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In this appendix we first reproduce the Propose, Test,
Release algorithm of [1] which we use to privatize
the Interquartile Range dependence score (IQR), de-
scribed in Section 4.3 of the main paper. We then
prove various claims in the paper.

Algorithm 1 IQR Propose-Test-Release [1]
1: Input: data X = {x1, . . . , xm}, privacy ε, δ > 0
2: k = blog IQR(X)c
3: B1 = [ek, ek+1)
4: B2 = [ek−0.5, ek+0.5)
5: for j = 1,2 do
6: Aj := number of data-points to modify to move

IQR(X) out of interval Bj
7: Rj = Aj + z, where z ∼ Lap(0, 1

ε )
8: if Rj > 1 + log(1/δ) then
9: return log IQR(X) + z, where z ∼ Lap(0, 1

ε )
10: end if
11: end for
12: return ⊥

Proof of Theorem 2. Let x1 ∼ Lap(µ1, σ) and x2 ∼
Lap(µ2, σ) be two independent Laplace random vari-
ables with µ1 < µ2, then the probability of failure is
Pr(x1 > x2). We would like to compute the probabil-
ity of failure in closed form. We know that by indepen-
dence, the joint probability is equal to the product of
marginal probabilites. We also know that the Laplace
cdf. is

F (x;µ, σ) =

{
F1(x;µ, σ) = 1

2 exp(x−µσ ) if x ≤ µ
F2(x;µ, σ) = 1− 1

2 exp(−x−µσ ) if x > µ

where F1 and F2 are only defined on the specified do-
mains.

There are six mutually exclusive and collective exhaus-
tive ways for which a failure could happen:

1○µ1 < x2 < x1 < µ2

2○x2 < µ1 < µ2 < x1

3○µ1 < x2 < µ2 < x1

4○x2 < µ1 < x1 < µ2

5○µ1 < µ2 < x2 < x1

6○x2 < x1 < µ1 < µ2

By symmetry of the Laplace distribtu-
ion, we know that Pr( 3○) = Pr( 4○) and
Pr( 5○) = Pr( 6○). Thus we only need to calcu-
late Pr( 1○),Pr( 2○),Pr( 3○), and Pr( 5○).

Pr( 1○) =
∫ µ2

µ1

∫ µ2

x2

p(x1)p(x2)dx1dx2

=
∫ µ2

µ1

[F2(µ2;µ1, σ)− F2(x2;µ1, σ)]p(x2)dx2

Now consider the quantity being integrated, which is
equal to

−1
2

exp(−µ2 − µ1

σ
)p(x2) +

1
2

exp(−x2 − µ1

σ
)p(x2)︸ ︷︷ ︸

?

The right-hand term is,

? =
1
2

exp(−x2 − µ1

σ
)

1
2σ

exp(−µ2 − x2

σ
) since x2 < µ2

=
1

4σ
exp(−µ2 − µ1

σ
)

So,

Pr( 1○) =
µ2 − µ1

4σ
exp(−µ2 − µ1

σ
)

− 1
2

exp(−µ2 − µ1

σ
)
∫ µ2

µ1

p(x2)

=
µ2 − µ1

4σ
exp(−µ2 − µ1

σ
)

− 1
2

exp(−µ2 − µ1

σ
)[

1
2
− F1(µ1;µ2, σ)]

Next, we have that

Pr( 2○) = Pr(x1 > µ2) Pr(x2 < µ1)
= (1− F2(µ2;µ1, σ))F1(µ1;µ2, σ)

=
1
2

exp(−µ2 − µ1

σ
)F1(µ1;µ2, σ)
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∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
z1+z2−z3

p(z1 | a, s)p(z2 | b, s)p(z3 | c, s)p(z4 | d, s)dz4dz3dz2dz1 (1)

And similarly,

Pr( 3○) = Pr(x1 > µ2) Pr(µ1 < x2 < µ2)

= (1− F2(µ2;µ1, σ))[
1
2
− F1(µ1;µ2, σ)]

=
1
2

exp(−µ2 − µ1

σ
)[

1
2
− F1(µ1;µ2, σ)]

and as stated, Pr( 4○) is the same. Moving on,

Pr( 5○) =
∫ ∞
µ2

∫ ∞
x2

p(x1)p(x2)dx1dx2

=
∫ ∞
µ2

[1− F2(x2;µ1, σ)]p(x2)dx2

=
∫ ∞
µ2

1
2

exp(−x2 − µ1

σ
)

1
2σ

exp(−x2 − µ2

σ
)dx2

=
1
4

∫ ∞
µ2

1
2(σ/2)

exp(−x2 − (µ1 + µ2)/2
σ/2

)dx2

=
1
4

(1− F2(µ2;µ′, σ′))

=
1
8

exp(−µ2 − (µ1 + µ2)/2
σ/2

) =
1
8

exp(−µ2 − µ1

σ
)

and as stated, Pr( 6○) is the same. So lastly,

Pr(x1 > x2) = 2 Pr( 5○) + 2 Pr( 3○) + Pr( 2○) + Pr( 1○)

=
1
4

exp(−µ2 − µ1

σ
)

+
1
2

exp(−µ2 − µ1

σ
)

− exp(−µ2 − µ1

σ
)F1(µ1;µ2, σ)

+
1
2

exp(−µ2 − µ1

σ
)F1(µ1;µ2, σ)

+
µ2 − µ1

4σ
exp(−µ2 − µ1

σ
)

− 1
4

exp(−µ2 − µ1

σ
)

+
1
2

exp(−µ2 − µ1

σ
)F1(µ1;µ2, σ)

=
µ2 − µ1 + 2σ

4σ
exp(−µ2 − µ1

σ
)

This completes the derivation. �

Proof of Theorem 4. Given a set of Laplace ran-
dom variables: z1 ∼ Lap(a, s), z2 ∼ Lap(b, s), z3 ∼
Lap(c, s), z4 ∼ Lap(d, s) such that a + b < c + d, we
would like to compute the probability that z1 + z2 <
z3 + z4. Let p(x | µ, σ) be the pdf of the Laplace dis-
tribution Lap(µ, σ). Computing the above probability

requires evaluating the expression in eq. (1). Similar
to the above proof, we can compute this integral by
enumerating all of the possible cases, which gives the
stated result. �

Proof of Theorem 5.

|r′i,Y − r̃′i,Y | =
∣∣w>φ(X)− w̃>φ(X)

∣∣ (2)

≤ ‖w − w̃‖H‖φ(X)‖H ≤ ‖w − w̃‖H (3)

In the above we used the fact that ‖φ(X)‖H =√
K(x, x) ≤ 1. On the other hand note that w

is the minimizer of regularized objective on data set
(x1, y1), . . . , (xn, yn) and w̃ is the minimizer on set
(x1, y1), . . . , (xn−1, yn−1), (x′n, y

′
n) (we assume the last

coordinate is the one that is changes w.l.o.g.). By
strong convexity of the regularized objective we have,

λ

2
‖w − w̃‖2 ≤ λ

2
‖w̃‖2H +

1

n

nX
i=1

(w̃>φ(xi)− yi)
2

− λ

2
‖w‖2H −

1

n

nX
i=1

(w>φ(xi)− yi)
2

≤ λ

2
‖w̃‖2H +

1

n

n−1X
i=1

(w̃>φ(xi)− yi)
2 + (w̃>φ(x̃n)− ỹn)2

− λ

2
‖w‖2H −

1

n

n−1X
i=1

(w>φ(xi)− yi)
2 − (w>φ(x̃n)− ỹn)2

+
1

n
(w̃>φ(xn)− yn)2 − (w>φ(xn)− yn)2

− 1

n
(w̃>φ(x̃n)− ỹn)2 + (w>φ(x̃n)− ỹn)2

≤ 2

n
sup

x,y∈[−1,1]

“
(w̃>φ(x)− y)2 − (w>φ(x)− y)2

”
≤ 2

n
‖w̃ −w‖ × (‖w̃‖+ ‖w‖+ 2)

Now note that since 0 ∈ H we can conclude that,

‖w‖ ≤ 1√
λ

(The above is got by plugging in the 0 in the regular-
ized objective which yields a value of 1 and since loss
is non-negative, we can conclude that the norm of the
minimizer of the regularized objective is atmost 1/

√
λ.

Plugging this in yields:

‖w − w̃‖ ≤ 8

λ3/2n

Plugging this in Eq. 2 yields the theorem.
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Proof of tighter HSIC bound. Let D be the original
dataset and D′ be the dataset with one column modi-
fied. We subscript HSIC with l and k implicitly. This
is the quantity of interest

| ˆHSIC(D)− ˆHSIC(D′)|

=
1

(N − 1)2
|tr(K ′HL′H)− tr(KHLH)|

Pulling out the constant, we have

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|
= |tr(K ′HL′H)− tr(KHLH)|
= |tr((K ′HL′ −KHL)H)| linearity of trace
= |tr(H(K ′HL′ −KHL))| cyclicity of trace

Let 1 be the square matrix of ones(N). We know that
since H = I − 1

N 1 by definition,

H(K ′HL′ −KHL) = (K ′HL′ −KHL)−
1
N

1(K ′HL′ −KHL)

so we have that

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|

= |tr(K ′HL′ −KHL)− 1
N
tr(1(K ′HL′ −KHL))|

(4)

Next, we need three identities. Let sum(A) =
∑
i,j A,

then

Identity 1: tr(1A) = sum(A)
Identity 2: tr(1A1B) = sum(A)sum(B)
Identity 3: sum(AB) = sum(BA)

Where Identity 3 holds only for symmetric matri-
ces. Identity 3 is obvious since AB = (BA)T and
sum(C) = sum(CT ), while the first two can be proven
by expanding out the matrices and using the row-
column rule, or just trying random matrices on MAT-
LAB until you believe that it works. I did both, they
are sure to be correct.
And again from the definition of H, we know that

KHL = K(L− 1
N

1L) = KL− 1
N
K1L

so

K ′HL′−KHL = (K ′L′− 1
N
K ′1L′)−(KL− 1

N
K1L)

Now we continue our derivation of eq. (4)

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)| =

|tr(K ′HL′ −KHL)︸ ︷︷ ︸
?

− 1
N
sum(K ′HL′ −KHL)|︸ ︷︷ ︸

�

We can rewrite each term ? and � using our traces
identities as follows,

? = [tr(K ′L′)− 1
N
sum(L′K ′)]− [tr(KL)− 1

N
sum(LK)]

� =
1
N

[sum(K ′L′ − 1
N
K ′1L′)− sum(KL− 1

N
K1L)]

=
1
N

[sum(K ′L′)− 1
N
sum(K ′1L′)]

− 1
N

[sum(KL)− 1
N
sum(K1L)]

By identity 3, we see that the sum(KL) and sum(LK)
as well as the sum(K ′L′) and sum(L′K ′) terms in ?
and � are identical. Thus we are left with

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)| = ?− �
= |[tr(K ′L′)− tr(KL)]

− 2
N

[sum(K ′L′)− sum(KL)]

+
1
N

[
1
N
sum(K ′1L′)− 1

N
sum(K1L)]|

= |[sum(K ′. ∗ L′)− sum(K. ∗ L)]

− 2
N

[sum(K ′L′)− sum(KL)]

+
1
N2

[sum(K ′)sum(L′)− sum(K)sum(L)]| (5)

where the last line comes from applying Identity 1
backwards so we have, for example, tr(1K1L), then
applying Identity 2. We use MATLAB© notation .∗
for the element-wise product of two matrices.

We bound eq. (5) by the triangle inequality,

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|
≤ |sum(K ′. ∗ L′)− sum(K. ∗ L)| 1○

+
2
N
|sum(K ′L′)− sum(KL)| 2○

+
1
N2
|sum(K ′)sum(L′)− sum(K)sum(L)| 3○

(N − 1)2| ˆHSIC(D)− ˆHSIC(D′)|
≤ [ 1○ + 2○ + 3○] ≤ max

K,K′,L,L′
1○ + max

K,K′,L,L′
2○ + max

K,K′,L,L′
3○

Recall that the kernels k and l are bounded by 1. And
that the kernel pairs K,K ′ and L,L′ differ in at most
one row and column. Thus, for 1○, it is clear that the
maximum occurs when a row and column c (no matter
what c is) is changed from all 0 to 1 in both L and K,
so max

K,K′,L,L′
1○ = 2N − 1

For 3○, the maximum occurs at exactly same the point
as 1○, and the value achieved is

1
N2

[N4 − (N2 − 2N + 1)2] ≤ 4N − 5
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for N > 3. For 2○, applying the row-column rule and
reasoning on small matrices inductively suggest that
the maximum is also achieved when we change one
row and column of L and K from all 0 to 1, and is
thus

2
N

[N2 + (N − 1)(2N − 1)] ≤ 6N − 5

for N ≥ 2. As the argmax of all three terms coincide,
we have that

max
C

[ 1○ + 2○ + 3○] = max
C

1○ + max
C

2○ + max
C

3○

Therefore, we have derived that for all practical pur-
poses, the overall bound is 12N−11

N2−1 .
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