Supplementary Material for Nonparametric Budgeted Stochastic Gradient Descent

1 Notion

We introduce some notions used in this supplementary material.

For regression task, we define $y_{\max} = \max_{y} |y|$. We further denote the set S as

$$S = \begin{cases} \mathcal{B} \left(\mathbf{0}, y_{\max} \lambda^{-1/2} \right) & \text{if L2 is used and } \lambda \leq 1 \\ \mathbb{R}^D & \text{otherwise} \end{cases}$$

where $\mathcal{B}(\mathbf{0}, y_{\max}\lambda^{-1/2}) = \{\mathbf{w} \in \mathbb{R}^D : \|\mathbf{w}\| \le y_{\max}\lambda^{-1/2}\}$ and \mathbb{R}^D specifies the whole feature space.

2 Loss Functions

We introduce five types of loss functions that can be used in our proposed algorithm, namely Hinge, Logistic, L2, L1, and ε -insensitive losses. We verify that these loss functions satisfying the necessary condition, that is, $\left\|l'(\mathbf{w}; x, y)\right\| \leq A \|\mathbf{w}\|^{1/2} + B$ for some appropriate positive numbers A, B. Without loss of generality, we assume that feature domain are bounded, i.e., $\|\Phi(x)\| \leq 1, \forall x \in \mathcal{X}$.

• Hinge loss

$$l(\mathbf{w}; x, y) = \max \left\{ 0, 1 - y \mathbf{w}^{\mathsf{T}} \Phi(x) \right\}$$
$$l'(\mathbf{w}; x, y) = -\mathbb{I}_{\{y \mathbf{w}^{\mathsf{T}} \Phi(x) \le 1\}} y \Phi(x)$$

Therefore, by choosing A = 0, B = 1 we have

$$\left\| l'(\mathbf{w}; x, y) \right\| = \left\| \Phi(x) \right\| \le 1 = A \left\| \mathbf{w} \right\|^{1/2} + B$$

• L2 loss

In this case, at the outset we cannot verify that $\left\|l'(\mathbf{w}; x, y)\right\| \leq A \|\mathbf{w}\|^{1/2} + B$ for all \mathbf{w}, x, y . However, to support the proposed theory, we only need to check that $\left\|l'(\mathbf{w}_t; x, y)\right\| \leq A \|\mathbf{w}_t\|^{1/2} + B$ for all $t \geq 1$. We derive as follows

$$l(\mathbf{w}; x, y) = \frac{1}{2} (y - \mathbf{w}^{\mathsf{T}} \Phi(x))^{2}$$
$$l'(\mathbf{w}; x, y) = (\mathbf{w}^{\mathsf{T}} \Phi(x) - y) \Phi(x)$$

$$\left\| l'(\mathbf{w}_{t}; x, y) \right\| = \left\| \mathbf{w}_{t}^{\mathsf{T}} \Phi(x) + y \right\| \left\| \Phi(x) \right\| \le \left\| \mathbf{w}_{t}^{\mathsf{T}} \Phi(x) \right\| + y_{\max} \le \left\| \Phi(x) \right\| \left\| \mathbf{w}_{t} \right\| + y_{\max} \le A \left\| \mathbf{w}_{t} \right\|^{1/2} + B$$

where
$$B = y_{\text{max}}$$
 and $A = \begin{cases} y_{\text{max}}^{1/2} \lambda^{-1/4} & \text{if } \lambda \leq 1\\ y_{\text{max}}^{1/2} (\lambda - 1)^{-1/2} & \text{otherwise} \end{cases}$

Here we note that we make use of the fact that $\|\mathbf{w}_t\| \leq y_{\max} (\lambda - 1)^{-1}$ if $\lambda > 1$ (cf. Thm. 7) and $\|\mathbf{w}_t\| \leq y_{\max} \lambda^{-1/2}$ otherwise (cf. Line 13 in Alg. 2 and Line 16 in Alg. 3).

• L1 loss

$$l(\mathbf{w}; x, y) = |y - \mathbf{w}^{\mathsf{T}} \Phi(x)|$$

$$l'(\mathbf{w}; x, y) = \operatorname{sign} (\mathbf{w}^{\mathsf{T}} \Phi(x) - y) \Phi(x)$$

Therefore, by choosing A = 0, B = 1 we have

$$\left\| l'(\mathbf{w}; x, y) \right\| = \left\| \Phi(x) \right\| \le 1 = A \left\| \mathbf{w} \right\|^{1/2} + B$$

• Logistic loss

$$l(\mathbf{w}; x, y) = \log \left(1 + \exp\left(-y\mathbf{w}^{\mathsf{T}}\Phi(x)\right)\right)$$
$$l'(\mathbf{w}; x, y) = \frac{-y\exp\left(-y\mathbf{w}^{\mathsf{T}}\Phi(x)\right)\Phi(x)}{\exp\left(-y\mathbf{w}^{\mathsf{T}}\Phi(x)\right) + 1}$$

Therefore, by choosing A = 0, B = 1 we have

$$\left\| l'(\mathbf{w}; x, y) \right\| < \left\| \Phi(x) \right\| \le 1 = A \left\| \mathbf{w} \right\|^{1/2} + B$$

• ε -insensitive loss

$$l(\mathbf{w}; x, y) = \max \left\{ 0, |y - \mathbf{w}^{\mathsf{T}} \Phi(x)| - \varepsilon \right\}$$
$$l'(\mathbf{w}; x, y) = \mathbb{I}_{\{|y - \mathbf{w}^{\mathsf{T}} \Phi(x)| > \varepsilon\}} \operatorname{sign} \left(\mathbf{w}^{\mathsf{T}} \Phi(x) - y \right) x$$

Therefore, by choosing A = 0, B = 1 we have

$$\left\| l'(\mathbf{w}; x, y) \right\| = \left\| \Phi(x) \right\| \le 1 = A \left\| \mathbf{w} \right\|^{1/2} + B$$

3 Proofs

In this section, we present the full proofs of the corollaries and theorems in our paper. **Corollary 1.** The following holds for all t,

$$\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right] < P^{2} = \left(\frac{A + \sqrt{A^{2} + B\lambda}}{\lambda}\right)^{2}$$

Proof. We prove by induction in t that $\mathbb{E}\left[\|\mathbf{w}_t\|^2\right]^{1/2} < P = \frac{A + \sqrt{A^2 + B\lambda}}{\lambda}, \forall t = 1, 2, \dots$ It is obvious for t = 1 from $\mathbb{E}\left[\|\mathbf{w}_1\|^2\right]^{1/2} = 0.$

Assume that the statement holds for t, according to Minkowski inequality we then have

$$\begin{split} \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t+1}\right\|^{2}\right]} &\leq \frac{t-1}{t}\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]} + \frac{1}{\lambda t}\sqrt{\mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t};x_{t},y_{t}\right)\right\|^{2}\right]} + \frac{1}{\lambda t}\sqrt{\mathbb{E}\left[Z_{t}^{2}\left\|l'\left(\mathbf{w}_{t'};x_{t'},y_{t'}\right)\right\|^{2}\right]} \\ &\leq \frac{t-1}{t}\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]} + \frac{1}{\lambda t}\sqrt{\mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t};x_{t},y_{t}\right)\right\|^{2}\right]} + \frac{1}{\lambda t}\sqrt{\mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t'};x_{t'},y_{t'}\right)\right\|^{2}\right]} \\ &\leq \frac{t-1}{t}\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]} + \frac{1}{\lambda t}\left(A\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|\right]} + B + A\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t'}\right\|\right]} + B\right) \\ &\leq \frac{t-1}{t}P + \frac{2}{\lambda t}\left(A\sqrt{P} + B\right) = P \end{split}$$

Note that we have used the assumption about loss function $\left\|l'(\mathbf{w}; x, y)\right\| \leq A \|\mathbf{w}\|^{1/2} + B$ for all \mathbf{w}, x, y . \Box Corollary 2. The following holds for all t,

$$\mathbb{E}\left[\left\|l^{'}\left(\mathbf{w}_{t}; x_{t}, y_{t}\right)\right\|^{2}\right] \leq L = \left(A\sqrt{P} + B\right)^{2}$$

Proof. We have the following

$$\sqrt{\mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t};x_{t},y_{t}\right)\right\|^{2}\right]} \leq \sqrt{\mathbb{E}\left[\left(A\left\|\mathbf{w}_{t}\right\|^{1/2}+B\right)^{2}\right]} \leq A\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|\right]}+B \leq A\sqrt{P}+B$$

Corollary 3. The following holds for all t,

$$\mathbb{E}\left[\left\|g_{t}\right\|^{2}\right] \leq G = \left(\lambda P + A\sqrt{P} + B\right)^{2}$$

Proof. Again using Minkowski inequality

$$\sqrt{\mathbb{E}\left[\left\|g_{t}\right\|^{2}\right]} \leq \lambda \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]} + \sqrt{\mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t}; x_{t}, y_{t}\right)\right\|^{2}\right]} \leq \lambda P + A\sqrt{P} + B$$

Corollary 4. The following holds for all t,

$$\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] \leq W = \frac{\lambda L^{1/2} + \sqrt{\lambda^{2}L + 8\lambda^{2}Q}}{4\lambda^{2}}$$

Proof. Let us define $\delta_t = g_t - Z_t l^{'}(\mathbf{w}_{t'}; x_{t'}, y_{t'})$. We have the following

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \delta_t$$

$$\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \eta_t \delta_t - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \mathbf{w}^*\|^2 + \eta_t^2 \|\delta_t\|^2 - 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, \delta_t \rangle$$

= $\|\mathbf{w}_t - \mathbf{w}^*\|^2 + \eta_t^2 \|\delta_t\|^2 - 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, g_t \rangle + 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, Z_t l'(\mathbf{w}_{t'}; x_{t'}, y_{t'}) \rangle$

Taking conditional expectation w.r.t $\mathbf{w}_t^1,$ we gain

$$\mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^*\right\|^2\right] = \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] - 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, \mathbb{E}\left[g_t\right] \right\rangle + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, \mathbb{E}\left[Z_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right] \right\rangle \\ = \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] - 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, f^{'}\left(\mathbf{w}_t\right) \right\rangle + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, \mathbb{E}\left[Z_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right] \right\rangle \\ \leq \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, \mathbb{E}\left[Z_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right] \right\rangle \\ + 2\eta_t \left(f\left(\mathbf{w}^*\right) - f\left(\mathbf{w}_t\right) - \frac{\lambda}{2} \left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right)$$

Since the function f(.) is λ -strongly convex and \mathbf{w}^* is the optimal solution, we have

$$f(\mathbf{w}_{t}) - f(\mathbf{w}^{*}) \ge \left\langle f'(\mathbf{w}_{t}), \mathbf{w}_{t} - \mathbf{w}^{*} \right\rangle + \frac{\lambda}{2} \|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2} \ge \frac{\lambda}{2} \|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2}$$

It follows that

$$\mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^*\right\|^2\right] \le \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, \mathbb{E}\left[Z_t l'\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right]\right\rangle - 2\eta_t \lambda \left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right]$$

Taking expectation the above inequality, we achieve

$$\begin{split} \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right] &\leq \mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \eta_{t}^{2}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right] + 2\eta_{t}\mathbb{E}\left[\left\langle\mathbf{w}_{t} - \mathbf{w}^{*}, Z_{t}l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\rangle\right] - 2\eta_{t}\lambda\mathbb{E}\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2} \\ &= \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \eta_{t}^{2}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right] + 2\eta_{t}\mathbb{E}\left[\left\langle\mathbf{w}_{t} - \mathbf{w}^{*}, Z_{t}l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\rangle\right] \\ &\leq \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \eta_{t}^{2}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right] + 2\eta_{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right]^{1/2}\mathbb{E}\left[\left\|l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\|^{2}\right]^{1/2}\mathbb{E}\left[Z_{t}^{2}\right]^{1/2} \\ &\leq \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \eta_{t}^{2}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right] + 2\eta_{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right]^{1/2}\mathbb{E}\left[\left\|l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\|^{2}\right]^{1/2}\mathbb{P}\left(Z_{t} = 1\right)^{1/2} \\ &\leq \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \eta_{t}^{2}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right] + 2\eta_{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right]^{1/2}\mathbb{E}\left[\left\|l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\|^{2}\right]^{1/2}\mathbb{P}\left(Z_{t} = 1\right)^{1/2} \\ &\leq \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \eta_{t}^{2}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right]^{1/2}L^{1/2} \\ &\leq \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \frac{Q}{\lambda^{2}t^{2}} + \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right]^{1/2}L^{1/2}}{\lambda t} \\ &\leq \frac{t-2}{t}\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] + \frac{Q}{\lambda^{2}} + \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right]^{1/2}L^{1/2}}{\lambda t} \end{aligned}$$

Choosing $W = \frac{\lambda L^{1/2} + \sqrt{\lambda^2 L + 8\lambda^2 Q}}{4\lambda^2}$, we destine if $\mathbb{E}\left[\|\mathbf{w}_t - \mathbf{w}^*\|^2\right] \leq W$ then $\mathbb{E}\left[\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2\right] \leq W$. Here we note that we have bounded $\mathbb{E}\left[\|\delta_t\|^2\right] \leq 2\left(\mathbb{E}\left[\|g_t\|^2\right] + \mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t'}; x_{t'}, y'_t\right)\right\|^2\right]\right) = 2(G + L) = Q$ and $\mathbb{E}\left[Z_t^2\right] = P(Z_t = 1) = p_t \leq 1$.

Theorem 5. If $\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left(\frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \mathbf{w}^{\mathsf{T}} \Phi\left(x_i \right) \right)^2 \right)$ then $\|\mathbf{w}^*\| \leq y_{max} \lambda^{-1/2}$.

Proof. Let us consider the equivalent constrains optimization problem

$$\min_{\mathbf{w},\boldsymbol{\xi}} \left(\frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{i=1}^N \xi_i^2 \right)$$

s.t.: $\xi_i = y_i - \mathbf{w}^{\mathsf{T}} \Phi(x_i), \forall i$

The Lagrange function is of the following form

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{\lambda}{2} \left\| \mathbf{w}^2 \right\| + \frac{1}{N} \sum_{i=1}^{N} \xi_i^2 + \sum_{i=1}^{N} \alpha_i \left(y_i - \mathbf{w}^{\mathsf{T}} \Phi(x_i) - \xi_i \right)$$

Setting the derivatives to 0, we gain

$$\nabla_{\mathbf{w}} \mathcal{L} = \lambda \mathbf{w} - \sum_{i=1}^{N} \alpha_i \Phi(x_i) = 0 \to \mathbf{w} = \lambda^{-1} \sum_{i=1}^{N} \alpha_i \Phi(x_i)$$
$$\nabla_{\xi_i} \mathcal{L} = \frac{2}{N} \xi_i - \alpha_i = 0 \to \xi_i = \frac{N \alpha_i}{2}$$

Substituting the above to the Lagrange function, we gain the dual form

$$\mathcal{W}(\boldsymbol{\alpha}) = -\frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N y_i \alpha_i - \frac{N}{4} \sum_{i=1}^N \alpha_i^2$$
$$= -\frac{1}{2\lambda} \left\| \sum_{i=1}^N \alpha_i \Phi(x_i) \right\|^2 + \sum_{i=1}^N y_i \alpha_i - \frac{N}{4} \sum_{i=1}^N \alpha_i^2$$

Let us denote $(\mathbf{w}^*, \boldsymbol{\xi}^*)$ and $\boldsymbol{\alpha}^*$ be the primal and dual solutions, respectively. Since the strong duality holds, we have

$$\frac{\lambda}{2} \|\mathbf{w}^*\|^2 + \frac{1}{N} \sum_{i=1}^N \xi_i^{*2} = -\frac{\lambda}{2} \|\mathbf{w}^*\|^2 + \sum_{i=1}^N y_i \alpha_i^* - \frac{N}{4} \sum_{i=1}^N \alpha_i^{*2}$$

$$\lambda \|\mathbf{w}^*\|^2 = \sum_{i=1}^N y_i \alpha_i^* - \frac{N}{4} \sum_{i=1}^N \alpha_i^{*2} - \frac{1}{N} \sum_{i=1}^N \xi_i^{*2}$$
$$\leq \sum_{i=1}^N \left(y_i \alpha_i^* - \frac{N}{4} \alpha_i^{*2} \right) \leq \sum_{i=1}^N \frac{y_i^2}{N} \leq y_{\max}^2$$

We note that we have used $g(\alpha_i^*) = y_i \alpha_i^* - \frac{N}{4} \alpha_i^{*2} \le g\left(\frac{2y_i}{N}\right) = \frac{y_i^2}{N}$. Hence, we gain the conclusion. **Lemma 6.** Assume that L2 loss is using, the following statement holds

$$\|\mathbf{w}_{T+1}\| \le \lambda^{-1} \left(y_{max} + \frac{1}{T} \sum_{t=1}^{T} \|\mathbf{w}_t\| \right)$$

where $y_{max} = \max_{y \in \mathcal{Y}} |y|$.

Proof. We have the following

$$\mathbf{w}_{t+1} = \prod_{S} \left(\frac{t-1}{t} \mathbf{w}_t - \eta_t \alpha_t \Phi\left(x_t\right) \right)$$

It follows that

$$\|\mathbf{w}_{t+1}\| \le \frac{t-1}{t} \|\mathbf{w}_t\| + \frac{1}{\lambda t} |\alpha_t| \quad \text{since } \|\Phi(x_t)\| = 1$$

It happens that $l'(\mathbf{w}_t; x_t, y_t) = \alpha_t \Phi(x_t)$. Hence, we gain

$$\left|\alpha_{t}\right| = \left|y_{t} - \mathbf{w}_{t}^{\mathsf{T}}\Phi\left(x_{t}\right)\right| \le y_{\max} + \left\|\mathbf{w}_{t}\right\| \left\|\Phi\left(x_{t}\right)\right\| \le y_{\max} + \left\|\mathbf{w}_{t}\right\|$$

It implies that

$$t \|\mathbf{w}_{t+1}\| \le (t-1) \|\mathbf{w}_t\| + \lambda^{-1} (y_{\max} + \|\mathbf{w}_t\|)$$

Taking sum when $t = 1, 2, \ldots, T$, we achieve

$$T \|\mathbf{w}_{T+1}\| \leq \lambda^{-1} \left(Ty_{\max} + \sum_{t=1}^{T} \|\mathbf{w}_t\| \right)$$
$$\|\mathbf{w}_{T+1}\| \leq \lambda^{-1} \left(y_{\max} + \frac{1}{T} \sum_{t=1}^{T} \|\mathbf{w}_t\| \right)$$
(1)

Theorem 7. If $\lambda > 1$ then $\|\mathbf{w}_{T+1}\| \leq \frac{y_{max}}{\lambda-1} \left(1 - \frac{1}{\lambda^T}\right) < \frac{y_{max}}{\lambda-1}$ for all T.

Proof. First we consider the sequence $\{s_T\}_T$ which is identified as $s_{T+1} = \lambda^{-1} (y_{\max} + s_T)$ and $s_1 = 0$. It is easy to find the formula of this sequence as

$$s_{T+1} - \frac{y_{\max}}{\lambda - 1} = \lambda^{-1} \left(s_T - \frac{y_{\max}}{\lambda - 1} \right) = \dots = \lambda^{-T} \left(s_1 - \frac{y_{\max}}{\lambda - 1} \right) = \frac{\lambda^{-T} y_{\max}}{\lambda - 1}$$
$$s_{T+1} = \frac{y_{\max}}{\lambda - 1} \left(1 - \frac{1}{\lambda^T} \right)$$

We prove by induction by T that $\|\mathbf{w}_T\| \leq s_T$ for all T. It is obvious that $\|\mathbf{w}_1\| = s_1 = 0$. Assume that $\|\mathbf{w}_t\| \leq s_t$ for $t \leq T$, we verify it for T + 1. Indeed, we have

$$\|\mathbf{w}_{T+1}\| \le \lambda^{-1} \left(y_{\max} + \frac{1}{T} \sum_{t=1}^{T} \|\mathbf{w}_t\| \right) \le \lambda^{-1} \left(y_{\max} + \frac{1}{T} \sum_{t=1}^{T} s_t \right) \le \lambda^{-1} \left(y_{\max} + s_T \right) = s_{T+1}$$

г		п
L		
L		
		-

Theorem 8. Let us consider running of Algorithm 2 where (x_t, y_t) is sampled from the training set \mathcal{D} or the join distribution $\mathbb{P}_{X,Y}$. Let define the gradient error as $M_t = \frac{\Delta_t}{\eta_t} = -l'(\mathbf{w}_{t'}; x_{t'}, y_{t'})$. We have the following

$$\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}\right) - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{Q\left(\log T + 1\right)}{2\lambda T} + \frac{1}{T}W^{1/2}\sum_{t=1}^{T}\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2}\mathbb{P}\left(Z_{t} = 1\right)^{1/2}$$
$$\leq \frac{Q\left(\log T + 1\right)}{2\lambda T} + \frac{1}{T}W^{1/2}\sum_{t=1}^{T}\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2}$$

Proof. Let us define $\delta_t = g_t + Z_t M_t$. We have $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \delta_t$.

$$\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \eta_t \delta_t - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \mathbf{w}^*\|^2 + \eta_t^2 \|\delta_t\|^2 - 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, \delta_t \rangle$$

$$\langle \mathbf{w}_{t} - \mathbf{w}^{*}, g_{t} \rangle = \frac{\|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2} - \|\mathbf{w}_{t+1} - \mathbf{w}^{*}\|^{2}}{2\eta_{t}} + \frac{\eta_{t} \|\delta_{t}\|^{2}}{2} - \langle \mathbf{w}_{t} - \mathbf{w}^{*}, Z_{t}M_{t} \rangle$$

Taking the conditional expectation w.r.t \mathbf{w}_t , we achieve

$$\begin{split} \langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[g_{t}\right] \rangle &= \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] - \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right]}{2\eta_{t}} + \frac{\eta_{t}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2} - \langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[Z_{t}M_{t}\right] \rangle} \\ \left\langle \mathbf{w}_{t} - \mathbf{w}^{*}, f^{'}\left(\mathbf{w}_{t}\right) \right\rangle &= \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] - \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right]}{2\eta_{t}} + \frac{\eta_{t}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2} - \langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[Z_{t}M_{t}\right] \rangle} \\ f\left(\mathbf{w}_{t}\right) - f\left(\mathbf{w}^{*}\right) + \frac{\lambda}{2} \left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2} \leq \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] - \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right]}{2\eta_{t}} \\ &+ \frac{\eta_{t}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2} - \langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[Z_{t}M_{t}\right] \rangle \end{split}$$

Taking expectation, we come to the following

$$\mathbb{E}\left[f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{\lambda}{2}\left(t-1\right)\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right] - \frac{\lambda}{2}t\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] + \frac{Q}{2\lambda t} + E\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1/2}\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2}\mathbb{E}\left[Z_{t}^{2}\right]^{1/2}$$

Summing when $t = 1, 2, \ldots, T$, we gain

$$\mathbb{E}\left[\frac{\sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)}{T} - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{Q}{2\lambda T} \sum_{t=1}^{T} \frac{1}{t} + \frac{1}{T} \sum_{t=1}^{T} E\left[\|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2}\right]^{1/2} \mathbb{E}\left[\|M_{t}\|^{2}\right]^{1/2} \mathbb{E}\left[Z_{t}^{2}\right]^{1/2} \\
\leq \frac{Q\left(\log T + 1\right)}{2\lambda T} + \frac{1}{T} W^{1/2} \sum_{t=1}^{T} \mathbb{E}\left[\|M_{t}\|^{2}\right]^{1/2} \mathbb{P}\left(Z_{t} = 1\right)^{1/2} \\
\leq \frac{Q\left(\log T + 1\right)}{2\lambda T} + \frac{1}{T} W^{1/2} \sum_{t=1}^{T} \mathbb{E}\left[\|M_{t}\|^{2}\right]^{1/2}$$
(2)

Let $\overline{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^T \mathbf{w}_t$, we reach

$$\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}\right) - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{Q\left(\log T + 1\right)}{2\lambda T} + \frac{1}{T}W^{1/2}\sum_{t=1}^{T}\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2}\mathbb{P}\left(Z_{t} = 1\right)^{1/2}$$
$$\leq \frac{Q\left(\log T + 1\right)}{2\lambda T} + \frac{1}{T}W^{1/2}\sum_{t=1}^{T}\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2}$$

Theorem 9. We denote the gap

$$d_T = \frac{1}{T} W^{1/2} \sum_{t=1}^T \mathbb{E} \left[\|M_t\|^2 \right]^{1/2} \mathbb{P} \left(Z_t = 1 \right)^{1/2}$$

Let r be an integer picked uniformly at random from $\{1, 2, ..., T\}$. Then, with probability of at least $1 - \delta$ we have

$$f(\mathbf{w}_r) \le f(\mathbf{w}^*) + d_T + \frac{Q(\log T + 1)}{2\lambda T\delta}$$

Proof. Let us denote $X = f(\mathbf{w}_r) - f(\mathbf{w}^*) \ge 0$ and $Y = \frac{\sum_{t=1}^T f(\mathbf{w}_t)}{T} - f(\mathbf{w}^*)$. Then, we have

$$\mathbb{E}_{r}\left[X\right] = \mathbb{E}_{r}\left[f\left(\mathbf{w}_{r}\right) - f\left(\mathbf{w}^{*}\right)\right] = \frac{\sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)}{T} - f\left(\mathbf{w}^{*}\right) = Y$$

Therefore, we gain

$$\mathbb{E}\left[X\right] = \mathbb{E}_{\left(x_{t}, y_{t}\right)_{1}^{T}}\left[\mathbb{E}_{r}\left[X\right]\right] = \mathbb{E}\left[Y\right] \le \frac{Q\left(\log T + 1\right)}{2\lambda T} + d_{T}$$

or equivalently

$$\mathbb{E}[X - d_T] = \mathbb{E}[Y - d_T] \le \frac{Q(\log T + 1)}{2\lambda T}$$

where $(x_t, y_t)_1^T$ specifies the sequence of incoming instances $\{(x_1, y_1), \ldots, (x_T, y_T)\}$ and we refer to Eq. (2) for last inequality.

According to Markov inequality, we have

$$\mathbb{P}\left(X - d_T \ge \varepsilon\right) \le \frac{\mathbb{E}\left[X - d_T\right]}{\varepsilon} \le \frac{Q\left(\log T + 1\right)}{2\lambda T\varepsilon}$$
$$\mathbb{P}\left(X - d_T < \varepsilon\right) \ge 1 - \frac{Q\left(\log T + 1\right)}{2\lambda T\varepsilon}$$

Choosing $\varepsilon = \frac{Q(\log T + 1)}{2\lambda T \delta}$, we obtain the conclusion.

Corollary 10. If $\mathbb{E}\left[Z_t^2\right] = \mathbb{P}\left(Z_t = 1\right) = p_t \sim O\left(\frac{1}{t}\right) \text{ then } \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] \sim O\left(\frac{1}{t}\right).$

Proof. Let us define $\delta_t = g_t - Z_t l^{'}(\mathbf{w}_{t'}; x_{t'}, y_{t'})$. We have the following

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \delta_t$$

$$\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \eta_t \delta_t - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \mathbf{w}^*\|^2 + \eta_t^2 \|\delta_t\|^2 - 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, \delta_t \rangle$$

= $\|\mathbf{w}_t - \mathbf{w}^*\|^2 + \eta_t^2 \|\delta_t\|^2 - 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, g_t \rangle + 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, Z_t l'(\mathbf{w}_{t'}; x_{t'}, y_{t'}) \rangle$

Taking conditional expectation w.r.t \mathbf{w}_t^1 , x_1^{t-1} and note that t' < t, we gain

$$\mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^*\right\|^2\right] = \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] - 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, \mathbb{E}\left[g_t\right] \right\rangle + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right) \mathbb{E}\left[Z_t\right] \right\rangle$$
$$= \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] - 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, f^{'}\left(\mathbf{w}_t\right) \right\rangle + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, p_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right) \right\rangle$$
$$\leq \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, p_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right) \right\rangle$$
$$+ 2\eta_t \left(f\left(\mathbf{w}^*\right) - f\left(\mathbf{w}_t\right) - \frac{\lambda}{2} \left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right)$$

Since the function f(.) is λ -strongly convex and \mathbf{w}^* is the optimal solution, we have

$$f(\mathbf{w}_{t}) - f(\mathbf{w}^{*}) \ge \left\langle f'(\mathbf{w}_{t}), \mathbf{w}_{t} - \mathbf{w}^{*} \right\rangle + \frac{\lambda}{2} \|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2} \ge \frac{\lambda}{2} \|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2}$$

_	

It follows that

$$\mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^*\right\|^2\right] \le \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \left\langle \mathbf{w}_t - \mathbf{w}^*, p_t l\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\rangle - 2\eta_t \lambda \left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2$$

Taking expectation the above inequality, we achieve

$$\mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^*\right\|^2\right] \leq \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \mathbb{E}\left[\left\langle\mathbf{w}_t - \mathbf{w}^*, p_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\rangle\right] - 2\eta_t \lambda \mathbb{E}\left\|\left[\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] \\ = \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \mathbb{E}\left[\left\langle\mathbf{w}_t - \mathbf{w}^*, p_t l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\rangle\right] \\ \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right] + \eta_t^2 \mathbb{E}\left[\left\|\delta_t\right\|^2\right] + 2\eta_t \mathbb{E}\left[\left\|\mathbf{w}_t - \mathbf{w}^*\right\|^2\right]^{1/2} \mathbb{E}\left[p_t^2\left\|l^{'}\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\|^2\right]^{1/2}$$

Since $p_t \sim O\left(\frac{1}{t}\right)$, we have $p_t < \frac{C}{t}$ for some C > 0. Therefore, the above inequality becomes

By choosing $W_t = \frac{Q^2 \lambda^{-2} + M^{1/2} C L^{1/2}}{t}$, we gain if $\mathbb{E}\left[\|\mathbf{w}_t - \mathbf{w}^*\|^2\right] \le W_t$, then $\mathbb{E}\left[\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2\right] \le W_{t+1}$. \Box

Theorem 11. Let us consider running of Algorithm 3 where (x_t, y_t) is sampled from the training set \mathcal{D} or the join distribution $\mathbb{P}_{X,Y}$. Let define the gradient error as $M_t = \frac{\Delta_t}{\eta_t} = -l'(\mathbf{w}_{t'}; x_{t'}, y_{t'})$. We have the following

$$\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right) - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D\lambda^{2} + Q\log\left(1/(1-\gamma)\right)}{2\gamma T} + \frac{\beta D^{1/2}}{\gamma T} \sum_{t=(1-\gamma)T+1}^{T} \frac{\mathbb{E}\left[\|M_{t}\|^{2}\right]^{1/2}}{t^{3/2}}$$
(3)

Proof. Let us define $\delta_t = g_t + Z_t M_t$. We have the following

 $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \delta_t$

$$\|\mathbf{w}_{t+1} - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \eta_t \delta_t - \mathbf{w}^*\|^2 = \|\mathbf{w}_t - \mathbf{w}^*\|^2 + \eta_t^2 \|\delta_t\|^2 - 2\eta_t \langle \mathbf{w}_t - \mathbf{w}^*, \delta_t \rangle$$

$$\langle \mathbf{w}_{t} - \mathbf{w}^{*}, g_{t} \rangle = \frac{\|\mathbf{w}_{t} - \mathbf{w}^{*}\|^{2} - \|\mathbf{w}_{t+1} - \mathbf{w}^{*}\|^{2}}{2\eta_{t}} + \frac{\eta_{t} \|\delta_{t}\|^{2}}{2} - \langle \mathbf{w}_{t} - \mathbf{w}^{*}, Z_{t}M_{t} \rangle$$

Taking the conditional expectation w.r.t $\mathbf{w}_t^1,$ we achieve

$$\langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[g_{t}\right] \rangle = \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] - \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right]}{2\eta_{t}} + \frac{\eta_{t}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2} - \langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[Z_{t}M_{t}\right] \rangle$$

$$\left\langle \mathbf{w}_{t} - \mathbf{w}^{*}, \boldsymbol{f}^{'}\left(\mathbf{w}_{t}\right) \right\rangle = \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] - \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right]}{2\eta_{t}} + \frac{\eta_{t}\mathbb{E}\left[\left\|\boldsymbol{\delta}_{t}\right\|^{2}\right]}{2} - \left\langle \mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[\boldsymbol{Z}_{t}\boldsymbol{M}_{t}\right] \right\rangle$$

$$f\left(\mathbf{w}_{t}\right) - f\left(\mathbf{w}^{*}\right) \leq \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t} - \mathbf{w}^{*}\right\|^{2}\right] - \mathbb{E}\left[\left\|\mathbf{w}_{t+1} - \mathbf{w}^{*}\right\|^{2}\right]}{2\eta_{t}} + \frac{\eta_{t}\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2} - \langle\mathbf{w}_{t} - \mathbf{w}^{*}, \mathbb{E}\left[Z_{t}M_{t}\right]\rangle$$

Taking expectation and summing when $t = (1 - \gamma)T + 1, \ldots, T$, let $\overline{\mathbf{w}}_T^{\gamma} = \frac{1}{\gamma T} \sum_{t=(1-\gamma)T+1}^T \mathbf{w}_t$ and note that $p_t \leq P(S_t = 1) \leq \frac{\beta}{t}$, we reach the following

$$\begin{split} \gamma T \mathbb{E} \left[\frac{\sum_{t=(1-\gamma)T+1}^{T} f\left(\mathbf{w}_{t}\right)}{\gamma T} - f\left(\mathbf{w}^{*}\right) \right] &\leq \frac{\mathbb{E} \left[\left\| \mathbf{w}_{(1-\gamma)T+1} - \mathbf{w}^{*} \right\|^{2} \right]}{2\eta_{(1-\gamma)T+1}} + \sum_{t=(1-\gamma)T+2}^{T} \mathbb{E} \left[\left\| \mathbf{w}_{t} - \mathbf{w}^{*} \right\|^{2} \right] \left(\frac{1}{2\eta_{t}} - \frac{1}{2\eta_{t-1}} \right) \end{split}$$
(4)
$$&+ \sum_{t=(1-\gamma)T+1}^{T} \left(\frac{\eta_{t} \mathbb{E} \left[\left\| \delta_{t} \right\|^{2} \right]}{2} + E \left[\left\| \mathbf{w}_{t} - \mathbf{w}^{*} \right\|^{2} \right]^{1/2} \mathbb{E} \left[\left\| M_{t} \right\|^{2} \right]^{1/2} p_{t} \right) \end{aligned}$$
$$&\leq \frac{W_{T} \lambda \left((1-\gamma)T+1 \right)}{2} + \frac{W_{T} \lambda \left(\gamma T - 1 \right)}{2} + \frac{Q}{2\lambda} \sum_{t=(1-\gamma)T+1}^{T} \frac{1}{t} + \sum_{t=(1-\gamma)T+1}^{T} W_{t}^{1/2} \mathbb{E} \left[\left\| M_{t} \right\|^{2} \right]^{1/2} \frac{\beta}{t} \end{aligned}$$
$$&\leq \frac{W_{T} \lambda T}{2} + \frac{Q}{2\lambda} \sum_{t=(1-\gamma)T+1}^{T} \frac{1}{t} + \beta D^{1/2} \sum_{t=(1-\gamma)T+1}^{T} \frac{\mathbb{E} \left[\left\| M_{t} \right\|^{2} \right]^{1/2}}{t^{3/2}} \end{aligned}$$
$$&\leq \frac{D\lambda}{2} + \frac{Q \log \left(1/(1-\gamma) \right)}{2\lambda} + \beta D^{1/2} \sum_{t=(1-\gamma)T+1}^{T} \frac{\mathbb{E} \left[\left\| M_{t} \right\|^{2} \right]^{1/2}}{t^{3/2}} \end{split}$$

$$\gamma T \mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right) - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D\lambda}{2} + \frac{Q\log\left(1/\left(1-\gamma\right)\right)}{2\lambda} + \beta D^{1/2} \sum_{t=(1-\gamma)T+1}^{T} \frac{\mathbb{E}\left[\|M_{t}\|^{2}\right]^{1/2}}{t^{3/2}}$$

To derive the last inequality, we use the facts $\sum_{t=(1-\gamma)T+1}^{T} \frac{1}{t} \leq \log(1/(1-\gamma))$ and $W_t \leq \frac{D}{t}$ for all t. Finally, we achieve

$$\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right) - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D\lambda^{2} + Q\log\left(1/(1-\gamma)\right)}{2\gamma T} + \frac{\beta D^{1/2}}{\gamma T} \sum_{t=(1-\gamma)T+1}^{T} \frac{\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2}}{t^{3/2}}$$

Theorem 12. Let us consider running of Algorithm 3 where (x_t, y_t) is sampled from the training set \mathcal{D} or the join distribution $\mathbb{P}_{X,Y}$. We have the following

$$\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right) - f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D\lambda^{2} + Q\log\left(1/\left(1-\gamma\right)\right) + 2\beta L D^{1/2}\log\left(1/\left(1-\gamma\right)\right)}{2\gamma T}$$

Proof. To gain the conclusion, we use inequality in Eq. (3) and note that $\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1/2} = \mathbb{E}\left[\left\|l'\left(\mathbf{w}_{t'}; x_{t'}, y_{t'}\right)\right\|^{2}\right]^{1/2} \leq L.$

Theorem 13. Let r be an integer randomly picked from $\{(1 - \gamma)T + 1, ..., T\}$. Then, with probability at least $1 - \delta$, we have

$$f\left(\mathbf{w}_{r}\right) \leq f\left(\mathbf{w}^{*}\right) + \frac{R}{2\gamma\delta T}$$

where we have defined $R = D\lambda^2 + Q\log(1/(1-\gamma)) + 2\beta LD^{1/2}\log(1/(1-\gamma))$.

Proof. Let us denote $X = f(\mathbf{w}_r) - f(\mathbf{w}^*) \ge 0$ and $Y = \frac{\sum_{t=(1-\gamma)T+1}^T f(\mathbf{w}_t)}{\gamma T} - f(\mathbf{w}^*)$. Then, we have

$$\mathbb{E}_{r}\left[X\right] = \mathbb{E}_{r}\left[f\left(\mathbf{w}_{r}\right) - f\left(\mathbf{w}^{*}\right)\right] = \frac{\sum_{t=(1-\gamma)T+1}^{T} f\left(\mathbf{w}_{t}\right)}{\gamma T} - f\left(\mathbf{w}^{*}\right) = Y$$

Therefore, we gain

$$\mathbb{E}\left[X\right] = \mathbb{E}_{\left(x_{t}, y_{t}\right)_{1}^{T}}\left[\mathbb{E}_{r}\left[X\right]\right] = \mathbb{E}\left[Y\right] \le \frac{R}{2\gamma T}$$

$$\tag{5}$$

Note that to achieve the last inequality in Eq. (5), we refer to Eq. (4). According to Markov inequality, we have

$$\mathbb{P}\left(X \ge \varepsilon\right) \le \frac{\mathbb{E}\left[X\right]}{\varepsilon} \le \frac{R}{2\gamma T}$$
$$\mathbb{P}\left(X < \varepsilon\right) \ge 1 - \frac{R}{2\gamma T}$$

Choosing $\varepsilon = \frac{R}{2\gamma\delta T}$, we gain the conclusion.

4 Exact Projection

We present in detail how to incrementally maintain the inverse matrix K_t^{-1} . We consider two cases

• $|\mathcal{I}_t| \leq B$ We compute as follows: Compute $d = K_{t-1}^{-1}k_t$ Set $\|\delta_t\|^2 = K(x_t, x_t) - k_t^\mathsf{T} d$ Update

$$K_t^{-1} = \begin{bmatrix} & & & 0 \\ & K_{t-1}^{-1} & & \dots \\ & & & 0 \\ 0 & \dots & 0 & 0 \end{bmatrix} + \frac{1}{\|\delta_t\|^2} \begin{bmatrix} d \\ -1 \end{bmatrix} \begin{bmatrix} d^{\mathsf{T}} & -1 \end{bmatrix}$$

The computational cost to maintain K_t^{-1} when t varies from 1 to B is $\sum_{t=1}^{B} O(t^2) = O(B^3)$.

• $|\mathcal{I}_t| = B + 1$

To update K_t^{-1} from K_{t-1}^{-1} we observe that these two matrices K_{t-1} and K_t are distinct in one row and one column. Concretely, to transform K_{t-1} to K_t , we can substitute the column \mathbf{k}_p by \mathbf{k}_t and do the same for the corresponding row. Therefore, we can formulate $K_t = K_{t-1} + L$ where L is a sparse matrix of all zeros except for one column and row, which can be computed as $L_p = \mathbf{k}_t - \mathbf{k}_p$. It is apparent that rank(L) = 2. To update K_t^{-1} from K_{t-1} , we rely on Thm. 14 (cf. [1]).

We assume that the *i*-th collumn and row in $B \times B$ matrice K_{t-1} and K_t is mapped to the element $x_{\pi(i)}$ in $\{x_1, x_2, \ldots, x_t\}$. We further assume the removal element x_p locates at *m*-th collumn in matrix K_{t-1} . To gain K_t from K_{t-1} , we replace x_p by x_t and hence $\pi^{-1}(t) = \pi^{-1}(p) = m$. It is evident that $K_t = K_{t-1} + L$ where *L* is a matrix of all zeros except for *m*-th column and row, which is computed as $L_m(i) = K(x_t, x_{\pi(i)}) - K(x_p, x_{\pi(i)})$ for $i = 1, \ldots, B$. It is apparent that rank(L) = 2 and it can be decomposed as $L = L_1 + L_2$ where L_1 , L_2 are matrices of all zeros except for *m*-th column and *m*-th row respectively and hence $rank(L_1) = rank(L_2) = 1$.

To directly apply Thm. 14, we denote $C_1 = A = K_{t-1}$, $B_1 = L_1$, and $B_2 = L_2$. We first compute C_2^{-1} by

$$C_2^{-1} = C_1^{-1} - g_1 C_1^{-1} B_1 C_1^{-1}$$
(6)

It is obvious the computational cost to compute C_2^{-1} as in Eq. (6) is O (B^2). We then compute $K_t^{-1} = (A + B)^{-1} = (A + B_1 + B_2)^{-1}$ as

$$K_t^{-1} = (A+B)^{-1} = C_2^{-1} - g_2 C_2^{-1} B_2 C_2^{-1}$$
(7)

The computional cost of Eq. (7) is again O (B^2) .

Theorem 14. Let A and A+B be nonsingular matrices, and let B have rank r > 0. Let $B = B_1 + \dots + B_r$, where each B_i has rank 1, and each $C_{k+1} = A + B_1 + \dots + B_k$ is nonsingular. Setting $C_1 = A$, then $C_{k+1}^{-1} = C_k^{-1} - g_k C_k^{-1} B_k C_k^{-1}$ where $g_k = \frac{1}{1 + trace(C_k^{-1}B_k)}$. In particular, $(A + B)^{-1} = C_r^{-1} - g_r C_r^{-1} B_r C_r^{-1}$.

References

[1] K. S. Miller. On the Inverse of the Sum of Matrices. Mathematics Magazine, 54(2):67–72, 1981.