Supplementary Material for Nonparametric Budgeted Stochastic
Gradient Descent

1 Notion

We introduce some notions used in this supplementary material.
For regression task, we define ymax = max, |y|. We further denote the set S as

g B (O,ymax)\’l/Q) if L2 is used and A <1
| RP otherwise

where B (0, ymaxA"?) = {w € R : [W|| < ymaxA "1/} and RP specifies the whole feature space.

2 Loss Functions

We introduce five types of loss functions that can be used in our proposed algorithm, namely Hinge, Logistic,
L2, L1, and e—insensitive losses. We verify that these loss functions satisfying the necessary condition, that is,

|1 (wizy)| < Alw) 2
that feature domain are bounded, i.e., ||® (z)| <1, Vx € X.

+ B for some appropriate positive numbers A, B. Without loss of generality, we assume

e Hinge loss

l(wyz,y) =max {0,1—yw'® (z)}

U (wiz,y) = 7H{wa<P(x)§1}y(I) (z)

Therefore, by choosing A =0, B =1 we have

[V wizy)| = le @) <1=Alw|"* + B

e L2 loss

In this case, at the outset we cannot verify that HZ/ (W;x,y)H <A ||w||1/2

+ B for all w,z,y. However, to

support the proposed theory, we only need to check that Hl' (wy; y)H <A Hwt||1/2 +Bforallt > 1. We
derive as follows
1 2
Lwsa,y) = 5 (g~ W' (2)
' (wiz,y) = (W'e (z) —y) @ (2)

[V wisw,m)| = Wl @ (@) + 91 1 (@)]] < (W] (2)] + Yimax

< 1@ @) |[Well + max < A|we]|/? + B

g2 \-1/4 A<

where B = ypmax and A = { 1/2 1),1/2

Yoax (A — otherwise

Here we note that we make use of the fact that ||w|| < ymax (A — 1) if A > 1 (cf. Thm. 7) and [|[we]| < ymaxA™/2
otherwise (cf. Line 13 in Alg. 2 and Line 16 in Alg. 3 ).



e L1 loss
L(wiz,y) =y —w'®(z)]

I (w;z,y) =sign (W' ®(z) —y) @ (2)

Therefore, by choosing A =0, B =1 we have

[ wizy)| =l @) < 1= Alw]'*+ B

e Logistic loss

l(w;z,y) =log (1 + exp (—yWT‘I) (m)))

o _ —yexp (—yw'® (z)) @ (z)
Liwia,y) = exp (—yw'® (z)) + 1

Therefore, by choosing A =0, B =1 we have
[ wiz)|| < l@ @l < 1= Afw)?+ B
e c-insensitive loss
l(w;z,y) = max {0, |y — wd(z)] — e}

U (w3 2,9) = I{jy wra()|>esign (W () —y) o

Therefore, by choosing A =0, B =1 we have

[ wizy)| = le @) <1=Alw]"* + B

3 Proofs

In this section, we present the full proofs of the corollaries and theorems in our paper.

Corollary 1. The following holds for all t,

2
A+ VA4 BA

1/2
Proof. We prove by induction in ¢ that E [HWtHQ} < P =ARAEB yp— 1 9

11/2
It is obvious for t = 1 from E [Hw1|| } =0.

Assume that the statement holds for ¢, according to Minkowski inequality we then have

t—1 1 , 1 ,
JE[Iweal?] <\/E Iwill] + /B [0 s s 17] + 550 B[220 (v ]
L e i’ At\/ [ (w0 lF] + 5502 I8 v ]

st— [nwtn} (Aw wlll + B + AVE[[wo ] + B)

\ /\

1/2

Note that we have used the assumption about loss function Hl/ (w;z, y)H < Al|w|* + B for all w,z,y. O

Corollary 2. The following holds for all t,

E Ml, (Wt§$t7yt)H1 <L= (A\/TD‘F 3)2



Proof. We have the following

VEIE trazol?] < \/E [(A w2 + B)Q} < AVE[[wl + B<AVP+ B

Corollary 3. The following holds for all t,
2
E[lgl’] < 6= (\P+4VP +B)
Proof. Again using Minkowski inequality
VE [loe?] < B iwad?] + = [ (s ,9017] < AP+ AVE 4 B

Corollary 4. The following holds for all t,

ALY2 +/N2L + 8)2Q
4Nz

E [lIlw, - w'*] <w =
Proof. Let us define 6, = g, — Z,' (Wyrsxyr, yp ). We have the following
Wil = W — N0y
%12 * (12 %12 2 2 *
[Werr = W7 = |lwe = nedy — W7 = [lwe = W7 4 97 (|67 — 20 (Wi — W™, 6¢)
=|[lw: — W*”2 + 77152 ||5t||2 —2n (Wi — W", g) + 2m <Wt -wr, Ztl/ (Wt’th’ayt’)>
Taking conditional expectation w.r.t w}, we gain
E [Iwess = wlIP] =B lwe = w I + 2B [16]°] = 200 (w0 = w* B lgi]) + 20 (w0 = w* B[ (worser )| )
=E [Hwt - W*”ﬂ + U?E [H(St‘ﬂ — 21 <Wt - W*>f/ (Wt)> + 2 <Wt -whE [Ztl/ (Wt’§$t’ayt’):|>
SE |:||Wt — W*||2:| + 7]?]}:‘: |:||($tH2i| —+ 27]15 <Wt — W*,E |:Ztl, (wt’;xt’ayt/):|>
* A * (12
+2n | f (W )_f(Wt)_§||Wt—W |
Since the function f (.) is A-strongly convex and w* is the optimal solution, we have
* ! * A %112 A *12
Fwe) = £ (w) = (f (wi) o wi = W) + 5wy = w P = 5w — W
It follows that

E[lIweer = w?] < B [Jlwe = w* || + 2B [16°] + 200 (we = w* B [ (wurs oo, p0)] ) = 2mA [[we =



Taking expectation the above inequality, we achieve

E[Iwess = wI] SE[llwe = wI] +07E [160°] +20E [(we = w*, 2 (ws e, o) )] = 200w = w

t—2_ 1 \ fis 2] ' R
=—E [we = w'*] + 0ZE [[100)] + 2mE [ (wi =", 22l (wrize,un) )|
t72 i * ) B 1 [ * 1/2 ’ 2 1/2 1 2
<—E [[[we = w || + 52E [[0:1] + 20 [we - w ] E[(z (wt/;xtuym” E(z7]"
t—2 1 L 2] o] 1 21172 , 271/2
ST [w — w1+ 07E [[6]°] + 2niE [ fw — w1 ]E“l (wt/;xt,7yt,)” P(Z, =1)"2
1/2
o : E [Iw: —we 2] 1172
<T22E w - w1 + 55 +
=t U [P At
* 12 1/2 1/2
<2k *||2'+Q+E[W“W”] -
E= 2 [wy — w2 + £
= U e At

1/2 :
Choosing W = AL 4;§L+8)‘2Q, we destine if E [Hwt - W*HQ} < W then E |:HWt+1 - W*HQ} <W.

Here we note that we have bounded E [H@HQ} <2 (E [||gt||2] +E {Hl/ (Wers e, Y1)

* . 2 N 2 ® —
Theorem 5. If w* = argmin (% [wl” 4+ % >y (yi — W' @ (2;)) ) then |W*|| < Ymash ™12

w

Proof. Let us consider the equivalent constrains optimization problem

A 1

. 2 2
min <2 Iwll* + ;&)
sti& =y —w'd (), Vi

The Lagrange function is of the following form
A\ 1N N
L(w,§a)= 3 [w?| + N 2512 + Zai (i —w'® () — &)
i=1 i=1
Setting the derivatives to 0, we gain

N N
Vwl = Aw — Zozifl) (£)=0—w=A"" Zaﬂ) (z;)
i=1 i=1
NO[Z'
2
Substituting the above to the Lagrange function, we gain the dual form

2

DU N L,

W (a) = — §||WH +Zyiai_zzai
i=1 i=1

__

2

2 N N&
Zai@ (z;) —|—Zyio¢i - ZZ&?
i—1 i=1 i—1

Let us denote (w*,£€*) and a* be the primal and dual solutions, respectively. Since the strong duality holds,
we have

A 1 & A al N
* 12 * * 12 * *
§||W | +NZ§¢‘2:_§HW [ +Zyiai_zzai2
i=1 i=1

i=1



Aw* Zyza D BT s

=1

2
We note that we have used g (of) = y;af — %a*z <g (Zy’) = yﬁ Hence, we gain the conclusion. O

Lemma 6. Assume that L2 loss is using, the following statement holds
1 Z
Wil <A1 <ymaw + T Z HWt)
t=1

where Ymax = max |y|.
yey

Proof. We have the following

t—1
Wiyl = H <tWt — oy ® (ﬂft))

S
It follows that
t— .
(Wit < —— ||wt||—|— s lae| - since [|@ ()] =1

It happens that [’ (Wi Tt yt) = P (xt) Hence, we gain
| = |ye = W] ® (@4)] < yamax + [Well | (@) < Yamasx + W]

It implies that
tlIwWer[] < (8= 1) [[well + 27" (Ymax + [wel))

Taking sum when t = 1,2,...,T, we achieve

T
Twrsa] <A (Tymax +y ||wt|>

t=1

T
B 1
||WT+1H < A ! (ymax + T Z ||Wt||> (1)
t=1

Ymaz 1 Ymaz
=51 (1_)\7) <ﬁf07"allT.

Proof. First we consider the sequence {sr}, which is identified as s7+1 = A™! (Ymax + s7) and s; = 0. It is easy
to find the formula of this sequence as

o Ymax _y—1 o Ymax o _\—-T o Ymax o AiTymaX
ST+1 /\_17)\ <5T )\_1>...)\ (51 )\_1) P

S _ymax l_i
1= N7 AT

We prove by induction by 7" that ||wrp|| < sp for all T. It is obvious that |[w1] = s1 = 0. Assume that |wy| < s;
for t < T, we verify it for 7'+ 1. Indeed, we have

T
||WT+1H < AT ! <ymax + = Z ||Wt||> < AT ! <ymax + = Zst>

t 1

S AT (ymax + ST) = ST+1



Theorem 8. Let us consider running of Algorithm 2 where (xy,y;) is sampled from the training set D or the join
distribution Px y. Let define the gradient error as M; = % ==l (wy;zp,ypr). We have the following

T
Bl (wr) — f(w)] < LOBTHD LSk [1an] (2= 1)1
t=1

T
QogT+1) 1 1/2 2]1/2
<Xy W §
=TT T > E [”MtH }

Proof. Let us define é; = gy + Zy M. We have w11 = wy — 140;.

lwesr = w** = [[we =8y = w*||* = lwe = w*[|* 07 [8]]* — 20 (Wi — w",6)

) ) 2

[wi = w*||” = [Werr =W l" oo [|6e]
+
277t 2
Taking the conditional expectation w.r.t w;, we achieve
) ") 2

E[lIwe = wI*] =B [lIwers = wI*] i [16]°]
2n; * 2

<Wt - W*7gt> = - <Wt - W*v ZtMt>

(wi —w*, Efg]) =

— <Wt — W*,]E [ZtMtD

(oot ) = [iwe w1 ;UE [ [|25t||2] B L]

w2 2
f(Wt)_f(W*)+>‘||Wt_W*”2§]E|:||Wt WH E{Hwt+l WH}

2 2n
nE [0,
- (wy — w*, E[Z: My])
Taking expectation, we come to the following
o el A o] L Q
E[f (we) = (W) < 5 (t = DE [ we = w|[*] = St [Iwess —wIP] + 55
L 21l/2 1/2 1/2
+ B [Jw—wI?| TE[IlP] T E [27]
Summing when t =1,2,...,7T, we gain
T T
S f (W) NSRS el 211/2
= B < 1 B
N )| < g g T; [iwe - w1?] B[] £ 22
T
QogT+1) 1 1 911/2 1/2
< —" 4+ =W E ||| M, P(Z;, =1
<tV E[IMP] TRz
T
QUogT+1) 1 1 911/2
<—F"—4+ =W E ||| M, 2

— T
Let Wr = 7 >, Wy, we reach

T
Elf ()~ £ (w) < LELED LS 2] Bz = 1172
t=1

T
QUogT+1) 1 1/2 971/2
<o WY E[M }
= AT T e 1M



Theorem 9. We denote the gap
T
[ 211/2 1/2
dr = =W ;:1 E [||Mt|\ } P(Z =1)

Let r be an integer picked uniformly at random from {1,2,...,T}. Then, with probability of at least 1 — & we

have
Q(logT +1)

Proof. Let us denote X = f(w,) — f(w*)>0and Y = M — f(w*). Then, we have

Sy f (W)

E [X]=E [f (W) - f(w)] = ==F— - f(w) =Y
Therefore, we gain
Q (logT +1)
E[X]=Eq, o7 B [X] =E[Y] < ——27— +dr
or equivalently
Q (logT+1)
_ _ _ <X\ T 7
E[X —dr] =E[Y —dr] < ONT
where (z, yt)lT specifies the sequence of incoming instances {(z1,y1),..., (@1, yr)} and we refer to Eq. (2) for last

inequality.
According to Markov inequality, we have

E[X —dr] _ QogT+1)

— > <
P(X —dr>e)< e =T oNTe

Q (logT+1)

P(X — >1-
(X —dr <e) > INTe

Choosing ¢ = %, we obtain the conclusion. O

Corollary 10. IfE [22] = P(Z = 1) =pi ~ O(}) then E [|lw, - w*|*] ~ O (4).
Proof. Let us define 6; = g; — Zl (Wyrsxy, yp ). We have the following
Wit1 = Wy — 77t5t

lwesr = w1 = lfwe =8 = w*||* = lwe = w*[|* 07 [[6e]* = 20 (Wi — w",6)

= |lw; — W*H2 + 77t2 ||5t||2 =20 (W — W", gg) + 21y <Wt —-w, Ztl, (Wt/;l‘tuyt/)>

Taking conditional expectation w.r.t w}, xtl_l and note that ¢ < t, we gain

’

E[Iwesr = wIP) =E[llwe = w* || +07E [[0:1%] = 200 (we = w* Elgal) + 2 (we = w1 (wors v, ye) EIZ])
=E [”Wt - W*”ﬂ + 7 E {H@t”ﬂ — 21 <Wt —w f (Wt)> + 2m <Wt —w il (wirs xt',yt')>
<E [llwe = w*|*] + B [[13:1%] + 200 (we = w* pul (werie )
* A *(|2
+2n { f(w )—f(Wt)—§||Wt—W |
Since the function f(.) is A-strongly convex and w* is the optimal solution, we have

/ A A
Fwe) = £ w) = (f (we) o= w ) + 5 we = WP = 5w = w |



It follows that
E [lIwees = w*IP] < B [llwe = wI*| + 2B [[602] + 20 (w0 = w*pil (wrs 2, ) = 2w — w
Taking expectation the above inequality, we achieve

E [Iwees = w*IP] < E [llwe = wI*| + 2B [J6] + 20 [(we = w*, i (wirs oo, p0) )| = 20 0B || fw, — w
_t_2 * (2 2 2 * ! .
== [lws = W [*] +92E [J0:)] + 200 [ (wi — W, pel (wirizer, )

‘2}1/2

t—2 *12 2 2 *21/2 2 (|4
<*ZE [Ilwe = w*P] + 2B [160]°] + 2 [Iwe = w*IP] T E [} ||V (wors v )

Since py ~ O (%), we have p; < % for some C' > 0. Therefore, the above inequality becomes

. t—9 i L2122 C , 1/2
E [llwis = w*] < =B [llwe = w*1?] +57E [[0:0%] + 20.E [lwe = w*P] T ZE [ (wesze )|
* (|2 1/2 1/2
RELH] ]+ -2 E [|w. - w*’] " cL
— Wy — W
=t ! A2¢2 A2
By choosing W; = Q2>‘_2+I\;I1/2CL1/2, we gain if E {Hwt — W*||2} < Wi, then E |:||Wt+]_ - W*||2} < Wit O
Theorem 11. Let us consider running of Algorithm 3 where (xy,y;) is sampled from the training set D or the join
distribution Px y. Let define the gradient error as M; = % = —l (wy;zp,yp). We have the following

571/2
_ DX +Qlog(1/(1=7)) , BDY* ¢ E 1)

3)
20T T 3/2 (
v t=(1—7)T+1 ¢

E(f (wp) = f(w")]

Proof. Let us define 6; = g; + Z;M;. We have the following

Wil = Wi — 10y
[wepr = w|* = [lwe = mde — w*[|* = [[we = W[ + 07 0:]* = 2n (wi — w*, 6)

2 2 2
_ we =W = we =W T e [l6el”
27’]15 2

(W — W™, g¢) (wy — W™, Z, M)

Taking the conditional expectation w.r.t w}, we achieve

E [lw: - w*] —E [wers = w|?] - wE[lo)]

(we — W, E o)) = o -

— <Wt — W*7]E [ZfMtD

E [Iwe = wI’]| = E [lIwess = w?]  mE )]
21 + 2

<Wt_W*7f/ (Wt)> = —(wy — W, E[Z;M,])

E [liw: —w* || —E [Iwirs —w ] [0])]

flwe) = f(w) < 5 R

— <Wt — W*7 E [ZtMt]>

Taking expectation and summing when ¢t = (1 —~)T 4+ 1,...,T , let W), = w% ZtT:(py)TH w; and note that
pe <P(S;=1) < g , we reach the following



Z?:(PW)TH f(wi)

Bl ] & e (- 50)

VTE —f(w7)
T 2001741 =1y T 42 2ny  2mpa
(4)
T E [||5 ||2} 1/2 1/2
Nt t / /
+ > |5 Ewe—w ] TE[] p
t=(1—y)T+1
T T
WrA(1—~v)T +1 WrA(yT — 1 1 1/2
< W (( 2’)’) )+ T (’; )+Q Z 1. Z WYE [”MtHQ} g
t=(1—v)T+1 t=(1—~)T+1
1/2
r T E||[Mg)?
W AT 1 t
< T + _|_Q Z o BDl/2 Z [32}
2 2\ t t3/
t=(1—v)T+1 t=(1—~)T+1
DA Qog(1/ (1 o E[pag]”
S7+Qog(/( —7))+5D1/2 3 -
2 2 t3/
t=(1—v)T+1

1/2
DA Qlog(1/(1— T E||)
VTE[f (w5) — f (w)] < 224 QOB UZD) e o el e |

To derive the last inequality, we use the facts ZtT:(ka,)TH 1 <log(1/(1—7)) and Wy < £ for all ¢.
Finally, we achieve

1/2
DA 4 Qlog (1/ (1 — pvz I E[M?
B/ (wp) -/ (wh) < 2=, AT ol Ll tm}

t=(1—v)T+1
0

Theorem 12. Let us consider running of Algorithm 3 where (xy,y;) is sampled from the training set D or the join
distribution Px y. We have the following

_ DX +Qlog(1/(1 =) +2BLD"?log (1/ (1 — 7))
- 24T

E[f (wp) = f(w")]

1/2 , 271/2
=E [Hl (Wt';l‘t',yt')H ] <

L. O

Proof. To gain the conclusion, we use inequality in Eq. (3) and note that E {HMt ||2}

Theorem 13. Let r be an integer randomly picked from {(1 —~)T +1,...,T}. Then, with probability at least
1 -9, we have

R

f(wr) < f(w*)er

where we have defined R = DA% + Qlog (1/ (1 — 7)) +2B8LD'?log (1/ (1 — 7)).

Ti—aopri fwe)

Proof. Let us denote X = f(w,) — f(w*) >0and Y = S f(w*). Then, we have

T
. Zt:(lfﬂy)T+1 [ (wi)
= T

E, [X]=E. [f (W) = f(w)] —f(w)=Y



Therefore, we gain
R

Note that to achieve the last inequality in Eq. (5), we refer to Eq. (4).
According to Markov inequality, we have
E [X] R
P(X>¢) < < —
Xz <——=<g7
R
P(X >1—-—
(X<e)=z 24T
Choosing ¢ = 27%, we gain the conclusion. O

4 Exact Projection

We present in detail how to incrementally maintain the inverse matrix K, ! We consider two cases

e |7, <B
We compute as follows:
Compute d = K; ' k;
Set ||6:> = K (x4, 24) — kT d
Update

_ K1 1 d
K= -1 +[ } ar -1

' O | flof® L 1 : }
0 0

The computational cost to maintain K; ' when t varies from 1 to B is Ethl O (t*) =0 (B?).

e |I;]=B+1
To update K, ! from K, 11 we observe that these two matrices K;_; and K; are distinct in one row and one
column. Concretely, to transform K; ; to K, we can substitute the column k, by k; and do the same for
the corresponding row. Therefore, we can formulate K; = K; 1 + L where L is a sparse matrix of all zeros
except for one column and row, which can be computed as L, = k; — k,. It is apparent that rank (L) = 2.
To update K; ' from K; 1, we rely on Thm. 14 (cf. [1]).

We assume that the i-th collumn and row in B x B matrice K; 1 and K; is mapped to the element
Zr(s) In {z1,29,...,2¢}. We further assume the removal element x, locates at m-th collumn in matrix
K;—1. To gain K; from K; 1, we replace ¥, by z; and hence 7! (t) = 7=!(p) = m. It is evident that
K; = K;_1 + L where L is a matrix of all zeros except for m—th column and row, which is computed as
L (i) = K (24, 2r()) — K (2p, Tr(sy) for i = 1,..., B. It is apparent that rank (L) = 2 and it can be decom-
posed as L = L1+ Ly where L1, Ly are matrices of all zeros except for m-th column and m-th row respectively
and hence rank (L1) = rank (Ls) = 1.

To directly apply Thm. 14, we denote C; = A = K;_1, By = Ly, and By = Ly. We first compute C;l by

Gyt =0t —giCr BiCy (6)
It is obvious the computational cost to compute C{l as in Eq. (6) is O (B2).
We then compute K; > = (A+ B) ' = (A+ By + By) ' as
Kl =(A+B)" =03 = 0205 ' BaCy ! (7
The computional cost of Eq. (7) is again O (BQ).

Theorem 14. Let A and A+ B be nonsingular matrices, and let B have rankr > 0. Let B = By+---+B,., where each
B; has rank 1, and each Cy41 = A+ B+ - -+ By, is nonsingular. Setting C1 = A, then Ck_-:l = C’k_1 fgkC'k_lBkC',f_l

where g, = m. In particular, (A+ B)™' =C; ! — g,C'B,.C.

10
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