
How to learn a graph from smooth signals

Vassilis Kalofolias
Signal Processing Laboratory 2 (LTS2)

École polytechnique fédérale de Lausanne (EPFL), Switzerland

Abstract

We propose a framework to learn the graph
structure underlying a set of smooth sig-
nals. Given X ∈ Rm×n whose rows reside on
the vertices of an unknown graph, we learn

the edge weights w ∈ Rm(m−1)/2
+ under the

smoothness assumption that tr
(
X>LX

)
is

small, where L is the graph Laplacian. We
show that the problem is a weighted `-1 min-
imization that leads to naturally sparse so-
lutions. We prove that the standard graph
construction with Gaussian weights wij =
exp

(
− 1
σ2 ‖xi − xj‖2

)
and the previous state

of the art are special cases of our framework.
We propose a new model and present effi-
cient, scalable primal-dual based algorithms
both for this and the previous state of the
art, to evaluate their performance on artifi-
cial and real data. The new model performs
best in most settings.

1 INTRODUCTION

Consider a matrix X ∈ Rm×n = [x1, . . . , xm]
>

, where
each row xi ∈ Rn resides on one of m nodes of an undi-
rected graph G. In this way, each of the n columns of
X can be seen as a signal on the same graph. A simple
assumption about data residing on graphs, but also the
most widely used one is that it changes smoothly be-
tween connected nodes. An easy way to quantify how
smooth is a set of vectors x1, . . . , xm ∈ Rn on a given
weighted undirected graph is through the function

1

2

∑

i,j

Wij‖xi − xj‖2 = tr
(
X>LX

)
,

where Wij ∈ R+ denotes the weight of the edge be-
tween nodes i and j and L = D − W is the graph
Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

Laplacian, Dii =
∑
jWij being the diagonal weighted

degree matrix. In words, if two vectors xi and xj from
a smooth set reside on two well connected nodes (i.e.
Wij is large), they are expected to have a small dis-
tance ‖xi − xj‖ so that tr

(
X>LX

)
is small.

The importance of the graph Laplacian has long been
known as a tool for embedding, manifold learning,
clustering and semisupervised learning, see e.g. Belkin
and Niyogi (2001), Belkin, Niyogi, and Sindhwani
(2006), and Zhu, Ghahramani, Lafferty, et al. (2003).
More recently we find an abundance of methods that
exploit this notion of smoothness to regularize various
machine learning tasks, solving problems of the form

minimize
X

g(X) + tr
(
X>LX

)
. (1)

T. Zhang, Popescul, and Dom (2006) use it to en-
hance web page categorization with graph information,
Zheng et al. (2011) for graph regularized sparse cod-
ing. Cai et al. (2011) use the same term to regularize
NMF, Jiang et al. (2013) for PCA, Shahid et al. (2015)
for Robust PCA and Kalofolias et al. (2014) for matrix
completion. Having good quality graphs is key to the
success of the above methods.

The goal of this paper is to solve the complementary
problem of learning a good graph:

minimize
L∈L

tr
(
X>LX

)
+ f(L), (2)

where L denotes the set of valid graph Laplacians.

Why is this problem important? Firstly because it en-
ables us to directly learn the hidden graph structure
behind our data. Secondly because in problems in the
form of eq. (1) we are often given a noisy graph, or no
graph at all. Therefore, starting from the initial graph
and alternating between solving problems (1) and (2)
we can at the same time get a better quality graph
and solve the task of the initial problem.

Related Work. Dempster (1972) was one of the first
to propose the problem of finding connectivity from
measurements, under the name “covariance selection”.
Years later, Banerjee, El Ghaoui, and d’Aspremont

920

How to learn a graph from smooth signals

(2008) proposed solving an `-1 penalized log-likelihood
problem to estimate a sparse inverse covariance with
an unknown pattern of zeros. However, while a lot of
work has been done on inverse covariance estimation,
the latter differs substantially from a graph Laplacian.
For instance, the off-diagonal elements of a Laplacian
must be non-positive, while it is not invertible like the
inverse covariance.

F. Wang and C. Zhang (2008) learn a graph with nor-
malized degrees by minimizing the objective

∑
i ‖xi−∑

jWijxj‖2, but they assume a fixed k-NN edge pat-
tern. Daitch, Kelner, and Spielman (2009) considered
the similar objective ‖LX‖2F and they approximately
minimized it with a greedy algorithm and a relaxation.
Jebara, J. Wang, and Chang (2009) learn a binary edge
pattern (b-matching) from a pairwise distance matrix.

Y.-M. Zhang et al. (2010) alternate between problem
(1) and a variant of (2). However, while initializing
with a graph Laplacian L, they finally learn a s.p.s.d.
matrix that is not necessarily a valid Laplacian.

The works most relevant to ours are the ones by Lake
and Tenenbaum (2010) and by Dong et al. (2015a,b).
In the first one, the authors consider a problem sim-
ilar to the one of the inverse covariance estimation,
but impose additional constraints in order to obtain a
valid Laplacian. However, their final objective func-
tion contains many constraints and a computationally
demanding log-determinant term that makes it diffi-
cult to solve. To the best of our knowledge, there is
no scalable algorithm in the literature to solve their
model. Dong et al. (2015b) propose a model that out-
performs the one by Lake and Tenenbaum, but still do
not provide a scalable algorithm. This work is com-
plementary to theirs, as we not only compare against
their model, but also provide an analysis and a scalable
algorithm to solve it.

Contributions. In this paper we make the link
between smoothness and sparsity. We show that
the smoothness term can be equivalently seen as a
weighted `-1 norm of the adjacency matrix, and mini-
mizing it leads to naturally sparse graphs (Section 2).
Based on this, we formulate our objective as a weighted
`-1 problem that we propose as a general framework
for solving problem (2). Using this framework we pro-
pose a new model for learning a graph. We prove that
our model has effectively one parameter that controls
how sparse is the learnt graph (Section 4).

We prove that our framework includes the standard
Gaussian kernel weight construction, but also the
model by Dong et al. (2015b). We simplify their model
and prove fundamental properties (Section 4).

We provide a fast, scalable and convergent primal-dual

Table 1: Equivalent terms for representations from sets
L,Wm,Wv. We use z = vectorform(Z), and linear op-
erator S that performs summation in the vector form.

L ∈ L W ∈ Wm w ∈ Wv

2 tr
(
X>LX

)
‖W ◦ Z‖1,1 2w>z

tr (L) ‖W‖1,1 2w>1 = 2‖w‖1
– ‖W‖2F 2‖w‖22
diag(L) W1 Sw

1> log(diag(L)) 1> log(W1) 1> log(Sw)
‖L‖2F ‖W‖2F + ‖W1‖22 2‖w‖22 + ‖Sw‖22

algorithm to solve our proposed model, but also the
one by Dong et al. To the best of our knowledge, these
are the first scalable solutions in the literature to learn
a graph under smoothness assumption (2) (Section 5).

To evaluate our model, we first review different defini-
tions of smooth signals in the literature. We show how
they can be unified under the notion of graph filtering
(Section 3). We compare the models under artificial
and real data settings. We conclude that our model is
superior in many cases and achieves better connectiv-
ity when sparse graphs are sought (Section 6).

2 PROPERTIES OF THE
LAPLACIAN

Throughout this paper we use the combinatorial graph
Laplacian defined as L = D−W , whereD = diag(W1)
and 1 = [1, . . . , 1]>. The space of all valid combinato-
rial graph Laplacians, is by definition

L =
{
L ∈ Rm×m :

(∀i 6= j) Lij = Lji ≤ 0, Lii = −
∑

j 6=i
Lij

}
.

In order to learn a valid graph Laplacian, we might
be tempted to search in the above space, as is done
e.g. by Dong et al. (2015b) and Lake and Tenenbaum
(2010). We argue that it is more intuitive to search for
a valid weighted adjacency matrix W from the space

Wm =
{
W ∈ Rm×m+ : W = W>, diag(W) = 0

}
,

leading to simplified problems. Even more, when it
comes to actually solving the problem by optimization
techniques, we should consider the space of all valid
edge weights for a graph

Wv =
{
w ∈ Rm(m−1)/2

+

}
,

so that we do not have to deal with the symmetricity
of W explicitly. The spaces L, Wm and Wv are equiv-
alent, and connected by bijective linear mappings. In
this paper we use Wm to analyze the problem in hand
and Wv when we solve the problem. Table 1 exhibits
some of the equivalent forms in the three spaces.

921

Vassilis Kalofolias

2.1 Smooth manifold means graph sparsity

Let us define the pairwise distances matrix Z ∈ Rm×m+ :

Zij = ‖xi − xj‖2 .

Using matrix Z we can rewrite the trace term as

tr
(
X>LX

)
=

1

2
tr (WZ) =

1

2
‖W ◦ Z‖1,1 , (3)

where ‖A‖1,1 is the elementwise norm-1 of A and ◦ is
the Hadamard product (see Appendix). In words, the
smoothness term is a weighted `-1 norm of W , encod-
ing weighted sparsity, that penalizes edges connecting
distant rows of X. The interpretation is that when the
given distances come from a smooth manifold, the cor-
responding graph has a sparse set of edges, preferring
only the ones associated to small distances in Z.

Explicitly adding a sparsity term γ‖W‖1,1 to the ob-
jective function is a common tactic for inverse covari-
ance estimation. However, it brings little to our prob-
lem, as here it can be translated as merely adding a
constant to the squared distances in Z:

tr
(
X>LX

)
+ γ‖W‖1,1 =

1

2
‖W ◦ (2γ + Z)‖1,1 . (4)

Note that all information of X conveyed by the trace
term is contained in the pairwise distances matrix Z,
so that the original could be omitted. Moreover, using
the last term of eq. (3) instead of the trace enables
us to define other kinds of distances instead of Eu-
clidean. In fact, any kind of pairwise distance between
nodes can be used in order to learn a graph with our
framework, depending on our application.

Note finally that the separate rows of X do not have
to be smooth signals in some sense. Two non-smooth
signals xi, xj can have a small distance between them,
and therefore a small entry Zij .

3 WHAT IS A SMOOTH SIGNAL?

Given a graph, different definitions of what is a smooth
signal have been used in different contexts. In this
section we unify these different definitions using the
notion of filtering on graphs. For more information
about signal processing on graphs we refer to the work
of Shuman et al. (2013). Filtering of a graph signal
x ∈ Rm by a filter h(λ) is defined as the operation1

y = h(L)x =
∑

i

uih(λi)u
>
i x =

∑

i

uih(λi)x̂i, (5)

1We denote by h both the function h : R → R and
its matrix counterpart h : Rm×m → Rm×m acting on the
matrix’s eigenvalues.

where {ui, λi} are eigenvector-eigenvalue pairs of L,
and x̂ ∈ Rm is the graph Fourier representation of x
containing its graph frequencies x̂i ∈ R. Low frequen-
cies correspond to small eigenvalues, and low-pass or
smooth filters correspond to decaying functions h.

In the sequel we show how different models for smooth
signals in the literature can be written as smoothing
problems of an initial non-smooth signal. We give an
example of three different filters applied on the same
signal in the appendix.

Smooth signals by Tikhonov regularization.

Solving problem (1) leads to smooth signals. By set-
ting g(x) = 1

α‖x−x0‖2 we have a Tikhonov regulariza-
tion problem, that given an arbitrary x0 as input gives
its graph-smooth version x = (αL + I)−1x0. Equiva-
lently, we can see this as filtering x0 by

h(λ) =
1

1 + αλ
, (6)

where large α values result in smoother signals.

Smooth signals from a linear Gaussian model.

Dong et al. (2015a) proposed that smooth signals can
be generated from a colored Gaussian distribution as

x = x̄+
∑
i uix̂i, where x̂i ∼ N

(
0, λ†i

)
and † denotes

the pseudoinverse. Therefore x follows the distribution

x ∼ N
(
x̄, L†

)
.

To sample from the above, it suffices to draw an initial
non-smooth signal x0 ∼ N (0, I) and then compute

x = x̄+ h(L)x0, (7)

with h(L) =
√
L†, or equivalently filter it by

h(λ) =

{√
λ−1 , λ > 0

0 , λ = 0
(8)

and add the mean x̄ ∈ R. We point out here that using
eq. (7) on any x0 ∼ N (0, I) and for any filter h(λ)
would yield samples from

x ∼ N
(
x̄, h(L)2

)
,

therefore the probabilistic generative model can be
used for any filter h. However, it does not cover cases
where the initial x0 is not white Gaussian.

Smooth signals by heat diffusion on graphs

Another type of smooth signals in the literature results
from the process of heat diffusion on graphs. See for
example the work by F. Zhang and Hancock (2008)
for an application on image denoising by heat diffusion
smoothing on the pixels graph. Given an initial signal
x0, the result of the heat diffusion on a graph after
time t is x = exp(−Lt)x0, therefore the corresponding
filter is

h(λ) = exp(−tλ), (9)

where larger values of t result in smoother signals.

922

How to learn a graph from smooth signals

4 LEARNING A GRAPH FROM
SMOOTH SIGNALS

In order to learn a graph from smooth signals, we pro-
pose, as explained in Section 2, to rewrite problem (2)
using the weighted adjacency matrix W and the pair-
wise distance matrix Z instead of X:

minimize
W∈Wm

‖W ◦ Z‖1,1 + f(W). (10)

Since W is positive we could replace the first term by
tr (WZ), but we prefer this notation to keep in mind
that our problem already has a sparsity term on W .
Sparse graphs are desirable for large scale applications.
This means that f(W) has to play three roles: (1)
prevent W from going to the trivial solution W = 0,
(2) allow W to obtain zero values., and (3) impose
further structure using prior information.

In order to motivate this general graph learning frame-
work, we show that the most standard weight con-
struction, as well as the state of the art graph learning
model are special cases thereof.

4.1 Gaussian kernel graph construction

In the literature one of the most common practices is
to construct edge weights given X from the Gaussian
function

Wij = exp

(
−‖xi − xj‖

2
2

σ2

)
. (11)

It turns out that this choice of weights can be seen as
the result of solving problem (10) with a specific prior
on the weights W :

Proposition 1. The solution of the problem

minimize
W∈Wm

‖W ◦ Z‖1,1 + σ2
∑

ij

Wij (log(Wij)− 1)

is given by eq. (11).

Proof. The problem is edge separable and the objec-
tive can be written as

∑
i,jWijZij + σ2Wij(log(Wij −

1)). Deriving w.r.t. Wij we obtain the optimality con-
dition Zij + σ2 log(Wij) = 0, or Wij = exp(−Zij/σ2),
that proves the proposition.

Note that here, the logarithm in f prevents the weights
from going to 0, leading to full matrices, and sparsifi-
cation has to be imposed explicitly afterwards.

4.2 Our proposed model

Based on our framework (10) our goal is to give a gen-
eral purpose model for learning graphs, when no prior
information is available. In order to obtain meaningful
graphs, we want to make sure that each node has at

least one edge with another node. It is also desirable
to have control of how sparse is the resulting graph.
To meet these expectations, we propose the following
model with parameters α > 0 and β ≥ 0 controlling
the shape of the edges:

minimize
W∈Wm

‖W ◦ Z‖1,1 − α1> log(W1) +
β

2
‖W‖2F .

(12)

The logarithmic barrier acts on the node degree vector
W1, unlike the model of Proposition 1 that has a sim-
ilar barrier on the edge matrix W . This means that
we force the degrees to be positive, but do not prevent
individual edges from becoming zero. This improves
the overall connectivity of the graph, without compro-
mising sparsity.

Note however, that adding solely a logarithmic term
(β = 0) leads to very sparse graphs, and changing
α only changes the scale of the solution and not the
sparsity pattern (Proposition 2 for β = 0). For this
reason, we need a third term to control sparsity. As
we showed with eq. (4), adding an `-1 norm term for
this reason is not very useful: it just adds the same
constant to all pairwise squared distances. Adding a
Frobenius norm is a wiser choice in this case.

We add the Frobenius norm of W in our objective
function, in order to penalize the formation of large
edges but not penalize smaller ones. This leads to
more dense edge patterns for larger values of β. An
interesting property of our model is that even if it has
two terms shaping the weights, if we fix the scale we
then need to search for only one parameter:

Proposition 2. Let F (Z,α, β) denote the solution of
our model (12) for input distances Z and parameters
α, β. Then the following property holds for any γ > 0:

F (Z,α, β) = γF

(
Z,
α

γ
, βγ

)
= αF (Z, 1, αβ) . (13)

Proof. See appendix.

This means that for example if we want to obtain a
W with a fixed scale ‖W‖ = s (for any norm), we
can solve the problem with α = 1, search only for a
parameter β that gives the desired edge density and
then multiply with the scalar that gives ‖W‖ = s.

The main advantage of our model over the method
by Dong et al. (2015a), is that it promotes connec-
tivity by putting a log barrier directly on the node
degrees. Even the sparsest possible solution, obtained
with β = 0, will assign at least one edge to each node.
In this case, the distant nodes will have smaller degrees
(because of the first term), but still be connected to
their closest neighbour similarly to a 1-NN graph.

923

Vassilis Kalofolias

4.3 Fitting the state of the art in our
framework

Dong et al. (2015a) proposed the following model for
learning a graph:

minimize
L∈L

tr
(
X>LX

)
+ α‖L‖2F ,

s. t., tr (L) = s.

Parameter s > 0 controls the scale (Dong et al. set it
to m), and parameter α ≥ 0 controls the density of the
solution. This formulation has two weaknesses. First,
using a Frobenius norm on the Laplacian has a reduced
interpretability: the elements of L are not only of dif-
ferent scales, but also linearly dependent. Secondly,
optimizing it is difficult as it has 4 constraints on L:
3 in order to constrain L in space L, and one to keep
the trace constant. We propose to solve their model
using our framework: Using transformations of Table
1, we obtain the equivalent simplified model

minimize
W∈Wm

‖W ◦ Z‖1,1 + α‖W1‖2 + α‖W‖2F ,

s. t., ‖W‖1,1 = s. (14)

Using this parametrization, solving the problem be-
comes much simpler, as we show in Section 5. Note
that for α = 0 we have a linear program that assigns
weight s to the edge corresponding to the smallest pair-
wise distance in Z, and zero everywhere else. On the
other hand, setting α to large values, we penalize large
degrees (through the second term), and in the limit
α → ∞ we obtain a dense graph with constant de-
grees across nodes. We can also prove some interesting
properties of (14):

Proposition 3. Let H(Z,α, s) denote the solution of
model (14) for input distances Z and parameters α
and s. Then for γ > 0 the following properties hold:

H(Z + γ, α, s) = H(Z,α, s) (15)

H(Z,α, s) = γH

(
Z,αγ,

s

γ

)
= sH (Z,αs, 1) (16)

Proof. See appendix.

In other words, model (14) is invariant to adding any
constant to the squared distances. The second prop-
erty means that similarly to our model, the scale of the
solution does not change the shape of the connectivity.
If we fix the scale to s, we obtain the whole range of
edge shapes given by H only by changing α.

5 OPTIMIZATION

An advantage of using the formulation of problem (10)
is that it can be solved efficiently for a wide range of

choices of f(W). We use primal dual techniques that
scale, like the ones reviewed by Komodakis and Pes-
quet (2014) to solve the two state of the art models:
the one we propose and the one by Dong et al. (2015b).
Using these as examples, it is easy to solve many in-
teresting models from the general framework (10).

In order to make optimization easier, we use the vector
form representation from space Wv (see Table 1), so
that the symmetricity does not have to be imposed as
a constraint. We write the problem as a sum of three
functions in order to fit it to primal dual algorithms
reviewed by Komodakis and Pesquet (2014). The gen-
eral form of our objective is

minimize
w∈Wv

f1(w) + f2(Kw) + f3(w), (17)

where f1 and f2 are functions for which we can ef-
ficiently compute proximal operators, and f3 is dif-
ferentiable with gradient that has Lipschitz constant
ζ ∈ (0,∞). K is a linear operator, so f2 is defined
on the dual variable Kw. In the sequel we explain
how this general optimization framework can be ap-
plied to the two models of interest, leaving the details
in the Appendix. For a better understanding of primal
dual optimization or proximal splitting methods we re-
fer the reader to the works of Combettes and Pesquet
(2011) and Komodakis and Pesquet (2014).

In our model, the second term acts on the degrees
of the nodes, that are a linear function of the edge
weights. Therefore we use K = S, where S is the
linear operator that satisfies W1 = Sw if w is the
vectorform of W . In the first term we group the posi-
tivity constraint of Wv and the weighted `-1, and the
second and third terms are the priors for the degrees
and the edges respectively. In order to solve our model
we define

f1(w) = 1{w ≥ 0}+ 2w>z,

f2(d) = −α1> log(d),

f3(w) = β‖w‖2, with ζ = 2β,

where 1{} is the indicator function that becomes zero
when the condition in the brackets is satisfied, infinite
otherwise. Note that the second function f2 is defined
on the dual variable d = Sw ∈ Rm, that here is very
conveniently the vector of the node degrees.

For model (14) we can define in a similar way

f1(w) = 1{w ≥ 0}+ 2w>z,

f2(c) = 1{c = s},
f3(w) = α

(
2‖w‖2 + ‖Sw‖2

)
, with ζ = 2α(m+ 1),

and use K = 21> so that the dual variable is c =
Kw = ‖W‖1,1, constrained by f2 to be equal to s.

924

How to learn a graph from smooth signals

Algorithm 1 Primal dual algorithm for model (12).

1: Input: z, α, β, w0 ∈ Wv, d0 ∈ Rm
+ , γ, tolerance ε

2: for i = 1, . . . , imax do
3: yi = wi − γ(2βwi + S>di)
4: ȳi = di + γ(Swi)
5: pi = max(0, yi − 2γz)

6: p̄i = (ȳi −
√

(ȳi)2 + 4αγ)/2 . elementwise

7: qi = pi − γ(2βpi + S>pi)
8: q̄i = p̄i + γ(Spi)
9: wi = wi − yi + pi;

10: di = di − ȳi + q̄i;
11: if ‖wi − wi−1‖/‖wi−1‖ < ε and
12: ‖di − di−1‖/‖di−1‖ < ε then
13: break
14: end if
15: end for

Using these functions, the final algorithm for our
model is given as Algorithm 1, and for the model by
Dong et al. as Algorithm 2 in the Appendix. Vector

z ∈ Rm×(m−1)/2+ is the vector form of Z, and parame-
ter γ ∈ (0, 1+ζ+‖K‖) is the stepsize.

5.1 Complexity and Convergence

Both algorithms that we propose have a complex-
ity of O(m2) per iteration, for m nodes graphs, and
they can easily be parallelized. As the objective func-
tions of both models are proper, convex, and lower-
semicontinuous, our algorithms are guaranteed to con-
verge to the minimum (Komodakis and Pesquet 2014).

6 EXPERIMENTS

We compare our model against the state of the art
model by Dong et al. (2015a) solved by our Algorithm
2 for both artificial and real data. Comparing to the
model by Lake and Tenenbaum (2010) was not possible
even for the small graphs of our artificial experiments,
as there is no scalable algorithm in the literature and
the use of CVX with the log-determinant term is pro-
hibitive. Other models based on the log-det term, for
which scalable algorithms exist, are irrelevant to our
problem as a sparse inverse covariance is not a valid
Laplacian and are known to not perform well for our
setting (see Dong et al. (2015a) for a comparison).

6.1 Artificial data

The difficulty of solving problem (10) depends both on
the quality of the graph behind the data and on the
type of smoothness of the signals. We test 4 different
types of graphs using 3 different types of signals.

Graph Types. We use two 2-D manifold based
graphs, one uniformly and one non-uniformly sampled,
and two graphs that are not manifold structured:

1. Random Geometric Graph (RGG): We sample x
uniformly from [0, 1]2 and connect nodes using eq.
(11) with σ = 0.2, then threshold weights < 0.6.

2. Non-uniform: We sample x in [0, 1] × [0, 5] from
a non-uniform distribution px1,x2 ∝ 1/(1 + αx2)
and connect nodes using eq. (11) with σ = 0.2.
We threshold weights smaller than the best con-
nection of the most distant node (≈ 0.01).

3. Erdős Rényi: Random graph as proposed by
Gilbert (1959) (p=3/m).

4. Barabási-Albert: Random scale-free graph with
preferential attachment as proposed by Barabási
and Albert (1999) (m0=1, m=2).

Signal Types. To create a smooth signal we filter a
Gaussian i.i.d. x0 by eq. (5), using one of the three
filter types of Section 3. We normalize the Laplacian
(‖L‖2 = 1) so that the filters h(λ) are defined for λ ∈
[0, 1]. See Table 1 (Appendix) for a summary.

1. Tikhonov: h(λ) = 1
1+10λ as in eq. (6).

2. Linear Gaussian Model: h(λ) = 1/
√
λ if λ > 0,

h(0) = 0 from model of eq. (8) (x̄ = 0).
3. Heat Diffusion: h(λ) = exp(−10λ) as eq. (9).

For all cases we use m = 100 nodes, smooth signals of
length n = 1000, and add 10% (`-2 sense) noise before
computing pairwise distances. We perform grid search
to find the best parameters for each model. We repeat
the experiment 20 times for each case and report the
average result of the parameter value that performs
best for each of the different metrics.

Metrics. Since we have the ground truth graphs for
each case, we can measure directly the relative edge
error in the `-1 and `-2 sense. We also report the rel-
ative error of the weighted degrees di =

∑
jWij . This

is important because both models are based on priors
on the degrees as we show in section 4. We also report
the F-measure (harmonic mean of edge precision and
recall), that only takes into account the binary pattern
of existing edges and not the weights.

Baselines. The baseline for the relative errors is a
classic graph construction using equation (11) with a
grid search for the best σ. Note that this exact equa-
tion was used to create the two first artificial datasets.
However, using a fully connected graph with the F-
measure does not make sense. For this metric the
baseline is set to the best edge pattern found by thresh-
olding (11) with different thresholds.

Table 2 summarizes all the results for different combi-
nations of graphs/signals. In most of them, our model
performs better for all metrics. We can see that the
signals constructed following the generative model (7)
do not yield better results in terms of graph recon-
struction. Using smoother “Tikhonov” signals from
eq. (6) or “Heat Diffusion” signals from (9) by set-

925

Vassilis Kalofolias

Table 2: Performance of Different Models on Artificial Data.

Tikhonov Generative Model Heat Diffusion

base Dong etal Ours base Dong etal Ours base Dong etal Ours

Rand. Geometric
F-measure 0.685 0.885 0.913 0.686 0.877 0.909 0.758 0.837 0.849

edge `-1 0.866 0.357 0.298 0.798 0.371 0.348 0.609 0.524 0.447
edge `-2 0.676 0.376 0.336 0.658 0.397 0.390 0.576 0.531 0.468

degree `-1 0.142 0.146 0.065 0.261 0.147 0.112 0.209 0.227 0.142
degree `-2 0.708 0.172 0.079 0.689 0.174 0.128 0.474 0.264 0.176

Non Uniform
F-measure 0.686 0.863 0.858 0.633 0.840 0.832 0.766 0.839 0.830

edge `-1 0.821 0.423 0.349 0.864 0.487 0.472 0.594 0.565 0.473
edge `-2 0.706 0.434 0.344 0.735 0.480 0.474 0.550 0.587 0.451

degree `-1 0.160 0.184 0.055 0.235 0.185 0.100 0.233 0.255 0.128
degree `-2 0.612 0.209 0.073 0.632 0.215 0.161 0.427 0.324 0.157

Erdős Rényi
F-measure 0.288 0.766 0.893 0.199 0.755 0.896 0.377 0.629 0.655

edge `-1 1.465 0.448 0.391 1.566 0.478 0.427 1.379 0.832 0.841
edge `-2 1.060 0.442 0.402 1.105 0.457 0.440 1.033 0.735 0.726

degree `-1 0.094 0.107 0.046 0.099 0.105 0.066 0.182 0.179 0.183
degree `-2 0.986 0.161 0.066 1.312 0.181 0.151 0.892 0.236 0.273

Barabási-Albert
F-measure 0.345 0.710 0.868 0.382 0.739 0.838 0.352 0.690 0.765

edge `-1 1.531 0.614 0.533 1.496 0.652 0.624 1.468 0.740 0.675
edge `-2 1.061 0.568 0.506 1.036 0.611 0.571 1.041 0.662 0.590

degree `-1 0.175 0.264 0.111 0.199 0.264 0.207 0.254 0.317 0.148
degree `-2 0.554 0.340 0.201 0.556 0.333 0.287 0.568 0.414 0.283

ting λ = 20 yielded slightly worse results in both cases
(not reported here). It also seems that the results are
slightly better for the manifold related graphs than for
the Erdős Rényi and Barabási-Albert models, an effect
that is more prevalent when we use signals of length
n = 100 smooth signals instead of 1000 (c.f. Table 2
of Appendix). This would be interesting to investigate
theoretically.

6.2 Real data

We also evaluate the performance of our model on real
data. In this case, the actual ground truth graph is
not known. We therefore measure the performance of
different models on spectral clustering and label propa-
gation, two algorithms that depend solely on the graph
quality. Note that an explicit Laplacian normalization
is not needed for the learned models (it is even harm-
ful as found experimentally), since this role is already
played by the degrees regularization.

Learning the graph of USPS digits

We first learn the graph connecting 1001 different im-
ages of the USPS dataset, that are images of digits
from 0 to 9 (10 classes). We follow Zhu, Ghahra-
mani, Lafferty, et al. (2003) and sample the class sizes
non-uniformly. For each class i ∈ {1 . . . 10} we take
round(2.6i2) images, resulting to classes with sizes
from 3 to 260 images each. We learn graphs of dif-
ferent densities using both models. As baseline we use
a k-Nearest Neighbors (k-NN) graph for different k.

For each of the graphs, we run standard spectral clus-
tering as proposed by Ng, Jordan, Weiss, et al. (2002)
100 times and measure the average error. We also per-
form label propagation 100 times using different sub-
sets of 10% known labels and report averaged results.

In Fig. 1 we plot the behavior of different models
for different density levels. The horizontal axis is the
average number of non-zero edges per node. In the
left plot we see the clustering quality. Even though
the best result of both algorithms is almost the same
(0.24 vs 0.25), our model is more robust in terms of the
graph density choice. A similar behavior is exhibited
for label propagation plotted in the middle. The clas-
sification quality is better for our model in the sparser
graph density levels.

The robustness of our model for small graph densi-
ties can be explained by the connectivity quality plot-
ted in the right. The continuous lines are the num-
ber of different connected components in the learned
graphs, that is a measure of connectivity: the less com-
ponents there are, the better connected is the graph.
The dashed blue line is the number of disconnected
nodes of the model by Dong et al. The latter fails to
assign connections to the most distant nodes, unless
the density of the graph reaches a fairly high level. If
we want a graph with 6 edges per node, our model re-
turns a graph with 3 components and no disconnected
nodes. The model by Dong et al. returns a graph with
35 components out of which 22 are disconnected nodes.

926

How to learn a graph from smooth signals

graph density
5 10 15 20

C
lu

st
er

in
g

er
ro

r

0.2

0.25

0.3

0.35

0.4

0.45
Spectral Clustering

[Dong etal]
Ours
k-NN

graph density
5 10 15 20

C
la

ss
ifi

ca
tio

n
er

ro
r

0.1

0.15

0.2

0.25

0.3

0.35
Label Propagation

miss rate (Dong etal)
miss rate (Ours)
miss rate (k-NN)

graph density
5 10 15 20

0

10

20

30

40

50

60

70
Connectivity

disconnected (Dong etal)
components (Dong etal)
components (Ours)
components (k-NN)
number of classes

Figure 1: Graph learned from 1001 USPS images. Left: Clustering quality. Middle: Label propagation quality.
Right: Number of completely disconnected components (continuous lines) and number of disconnected nodes
for model by Dong etal. (blue dashed line). Our model and k-NN have no disconnected nodes.

graph density
2 4 6 8 10 12 14 16 18

C
la

ss
ifi

ca
tio

n
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
miss rate (Dong etal)
miss rate (Ours)
miss rate (k-NN)
unclassifiable (Dong etal)
unclassifiable (Ours)
unclassifiable (k-NN)

graph density
2 4 6 8 10 12 14 16 18

C
la

ss
ifi

ca
tio

n
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
miss rate (Dong etal)
miss rate (Ours)
miss rate (k-NN)
unclassifiable (Dong etal)
unclassifiable (Ours)
unclassifiable (k-NN)

graph density
2 4 6 8 10 12 14 16 18

C
la

ss
ifi

ca
tio

n
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
miss rate (Dong etal)
miss rate (Ours)
miss rate (k-NN)
unclassifiable (Dong etal)
unclassifiable (Ours)
unclassifiable (k-NN)

Figure 2: Label propagation for the problem “1” vs. “2” of MNIST with different class size proportions: 1 to 4
(left), 1 to 1 (middle) or 4 to 1 (right). Missclassification rate for different number of edges per node.

Note that in real applications where the best density
level is not known a priori, it is important for a graph
learning model to perform well for sparse levels. This
is especially the case for large scale applications, where
more edges mean more computations.

Time: Algorithm 1 implemented in Matlab2 learned a
10-edge/node graph of 1001 USPS images in 5 seconds
(218 iterations) and Algorithm 2 in 1 minute (2043
iterations) on a standard PC for tolerance ε = 1e-4.

Learning the graph of MNIST digits 1 vs 2

To demonstrate the different behaviour of the two
models for non-uniform sampling cases, we use the
problem of classification between digits 1 and 2 of the
MNIST dataset. This problem is particular because
digits “1” are close to each other (average square dis-
tance of 45), while digits “2” differ more from each
other (average square distance of 102). In Figure 2
we report the average miss-classification rate for dif-
ferent class size proportions, with 40 1’s and 160 2’s
(left), 100 1’s and 100 2’s (middle) or 160 1’s and
40 2’s (right). Results are averaged over 40 random
draws. The dashed lines denote the number of nodes
contained in components without labeled nodes, that
can not be classified. In this case, the model of Dong

2Code for both models is given as part of the open-
source toolbox GSPBox by Nathanaël Perraudin et al.
(2014) using code from UNLocBoX by N. Perraudin et al.

et al. 2015a fails to recover edges between different dig-
its “2” unless the returned graph is fairly dense, unlike
our model that even for very sparse graph levels treats
the different classes more fairly. The effect is stronger
when the set of 2’s is also the smallest of the two.

7 CONCLUSION

We introduce a new way of addressing the prob-
lem of learning a graph under the assumption that
tr
(
X>LX

)
is small. We show how the problem can be

simplified into a weighted sparsity problem, implying a
general framework for learning a graph. We prove that
the standard Gaussian weight construction is a special
case of this framework. We propose a new model for
learning a graph, and provide an analysis of the state
of the art model of Dong et al. (2015a) that also fits
our framework. The new formulation enables us to
propose a fast and scalable primal dual algorithm for
our model, but also for the one of Dong et al. 2015a
that was missing from the literature. Our experiments
suggest that when sparse graphs are to be learned, but
connectivity is crucial, our model is expected to out-
perform the current state of the art.

We hope not only that our solution will be used for
many applications where good quality of graphs is cru-
cial, but also that our framework will be the trigger for
new models targeting specific applications.

927

Vassilis Kalofolias

Acknowledgements

The author would like to especially thank Pierre Van-
dergheynst and Nikolaos Arvanitopoulos for their con-
structive comments on the organization of the paper
and the experimental evaluation. He is also grateful
to the authors of Dong et al. (2015a) for sharing their
code, to Nathanael Perraudin and Nauman Shahid for
discussions when developing the initial idea, and to
Andreas Loukas for his comments on the final version.

References

Banerjee, Onureena, Laurent El Ghaoui, and Alexan-
dre d’Aspremont (2008). “Model selection through
sparse maximum likelihood estimation for multivari-
ate gaussian or binary data”. In: The Journal of Ma-
chine Learning Research 9, pp. 485–516.

Barabási, Albert-László and Réka Albert (1999).
“Emergence of scaling in random networks”. In: Sci-
ence 286.5439, pp. 509–512.

Belkin, Mikhail and Partha Niyogi (2001). “Laplacian
Eigenmaps and Spectral Techniques for Embedding
and Clustering.” In: NIPS. Vol. 14, pp. 585–591.

Belkin, Mikhail, Partha Niyogi, and Vikas Sind-
hwani (2006). “Manifold regularization: A geometric
framework for learning from labeled and unlabeled
examples”. In: The Journal of Machine Learning
Research 7, pp. 2399–2434.

Cai, Deng et al. (2011). “Graph regularized non-
negative matrix factorization for data representa-
tion”. In: Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 33.8, pp. 1548–1560.

Combettes, Patrick L and Jean-Christophe Pesquet
(2011). “Proximal splitting methods in signal pro-
cessing”. In: Fixed-point algorithms for inverse prob-
lems in science and engineering. Springer, pp. 185–
212.

Daitch, Samuel I, Jonathan A Kelner, and Daniel A
Spielman (2009). “Fitting a graph to vector data”.
In: Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, pp. 201–
208.

Dempster, Arthur P (1972). “Covariance selection”.
In: Biometrics, pp. 157–175.

Dong, Xiaowen et al. (2015a). “Laplacian Matrix
Learning for Smooth Graph Signal Representation”.
In: Proceedings of IEEE ICASSP.

– (2015b). “Learning Laplacian Matrix in Smooth
Graph Signal Representations”. In: arXiv preprint
arXiv:1406.7842v2.

Gilbert, Edgar N (1959). “Random graphs”. In: The
Annals of Mathematical Statistics, pp. 1141–1144.

Jebara, Tony, Jun Wang, and Shih-Fu Chang (2009).
“Graph construction and b-matching for semi-
supervised learning”. In: Proceedings of the 26th An-

nual International Conference on Machine Learn-
ing. ACM, pp. 441–448.

Jiang, Bo et al. (2013). “Graph-Laplacian PCA:
Closed-form solution and robustness”. In: Com-
puter Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on. IEEE, pp. 3492–3498.

Kalofolias, Vassilis et al. (2014). “Matrix completion
on graphs”. In: arXiv preprint arXiv:1408.1717.

Komodakis, Nikos and Jean-Christophe Pesquet
(2014). “Playing with duality: An overview of
recent primal-dual approaches for solving large-
scale optimization problems”. In: arXiv preprint
arXiv:1406.5429.

Lake, Brenden and Joshua Tenenbaum (2010). “Dis-
covering structure by learning sparse graph”. In:
Proceedings of the 33rd Annual Cognitive Science
Conference. Citeseer.

Ng, Andrew Y, Michael I Jordan, Yair Weiss, et al.
(2002). “On spectral clustering: Analysis and an al-
gorithm”. In: Advances in neural information pro-
cessing systems 2, pp. 849–856.

Perraudin, Nathanaël et al. (2014). “GSPBOX: A tool-
box for signal processing on graphs”. In: ArXiv e-
prints. arXiv: 1408.5781 [cs.IT].

Perraudin, N. et al. (2014). “UNLocBoX A matlab
convex optimization toolbox using proximal split-
ting methods”. In: ArXiv e-prints. arXiv: 1402 .

0779.
Shahid, Nauman et al. (2015). “Robust principal com-

ponent analysis on graphs”. In: Proceedings of the
IEEE International Conference on Computer Vi-
sion, pp. 2812–2820.

Shuman, David et al. (2013). “The emerging field
of signal processing on graphs: Extending high-
dimensional data analysis to networks and other ir-
regular domains”. In: Signal Processing Magazine,
IEEE 30.3, pp. 83–98.

Wang, Fei and Changshui Zhang (2008). “Label prop-
agation through linear neighborhoods”. In: Knowl-
edge and Data Engineering, IEEE Transactions on
20.1, pp. 55–67.

Zhang, Fan and Edwin R Hancock (2008). “Graph
spectral image smoothing using the heat kernel”. In:
Pattern Recognition 41.11, pp. 3328–3342.

Zhang, Tong, Alexandrin Popescul, and Byron Dom
(2006). “Linear prediction models with graph regu-
larization for web-page categorization”. In: Proceed-
ings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining.
ACM, pp. 821–826.

Zhang, Yan-Ming et al. (2010). “Transductive Learn-
ing on Adaptive Graphs.” In: AAAI.

Zheng, Miao et al. (2011). “Graph regularized sparse
coding for image representation”. In: Image Process-
ing, IEEE Transactions on 20.5, pp. 1327–1336.

928

How to learn a graph from smooth signals

Zhu, Xiaojin, Zoubin Ghahramani, John Lafferty, et
al. (2003). “Semi-supervised learning using gaussian
fields and harmonic functions”. In: ICML. Vol. 3,
pp. 912–919.

929

