coor-
dinate descent approach where all blocks are updated
simultaneously while still guaranteeing the decrease of
the objective function.

Lemma 2.3 The function S :=
∑

m Sm(θ; θ̂) with Sm
defined in (19) is a twice continuously differentiable
convex local first-order surrogate (see (3)–(5))
for F =

∑
m fm(θTxm) on the majorization domain

ΩM := {θ | am ≤ θTxm ≤ bm, ∀m} when am and bm
are chosen such that θ̂ ∈ int(ΩM ). (Proof is provided
in the supplementary material).

Remark The function in (19) is a surrogate for F on
ΩM only if f̃ is globally convex since Jensen’s inequal-
ity only holds in this case. More specifically, consider
the argument of f̃m(θ̂Txm+(θk−θ̂k)Txkm/rkm) and note
that the argument can be outside of [am, bm] even if
θ ∈ ΩM , so in that case, Jensen’s inequality would
not hold if f̃ was not convex outside [am, bm]. This
provides another motivation for (16).

It is worth noting that for a smaller number of groups
K, the surrogate in (19) will be a tighter bound to
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✎

✍

☞

✌

Algorithm 2.2: Parallel Block CD

for k ← 1 to K (In parallel)

θk
(t+1) ∈ argminθk∈Ωk

F
{S(θk; θ(t),Ω(t)

M )}
comment: S =

∑
m Sm

comment: Sm is given by Eq. (19)

the original objective function with the trivial case of
Sm(θ) ≡ f̃m(θTxm) for all m when K = 1. Decreas-
ing K will also result in harder optimization prob-
lems involving more variables for each group. On
the other hand, increasing K leads to better paral-
lelization, while resulting in a less tight bound, which
can slow down the convergence per iteration but can
also reduce computation time per iteration. Note
that in this approach, there is complete freedom to
choose any group size and to explore the above trade-
off according to the available computational resources.
The resulting block-coordinate algorithm is described
by Algorithm 2.1 by replacing the minimization of
F̃ by the minimization described in Algorithm 2.2
where Ωk

F is the projection of ΩF onto the subspace
of θk. We call this algorithm Parallel Majorization-
Minimization with Dynamically Restricted Domains
(PMM-DRD).

3 Convergence Analysis

In order for the proposed iterative procedure to be gen-
erally useful, it must converge to a local optimum or
a stationary point from all initialization states with-
out exhibiting divergence or oscillation. To understand
this analysis, we first introduce the notion of a point-
to-set mapping. A point-to-set map A from a set X
into a set Y is defined as A : X → M(Y ), which as-
signs a subset of Y to each point of X , where M(Y )
denotes the power set of Y . Next, we introduce sev-
eral definitions related to the properties of point-to-set
mappings. A point-to-set map is said to be closed at
x ∈ X if x(t) → x as t→∞ with x(t) ∈ X and y(t) → y
as t → ∞ with y(t) ∈ A(x(t)) implies y ∈ A(x). A
point-to-set map is said to be closed on W ⊂ X if it
is closed at every point of W . A fixed point of the
map A is a point x for which x = A(x). A generalized
fixed point of a map is a point x for which x ∈ A(x).
A is said to be monotonic with respect to φ when-
ever y ∈ A(x) implies φ(y) ≤ φ(x). Many iterative
algorithms (including the ones presented here) can be
described using this notion of point-to-set maps.

LetX be a set and x(0) ∈ X a given initial point. Then
an algorithm A with initial point x(0) is a point-to-
set map A : X → M(X) which generates a sequence
{x(t)}∞t=1 via the rule x(t+1) = A(x(t)), t = 0, 1, 2, . . . .

A is said to be globally convergent if for any chosen
initial point x(0), the sequence {x(t)}∞t=1 converges to
a point for which a necessary condition of optimality
holds. The property of global convergence expresses,
in a sense, the certainty that the algorithm works. It
is important to stress the fact that it does not imply
(contrary to what the term might suggest) convergence
to a global optimum for all initial points x(0). We ana-
lyze Algorithm 2.1 using the above tools. We start by
stating Zangwill’s global convergence theorem (Zang-
will, 1969, Convergence theorem A page 91).

Theorem 3.1 (Zangwill, 1969) Let A : X →
M(X) be a point-to-set map that given a point x0 ∈
X generates a sequence {x(t)}∞t=1 through x(t+1) ∈
A(x(t)). Also, let a solution set Γ ⊂ X be given and

1. All points {x(t)}∞t=1 are in a compact set W ⊂ X.

2. There is a continuous function φ: X → R s.t.

(a) x(t) /∈ Γ ⇒ φ(y) < φ(x(t)), ∀y ∈ A(x(t))
(b) x(t) ∈ Γ ⇒ φ(y) ≤ φ(x(t)), ∀y ∈ A(x(t))
(c) A is closed at x(t) if x(t) /∈ Γ

Then all limit points1 of {x(t)}∞t=1 are in Γ. Further-
more, limt→∞ φ(x(t)) = φ(x∗) for all limit points x∗.

The general idea in showing the global convergence
of an algorithm A is to invoke Theorem 3.1 by ap-
propriately defining φ and Γ. For an algorithm that
solves the minimization problem min{f(x) : x ∈ Ω},
the solution Γ is usually chosen to be the set of cor-
responding stationary points and φ can be chosen to
be the objective function itself if it is continuous. Our
approach would be to define Γ as the set of generalized
fixed points and then use the fact that any generalized
fixed point is also a stationary point, as established by
the lemma below.

Lemma 3.2 Suppose x∗ is a generalized fixed point
of A described by Algorithm 2.1 (or Algorithm 2.1
with the minimization of F̃ replaced by Algorithm 2.2).
Assume that the constraints as specified by ΩF in
(1) are qualified at x∗. Furthermore, assume that
ΩF = {gi(θ) ≤ 0, hj(θ) = 0, i = 1, ..., I, j = 1, ..., J}
where gi(θ) and hj(θ) are differentiable convex func-
tions. Then, x∗ is a stationary point of the program
in (1). (See proof in the supplementary material).

We are now ready to state our main result.

Theorem 3.3 (Global convergence) Let {θ(t)}∞t=1

be any sequence generated by the algorithm described by

1A limit point is defined as the limit of a convergent
subsequence.
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Algorithm 2.1 (or Algorithm 2.1 with the minimization
of F̃ replaced by Algorithm 2.2) using any initializa-
tion point θ(0) ∈ ΩF . Assume ΩF in (1) is closed and
bounded and given by ΩF = {gi(θ) ≤ 0, hj(θ) = 0, i =
1, ..., I, j = 1, ..., J} where gi(θ) and hj(θ) are differ-
entiable convex functions. Assume f and R in (2)
are twice continuously differentiable functions. Then
assuming suitable constraint qualifications (given by
ΩF and ΩM ), any sequence {θ(t)}∞t=1 has a limit point
which is a stationary point of the program in (1), i.e.,
it satisfies the first-order KKT optimality conditions
(Proof is provided in the supplementary material).

4 Choosing the Majorization Domains

Here we describe the algorithm for choosing the ma-
jorization domains [am, bm] in (11). A preprocessing
step involves storing all the inflection points Im =
{z | f ′′

m(z) = 0}, points with minimum negative 2nd
derivativesMm = {z | z ∈ argmin f ′′

m(z), f ′′
m(z) < 0},

and the corresponding values of the second derivative
χm = {f ′′

m(z)|z ∈ Mm}, for each m = 1, 2, . . . ,M .
We denote Mm[q] as the qth element in the ordered

set {Mm[q]}Qq=1 consisting of elements ofMm and sat-
isfying Mm[1] ≤ Mm[2] ≤ .... ≤ Mm[Q]. We define
a similar ordered set for I. For simplicity, we assume
that χm is a singleton set, but Mm can still contain
multiple points. Algorithm 4.1 describes the procedure
for selecting the majorization domain, where two pa-
rameters 0 < α, β < 1 need to be chosen. For each m,
Algorithm 4.1 returns an interval [am, bm] for which
the minimal curvature is computed and used in (11).
An example for using this procedure is shown in the
supplementary material. In case there are multiple lo-
cal minimum values of f ′′(z), i.e., χm contains multi-
ple different values, Algorithm 4.1 is repeated for each
minimum value, after which [am, bm] are obtained by
taking the intersection of all the majorization domains.✎

✍

☞

✌

Algorithm 4.1: Domains(α, β)

for m← 1 to M



am = −∞
bm =∞
Compute zm = θTxm

Compute ψm = f ′′
m(zm)

if 0 < |ψm| < α|χm|
comment: low curved region

[am, bm] = Localize(zm, β,Mm)

if α|χm| ≤ ψm ≤ |χm|
comment:medium curved convex region

[am, bm] = Localize(zm, β, Im)

return ({am, bm}Mm=1)

✎

✍

☞

✌

Algorithm 4.2: Localize(z, β,P)
if z < P [1]{

a = −∞
b = (1− β)z + βP [1]

else if z > P [end]{
b =∞
a = (1− β)z + βP [end]

else


Find i s.t. P [i] < z < P [i+ 1]
a = (1− β)z + βP [i]
b = (1 − β)z + βP [i+ 1]

return (a, b)

5 Numerical Results

As an application of our proposed framework for non-
convex optimization, we consider two binary linear
classification problems that follow the general form in
Eq. (2). The first example we consider is the sigmoid-
loss linear support vector machine (SVM). Standard
SVM utilizes a hinge loss function as a surrogate to
the 0-1 loss, which is easier to optimize and intro-
duces a margin that allows good generalization. How-
ever, to retain a convex loss function it overly pe-
nalizes examples with large negative margins. To
remedy this, Ertekin et al. (2011) proposed a ramp
loss function (difference of two hinge functions). The
sigmoid loss considered here is a smooth version of
the ramp-loss and is given by ℓ(α) = 1 − tanh(α)
(see Fig. 1 in the supplementary material). The sec-
ond example we consider is logistic regression with
a log penalty (Mairal, 2015) that produces sparser
solutions than the L1 penalty but makes the over-
all problem non-convex. The regularizer is given by
R(θ) = λ

∑p−1
j=1 log

(
θ2j + ǫ

)
where ǫ > 0 is chosen to

prevent the log penalty from blowing up when θj = 0.
We compare the proposed method PMM-DRD, which
is described by Algorithm 2.1 with Algorithm 2.2 re-
placing the minimization therein, against previously
proposed methods in the literature for solving non-
convex optimization problems such as Gradient De-
scent, L-BFGS (Schmidt, 2005), RMSProp (Tieleman
and Hinton, 2012), AdaGrad (Duchi et al., 2011), and
PSCA (Razaviyayn et al., 2014). We also compare
to the case where the proposed method does not use
restricted majorization domains, denoted PMM.

In the following examples we consider binary classifi-
cation tasks of distinguishing between digits 3 and 5
in the MNIST2 dataset, newsgroups 1 and 20 in the
20Newsgroup3 dataset, and HIV positive and negative
patients in the TB4 dataset. The L-BFGS algorithm

2http://yann.lecun.com/exdb/mnist/
3http://qwone.com/ jason/20Newsgroups/
4ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39941
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Table 1: Classification accuracy (%) on the train-
ing set using SVM. LIBLINEAR (Fan et al., 2008)
uses the standard linear SVM, and the other meth-
ods use the nonconvex sigmoid-loss. For the latter,
we used 10 random initializations and presented the
mean and standard deviation. GD=Gradient Descent,
RProp=RMSProp, AGrad=AdaGrad, PMM=Parallel
Majorization-Minimization, DRD=Dynamically Re-
stricted Domain.
Method MNIST 20 News TB
LIBLIN 97.13 100 86.55
LBFGS 96.92 ± 0.02 99.63 ± 0.21 65.99 ± 0
CG 96.91 ± 0.026 98.36 ± 0.72 65.99 ± 0
GD 95.13 ± 1.04 95.16 ± 5.61 65.99 ± 0
PSCA 89.23 ± 0.07 79.29 ± 0.30 65.99 ± 0
RProp 96.74 ± 0.32 99.87 ± 0.09 65.99 ± 0
AGrad 94.99 ± 0.24 81.41 ± 0.63 65.99 ± 0
PMM 97.02 ± 0.02 100 ± 0 100 ± 0
PMM-
DRD

97 ± 0.01 100 ± 0 100 ± 0

was used with cross validation to learn the regulariza-
tion coefficient λ in (2) for the nonconvex model, which
was then fixed for all methods. All algorithms ran till
convergence, i.e., till one of the stopping criteria was
met (see supplementary for details). Due to possible
local minima, we used 10 random initializations and
presented the mean and standard deviation.

Table 1 shows the classification accuracy of the
sigmoid-loss SVM on the training set. One can see
that among the methods for nonconvex optimization,
the highest accuracy for all datasets is achieved by
PMM-DRD. For the TB dataset, PMM significantly
outperforms all the other methods. Figure 2 shows
the nonconvex objective vs training time for the TB
dataset, where it is seen that all methods get stuck in
a bad local minimum, except for the proposed PMM.
This demonstrates the susceptibility of gradient de-
scent methods to the choice of learning rates and fea-
ture scaling, while PMM does not require learning rates
and is also scale-invariant. Note that the restricted
majorization domain in PMM-DRD leads to a con-
vergence speed-up by a factor & 5. Table 2 shows the
classification accuracy of SVM on the test set. Table 3
shows the training accuracy for logistic regression (see
Table 1 in the supplementary for test accuracy).

All experiments use a 64-core machine. In RMSProp
and AdaGrad we use mini-batches which are 10% of
the examples. The rest of the methods use the entire
dataset (batch). PMM methods use blocks of 500 fea-
tures. For PMM-DRD we use (α, β) = (0.1, 0.8) in
algorithm 4.1. The minimization of the surrogates in
PMM methods was done using the trust region conju-
gate gradient algorithm (Lin, 2008). We implemented
PMM in MATLAB using C/C++ mex with OpenMP
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Figure 2: Objective for linear SVM with sigmoid-loss
vs training time using the optimization methods men-
tioned in Table 1 and the TB dataset. Inset shows an
enlarged view of the region inside the dashed square.

Table 2: Same as Table 1 but for the test set.
Method MNIST 20 News TB
LIBLIN 96.37 77.86 90.72
LBFGS 96.65 ± 0.05 77.19 ± 0.9 72.16 ± 0
CG 96.63 ± 0.035 75.45 ± 1.873 72.16 ± 0
GD 95.7 ± 0.67 75.82 ± 3.12 72.16 ± 0
PSCA 90.89 ± 0.07 68.82 ± 0.35 72.16 ± 0
RProp 96.38 ± 0.3 81.92 ± 0.81 72.16 ± 0
AGrad 94.99 ± 0.24 81.41 ± 0.63 72.16 ± 0
PMM 96.95 ± 0 71.81 ± 0.09 91.34 ± 0.5
PMM-
DRD

96.98 ± 0.03 78.2 ± 0.08 91.75 ± 0

Table 3: Same as Table 1 but for Logistic regression.
LIBLIN uses an L1 penalty and the rest of the methods
use a non-convex log-penalty.
Method MNIST 20 News TB
LIBLIN 97.33 98.48 81.44
LBFGS 97.14 ± 0.03 100± 0 100 ± 0
CG 97.81 ± 0.11 100 ± 0 100 ± 0
GD 95.2 ± 1.26 97.82 ± 3.68 89.09 ± 0.77
PSCA 88.4 ± 0 97.58 ± 0.11 53.55 ± 0
RProp 96.74 ± 0.32 100 ± 0 56.43 ± 17.43
AGrad 94.54 ± 0.16 100 ± 0 56.18 ± 17.21
PMM 98.29 ± 0 100 ± 0 100 ± 0
PMM-
DRD

98.64 0 ± 0.01 100 ± 0 100 ± 0

enabled. PSCA uses the cyclic version (Razaviyayn
et al., 2014) with 64 processors, 40 scalar features per
processor, and a learning rate that is initially 1 and
decreases as 1/k1.01, where k is the iteration number.
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