
Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh

Mondrian Forests for Large-Scale Regression when Uncertainty Mat-

ters: Supplementary material

A Pseudocode for online learning and prediction

The online updates are shown in Algorithms 3 and 4. The prediction step is detailed in Algorithm 5.

Algorithm 3 ExtendMondrianTree(T,D,min samples split)

1: Input: Tree T = (T, �, ⇠, ⌧), new training instance D = (x, y)
2: ExtendMondrianBlock(T, ✏,D,min samples split) . Algorithm 4

Algorithm 4 ExtendMondrianBlock(T, j,D,min samples split)

1: Set e` = max(`xj � x, 0) and eu = max(x� ux
j , 0) . e` = eu = 0D if x 2 B

x
j

2: Sample E from exponential distribution with rate
P

d(e
`
d + e

u
d)

3: if ⌧

parent(j) + E < ⌧j then . introduce new parent for node j

4: Sample split dimension �, choosing d with probability proportional to e

`
d + e

u
d

5: Sample split location ⇠ uniformly from interval [ux
j,�, x�] if x� > u

x
j,� else [x�, `

x
j,�].

6: Insert a new node |̃ just above node j in the tree, and a new leaf j00, sibling to j, where
7: �|̃ = �, ⇠|̃ = ⇠, ⌧|̃ = ⌧

parent(j) + E, `x|̃ = min(`xj ,x), u
x
|̃ = max(ux

j ,x)
8: j

00 = left(|̃) i↵ x�|̃  ⇠|̃

9: SampleMondrianBlock

�
j

00
,D,min samples split

�

10: else
11: Update `

x
j min(`xj ,x),u

x
j max(ux

j ,x) . update extent of node j

12: if j /2 leaves(T) then . return if j is a leaf node, else recurse down the tree
13: if x�j  ⇠j then child(j) = left(j) else child(j) = right(j)
14: ExtendMondrianBlock(T, child(j),D,min samples split) . recurse on child containing D

Algorithm 5 Predict

�
T,x

�

1: . Description of prediction using a Mondrian tree given by (3).
2: . The predictive mean, predictive variance and NLPD computation are not shown, but they can be computed

easily during the top-down pass using the weights wj and posterior moments mj , vj at node j.
3: Initialize j = ✏ and p

NotSeparatedYet

= 1
4: while True do
5: Set �j = ⌧j � ⌧

parent(j) and ⌘j(x) =
P

d

�
max(xd � u

x
jd, 0) +max(`xjd � xd, 0)

�

6: Set psj(x) = 1� exp
���j⌘j(x)

�

7: if p

s
j(x) > 0 then

8: wj = p

NotSeparatedYet

p

s
j(x)

9: if j 2 leaves(T) then
10: wj = p

NotSeparatedYet

(1� p

s
j(x))

11: return
12: else
13: p

NotSeparatedYet

 p

NotSeparatedYet

(1� p

s
j(x))

14: if x�j  ⇠j then j left(j) else j right(j) . recurse to the child where x lies

B Choosing the hyperparameters

In this appendix, we give more details on how we choose the hyper parameters ✓ = {µH , �

1

, �

2

,�

2

y}. For simplicity,
we used the same values of these hyperparameters for all the trees; it is possible to optimize these parameters for
each tree independently.

Mondrian Forests for Large-Scale Regression when Uncertainty Matters

We optimize the product of label marginals, integrating out µ for each label individually, i.e.,

q(Y |✓, T) =
Y

j2leaves(T)

Y

n2N(j)

N (yn|µH ,�j � �

parent(✏) + �

2

y).

Since ⌧j =1 at the leaf nodes, we have

�j � �

parent(✏) = �

1

�(�
2

⌧j)� �

1

�(�
2

0)

= �

1

(�(1)� �(0))

=
�

1

2
.

If the noise variance is known, �2

y can be set to the appropriate value. In our case, the noise variance is unknown;
hence, we parametrize �

2

y as �
1

/K and set K = min(2000, 2N) to ensure that the noise variance �

2

y is a non-zero
fraction of the total variance �

1

/2 + �

1

/K.

We maximize q(Y |✓, T) over µH , �
1

, and K, leading to

µH =
1

N

X

n

yn,

�

1

(
1

2
+

1

K

) =
1

N

X

n

(yn � µH)2.

Note that we could have instead performed gradient descent on the actual marginal likelihood produced as a
byproduct of belief propagation. It would be interesting to investigate this.

The likelihood q(Y |✓, T) does not depend on �

2

, and so we cannot choose �

2

by optimizing it. We know, however,
that ⌧ increases with N . Moreover, Lakshminarayanan et al. [16] observed that the average tree depths were 2-3
times log

2

(N) in practice. We therefore pre-process the training data to lie in [0, 1]D and set �
2

= D
20 log2 N since

(i) ⌧ increases with tree depth and the tree depth is O(log
2

N) assuming balanced trees and (ii) ⌧ is inversely
proportional to D. In Appendix C, we describe a fast approximation which does not involve estimation of �

1

, �

2

.

C Fast approximation to message passing and hyperparameter estimation

In Section 5.3, we suggested a fast O(log n) approximation to exact message passing which costs O(n). Under
this approximation, the Gaussian posterior at each node is approximated by a Gaussian distribution whose mean
and variance are given by the empirical mean and variance of the data points at that node. This approximation
is better suited for online applications since adding a new data point involves just updating mean and variance
for all the nodes along the path from root to a leaf. Another advantage of this approximation is that we only
need to set the noise variance �

2

y and do not need to set the hyper-parameters {µH , �

1

, �

2

}.
Since our initial publication, we have learnt that this Gaussian posterior approximation is similar to a random
forest modification independently proposed in Hutter et al. [14, §4.3.2]. In [14], each tree outputs a predictive
mean and variance equal to the empirical mean and variance of the labels at the leaf node of the decision tree.
However, there is an additional level of smoothing in MFs that is not present in [14]. Specifically, the prediction
from a Mondrian tree, described in (3), is a weighted mixture of predictions from nodes along the path from the
root to the leaf. Moreover, the weights account for the distance between the test point from the training data,
thereby ensuring that the predictions shrink to the prior as we move farther away from the training data.

