
How to learn a graph from smooth signals:
Supplementary Material

Vassilis Kalofolias
Signal Processing Laboratory 2 (LTS2)

École polytechnique fédérale de Lausanne (EPFL), Switzerland

A Derivations and proofs

A.1 Detailed explanation of eq. (3)

‖W ◦ Z‖1 =

m∑
i=1

m∑
j=1

Wij‖xi − xj‖22

=

m∑
i=1

m∑
j=1

(xi − xj)>Wij(xi − xj)

= 2

m∑
i=1

m∑
j=1

x>i Wijxi − 2

m∑
i=1

m∑
j=1

x>i Wijxj

= 2

m∑
i=1

x>i xi

m∑
j=1

Wij − 2 tr
(
X>WX

)
= 2 tr

(
X>DX

)
− 2 tr

(
X>WX

)
= 2 tr

(
X>LX

)
,

where D is the diagonal matrix with elements Dii =∑
iWij .

A.2 Proof of proposition 2

Proof. We change variable W̃ = W/γ to obtain

F (Z,α, β) =

= γ argmin
W̃

‖γW̃ ◦ Z‖1,1 − α1> log(γW̃1) + β‖γW̃‖2F

= γ argmin
W̃

γ‖W̃ ◦ Z‖1,1 − α1> log(W̃1) + βγ2‖W̃‖2F

= γ argmin
W̃

‖W̃ ◦ Z‖1,1 −
α

γ
1> log(W̃1) + βγ‖W̃‖2F

= γF

(
Z,
α

γ
, βγ

)
,

where we used the fact that log(γW̃1) = log(W̃1) +
const.(W). The second equality is obtained from the
first one for γ = α.

A.3 Proof of proposition 3

Proof. For equation (15)

H(Z + γ, α, s) =

= argmin
W∈Wm

‖W ◦ Z + γW‖1,1 + α‖W‖2F + α‖W1‖2

s. t., ‖W‖1,1 = s

= argmin
W∈Wm

‖W ◦ Z‖1,1 + γ‖W‖1,1 + α‖W‖2F + α‖W1‖2

s. t., ‖W‖1,1 = s

= argmin
W∈Wm

‖W ◦ Z‖1,1 + γs+ α‖W‖2F + α‖W1‖2

s. t., ‖W‖1,1 = s

= H(Z,α, s),

because ‖a+ b‖1 = ‖a‖1 + ‖b‖1 for positive a, b.

For equation (16)we change variable in the optimiza-
tion and use W̃ = W/γ to obtain

H (Z,α, s) =

= γ argmin
W̃∈Wm

‖γW̃ ◦ Z‖1,1 + α‖γW̃‖2F + α‖γW̃1‖2

s. t., ‖γW̃‖1,1 = s

= γ argmin
W̃∈Wm

γ‖W̃ ◦ Z‖1,1 + γ2α‖W̃‖2F + γ2α‖W̃1‖2

s. t., ‖W̃‖1,1 =
s

γ

= γ argmin
W̃∈Wm

‖W̃ ◦ Z‖1,1 + γα‖W̃‖2F + γα‖W̃1‖2

s. t., ‖W̃‖1,1 =
s

γ

= γH

(
Z,αγ,

s

γ

)
.

The second equality follows trivially for γ = s.

Running heading title breaks the line

B Optimization details and algorithm
for model of Dong et al. (2015).

To obtain Algorithm 1 (for our model), we need the
following:

K = S (‖S‖2 =
√

2(m− 1))

proxλf1(y) = max(0, y − λz),

proxλf2(y) =
yi +

√
y2i + 4αλ

2
,

∇f3(w) = 2βw,

ζ = 2β (Lipschitz constant of gradient of f3),

where m is the number of nodes of the graph.

To obtain Algorithm 2 (for model by Dong et al. 2015),
we need the following:

K = 21 (‖21‖2 = 2
√
m(m− 1)/2)

proxλf1(y) = max(0, y − λz),
proxλf2(y) = s,

∇f3(w) = α(4w + 2S>Sw),

ζ = 2α(m+ 1) (Lipschitz constant of gradient of f3).

Algorithm 2 Primal dual algorithm for model (14).

1: Input: z, α, s, w0 ∈ Wv, c
0 ∈ R+, γ, tolerance ε

2: for i = 1, . . . , imax do
3: yi = wi − γ(2α(2wi + S>Swi) + 2ci)
4: ȳi = ci + γ(2

∑
j w

i
j)

5: pi = max(0, yi − 2γz)
6: p̄i = ȳi − γs
7: qi = pi − γ(2α(2pi + S>Spi) + 2pi)
8: q̄i = p̄i + γ(2

∑
j p

i
j)

9: wi = wi − yi + qi;
10: ci = ci − ȳi + q̄i;
11: if ‖wi − wi−1‖/‖wi−1‖ < ε and
12: |ci − ci−1|/|ci−1| < ε then
13: break
14: end if
15: end for

C Artificial smooth data

Table 1 summarizes the different models of smooth
signals, that are plotted in figure 1. Samples of these
signals on the same non-uniform graph are plotted in
figure 2.

D More real data experiments

D.1 Timing comparison on real data

We compare the time needed for different algorightms
of graph learning. We use 25 to 200 different images

6
0.2 0.4 0.6 0.8 1

h
(6

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Tikhonov: h(6) / 1
1+106

Gen. Model: h(6) /
q

1
6

Heat Di,usion: h(6) / exp(!106)

Figure 1: The filters of Table 1 for α = 10.

Tikhonov: h(6) / 1
1+106

-1

0

1

Generative Model: h(6) /
q

1
6

-1

0

1

Heat Di,usion: h(6) / exp(!106)

-1

0

1

Figure 2: Different smooth signals on the Non Uni-
form graph used for our artificial data experiments.
All signals are obtained by smoothing the same initial
x0 ∼ N (0, I) with three different filters. This instance
of the graph is disconnected with 2 components.

Vassilis Kalofolias

Table 1: Different Types of Smooth Signals.

Concept Model Graph filter

Tikhonov X = arg minX
1
2‖X −X0‖2F + 1

α tr
(
X>LX

)
g(λ) = 1

1+αλ

Generative model X ∼ N
(
0, L†

)
g(λ) =

{
1√
λ

if λ > 0

0 if λ = 0

Heat diffusion X = exp (−αL)X0 g(λ) = exp(−αλ)

Table 2: Performance of Different Algorithms on Artificial Data. Each setting has a random graph with 100
nodes and 100 smooth signals from 3 different smoothness models and added 10% noise. Results averaged
over 20 random graphs for each setting. F-measure: the higher the better (weights ignored). Edge and degree
distances: the lower the better. For relative `− 1 distances we normalize s.t. ‖w‖1 = ‖w0‖1. For relative `− 2
distances we normalize s.t. ‖w‖2 = ‖w0‖2. Baseline: for F-measure, the best result by thresholding exp(−d2).
For edge and degree distances we use exp(−d2/2σ2) without thresholding.

Tikhonov Generative Model Heat Diffusion

base Dong etal Ours base Dong etal Ours base Dong etal Ours

Rand. Geometric
F-measure 0.667 0.860 0.886 0.671 0.836 0.858 0.752 0.837 0.848

edge `-1 0.896 0.414 0.364 0.851 0.487 0.468 0.620 0.526 0.451
edge `-2 0.700 0.430 0.390 0.692 0.494 0.477 0.582 0.535 0.471

degree `-1 0.158 0.151 0.080 0.268 0.159 0.128 0.216 0.225 0.143
degree `-2 0.707 0.179 0.095 0.679 0.193 0.145 0.479 0.264 0.177

Non Uniform
F-measure 0.674 0.821 0.817 0.650 0.779 0.774 0.763 0.835 0.827

edge `-1 0.847 0.547 0.480 0.931 0.711 0.673 0.612 0.583 0.491
edge `-2 0.724 0.545 0.462 0.784 0.673 0.624 0.565 0.598 0.464

degree `-1 0.167 0.190 0.075 0.241 0.204 0.139 0.235 0.257 0.132
degree `-2 0.605 0.228 0.099 0.614 0.261 0.187 0.433 0.325 0.164

Erdős Rényi
F-measure 0.293 0.595 0.676 0.207 0.473 0.512 0.358 0.595 0.619

edge `-1 1.513 0.837 0.798 1.623 1.113 1.090 1.401 0.896 0.899
edge `-2 1.086 0.712 0.697 1.129 0.896 0.888 1.045 0.767 0.759

degree `-1 0.114 0.129 0.084 0.135 0.146 0.114 0.185 0.182 0.184
degree `-2 0.932 0.202 0.116 1.053 0.227 0.185 0.875 0.241 0.276

Barabási-Albert
F-measure 0.325 0.564 0.636 0.357 0.588 0.632 0.349 0.631 0.711

edge `-1 1.541 0.939 0.885 1.513 0.940 0.914 1.473 0.843 0.774
edge `-2 1.073 0.802 0.761 1.052 0.808 0.773 1.049 0.732 0.672

degree `-1 0.225 0.309 0.145 0.243 0.311 0.229 0.281 0.336 0.181
degree `-2 0.560 0.378 0.281 0.563 0.386 0.350 0.570 0.429 0.319

of the USPS dataset to learn graphs from different al-
gorithms and report the time in seconds. The results
are given in table 3. Log-det (CVX) denotes the CVX
solution of the model proposed by Lake and Tenen-
baum (2010). Dong etal. (CVX) denotes the CVX
solution provided by Dong et al. (2015). We solve the
same problem in the form of eq. (14) with Algorithm
2, while our model of eq. (12) is solved by Algorithm
1. CVX is a generic convex optimization tool meant
to be used as a black box, and therefore it struggles
to solve even moderate sized problems. This effect is
stronger when the log of the determinant is used in the
objective function. On the other hand, our algorithms
are fast proximal based methods tailored specifically
for our problems, and are therefore much faster. Note
also that the time needed by both our algorithms is

linear to the number of iterations that varies accord-
ing to the parameters and the step size. In these ex-
periments they converged after around 300 and 2000
iterations respectively for algorithms 1 and 2.

D.2 Learning the graph of COIL 20 images

We randomly sample the classes so that the average
size increases non-linearly from around 3 to around 60
samples per class. The distribution for one of the in-
stances of this experiment is plotted in fig. 3. We sam-
ple from the same distribution 20 times and measure
the average performance of the models for different
graph densities. For each of the graphs, we run stan-
dard spectral clustering (as in the work of Ng, Jordan,
Weiss, et al. 2002 but without normalizing the Lapla-

Running heading title breaks the line

Table 3: Time for solving different graph learning models in seconds. We use a dash for cases that took more
than an hour. Log-det is the model by Lake and Tenenbaum (2010), solved with CVX. Our algorithms are run
for a tolerance of ε = 1e− 5.

Problem size Log-det (CVX) Dong etal. (CVX) Algorithm 1 Algorithm 2

25 nodes 34.29 1.49 0.09 0.10
50 nodes 473.13 4.21 0.19 0.20
100 nodes - 51.41 0.31 0.47
200 nodes - 2109.87 0.93 1.75
400 nodes - - 1.91 11.41

class
0 2 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 im

ag
es

0

10

20

30

40

50

60

70
distribution of class sizes

Figure 3: Distribution of class sizes for one of the ran-
dom instances of the COIL 20 experiments.

cian) with k-means 100 times. For label propagation
we choose 100 times a different subset of 50% known
labels. We set a baseline by using the same techniques
with a k-Nearest neighbors graph (k-NN) with differ-
ent choices of k.

In Fig. 4 we plot the behavior of different models
for different density levels. The horizontal axis is the
average number of non-zero edges per node.

The dashed lines of the middle plot denote the num-
ber of nodes contained in components without labeled
nodes, that can not be classified.

Vassilis Kalofolias

graph density
0 5 10 15 20 25

C
lu

st
er

in
g

er
ro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Spectral clustering

[Dong etal]
Ours
k-NN

graph density
0 5 10 15 20 25

C
la

ss
ifi

ca
tio

n
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3
Label propagation

miss rate (Dong etal)
miss rate (Ours)
miss rate (k-NN)
unclassifiable (Dong etal)
unclassifiable (Ours)
unclassifiable (k-NN)

graph density
0 5 10 15 20 25

0

10

20

30

40

50

60

70
Graph connectivity

disconnected (Dong etal)
components (Dong etal)
components (Ours)
components (k-NN)
number of classes

Figure 4: Graph learned from non-uniformly sampled images from COIL 20. Average over 20 different samples
from the same non-uniform distribution of images. Left: Clustering quality. Middle: Label propagation quality.
Dashed lines are the number of nodes in components without labeled nodes. Right: Number of disconnected
components and number of disconnected nodes (Our model and k-NN have no disconnected nodes).

