
Supplementary Material for Nonparametric Budgeted Stochastic

Gradient Descent

1 Notion

We introduce some notions used in this supplementary material.
For regression task, we define ymax = maxy |y|. We further denote the set S as

S =

{
B
(
0, ymaxλ

−1/2
)

if L2 is used and λ ≤1

RD otherwise

where B
(
0, ymaxλ

−1/2
)

=
{
w ∈ RD : ‖w‖ ≤ ymaxλ

−1/2
}

and RD specifies the whole feature space.

2 Loss Functions

We introduce five types of loss functions that can be used in our proposed algorithm, namely Hinge, Logistic,
L2, L1, and ε−insensitive losses. We verify that these loss functions satisfying the necessary condition, that is,∥∥∥l′ (w;x, y)

∥∥∥ ≤ A ‖w‖1/2 + B for some appropriate positive numbers A,B. Without loss of generality, we assume

that feature domain are bounded, i.e., ‖Φ (x)‖ ≤ 1, ∀x ∈ X .

� Hinge loss

l (w;x, y) = max
{

0, 1− ywTΦ (x)
}

l
′
(w;x, y) = −I{ywTΦ(x)≤1}yΦ (x)

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ = ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

� L2 loss
In this case, at the outset we cannot verify that

∥∥∥l′ (w;x, y)
∥∥∥ ≤ A ‖w‖1/2 + B for all w, x, y. However, to

support the proposed theory, we only need to check that
∥∥∥l′ (wt;x, y)

∥∥∥ ≤ A ‖wt‖1/2 + B for all t ≥ 1. We

derive as follows

l (w;x, y) =
1

2

(
y −wTΦ (x)

)2
l
′
(w;x, y) =

(
wTΦ (x)− y

)
Φ (x)

∥∥∥l′ (wt;x, y)
∥∥∥ = |wT

t Φ (x) + y| ‖Φ (x)‖ ≤ |wT
t Φ (x) |+ ymax

≤ ‖Φ (x)‖ ‖wt‖+ ymax ≤ A ‖wt‖1/2 +B

where B = ymax and A =

{
y

1/2
maxλ−1/4 if λ ≤ 1

y
1/2
max (λ− 1)

−1/2
otherwise

.

Here we note that we make use of the fact that ‖wt‖ ≤ ymax (λ− 1)
−1

if λ > 1 (cf. Thm. 7) and ‖wt‖ ≤ ymaxλ
−1/2

otherwise (cf. Line 13 in Alg. 2 and Line 16 in Alg. 3 ).
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� L1 loss

l (w;x, y) = |y −wTΦ (x) |

l
′
(w;x, y) = sign

(
wTΦ (x)− y

)
Φ (x)

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ = ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

� Logistic loss

l (w;x, y) = log
(
1 + exp

(
−ywTΦ (x)

))
l
′
(w;x, y) =

−y exp
(
−ywTΦ (x)

)
Φ (x)

exp (−ywTΦ (x)) + 1

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ < ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

� ε-insensitive loss

l (w;x, y) = max
{

0, |y −wTΦ (x) | − ε
}

l
′
(w;x, y) = I{|y−wTΦ(x)|>ε}sign

(
wTΦ (x)− y

)
x

Therefore, by choosing A = 0, B = 1 we have∥∥∥l′ (w;x, y)
∥∥∥ = ‖Φ (x)‖ ≤ 1 = A ‖w‖1/2 +B

3 Proofs

In this section, we present the full proofs of the corollaries and theorems in our paper.

Corollary 1. The following holds for all t,

E
[
‖wt‖2

]
< P 2 =

(
A+
√
A2 +Bλ

λ

)2

Proof. We prove by induction in t that E
[
‖wt‖2

]1/2
< P = A+

√
A2+Bλ
λ , ∀t = 1, 2, . . .

It is obvious for t = 1 from E
[
‖w1‖2

]1/2
= 0.

Assume that the statement holds for t, according to Minkowski inequality we then have√
E
[
‖wt+1‖2

]
≤ t− 1

t

√
E
[
‖wt‖2

]
+

1

λt

√
E
[
‖l′ (wt;xt, yt)‖2

]
+

1

λt

√
E
[
Z2
t ‖l

′ (wt′ ;xt′ , yt′)‖2
]

≤ t− 1

t

√
E
[
‖wt‖2

]
+

1

λt

√
E
[
‖l′ (wt;xt, yt)‖2

]
+

1

λt

√
E
[
‖l′ (wt′ ;xt′ , yt′)‖2

]
≤ t− 1

t

√
E
[
‖wt‖2

]
+

1

λt

(
A
√
E [‖wt‖] +B +A

√
E [‖wt′‖] +B

)
≤ t− 1

t
P +

2

λt

(
A
√
P +B

)
= P

Note that we have used the assumption about loss function
∥∥∥l′ (w;x, y)

∥∥∥ ≤ A ‖w‖1/2 +B for all w, x, y.

Corollary 2. The following holds for all t,

E
[∥∥∥l′ (wt;xt, yt)

∥∥∥2
]
≤ L =

(
A
√
P +B

)2
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Proof. We have the following√
E
[
‖l′ (wt;xt, yt)‖2

]
≤

√
E
[(
A ‖wt‖1/2 +B

)2
]
≤ A

√
E [‖wt‖] +B ≤ A

√
P +B

Corollary 3. The following holds for all t,

E
[
‖gt‖2

]
≤ G =

(
λP +A

√
P +B

)2

Proof. Again using Minkowski inequality√
E
[
‖gt‖2

]
≤ λ

√
E
[
‖wt‖2

]
+

√
E
[
‖l′ (wt;xt, yt)‖2

]
≤ λP +A

√
P +B

Corollary 4. The following holds for all t,

E
[
‖wt −w∗‖2

]
≤W =

λL1/2 +
√
λ2L+ 8λ2Q

4λ2

Proof. Let us define δt = gt − Ztl
′
(wt′ ;xt′ , yt′). We have the following

wt+1 = wt − ηtδt

‖wt+1 −w∗‖2 = ‖wt − ηtδt −w∗‖2 = ‖wt −w∗‖2 + η2
t ‖δt‖

2 − 2ηt 〈wt −w∗, δt〉

= ‖wt −w∗‖2 + η2
t ‖δt‖

2 − 2ηt 〈wt −w∗, gt〉+ 2ηt

〈
wt −w∗, Ztl

′
(wt′ ;xt′ , yt′)

〉
Taking conditional expectation w.r.t w1

t , we gain

E
[
‖wt+1 −w∗‖2

]
= E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
− 2ηt 〈wt −w∗,E [gt]〉+ 2ηt

〈
wt −w∗,E

[
Ztl
′
(wt′ ;xt′ , yt′)

]〉
=E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
− 2ηt

〈
wt −w∗, f

′
(wt)

〉
+ 2ηt

〈
wt −w∗,E

[
Ztl
′
(wt′ ;xt′ , yt′)

]〉
≤E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηt

〈
wt −w∗,E

[
Ztl
′
(wt′ ;xt′ , yt′)

]〉
+ 2ηt

(
f (w∗)− f (wt)−

λ

2
‖wt −w∗‖2

)
Since the function f (.) is λ-strongly convex and w∗ is the optimal solution, we have

f (wt)− f (w∗) ≥
〈
f
′
(wt) ,wt −w∗

〉
+
λ

2
‖wt −w∗‖2 ≥ λ

2
‖wt −w∗‖2

It follows that

E
[
‖wt+1 −w∗‖2

]
≤ E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηt

〈
wt −w∗,E

[
Ztl
′
(wt′ ;xt′ , yt′)

]〉
− 2ηtλ ‖wt −w∗‖2
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Taking expectation the above inequality, we achieve

E
[
‖wt+1 −w∗‖2

]
≤ E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[〈
wt −w∗, Ztl

′
(wt′ ;xt′ , yt′)

〉]
− 2ηtλE ‖wt −w∗‖2

=
t− 2

t
E
[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[〈
wt −w∗, Ztl

′
(wt′ ;xt′ , yt′)

〉]
≤ t− 2

t
E
[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[
‖wt −w∗‖2

]1/2
E
[∥∥∥l′ (wt′ ;xt′ , yt′)

∥∥∥2
]1/2

E
[
Z2
t

]1/2
≤ t− 2

t
E
[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[
‖wt −w∗‖2

]1/2
E
[∥∥∥l′ (wt′ ;xt′ , yt′)

∥∥∥2
]1/2

P (Zt = 1)
1/2

≤ t− 2

t
E
[
‖wt −w∗‖2

]
+

Q

λ2t2
+

E
[
‖wt −w∗‖2

]1/2
L1/2

λt

≤ t− 2

t
E
[
‖wt −w∗‖2

]
+
Q

λ2
+

E
[
‖wt −w∗‖2

]1/2
L1/2

λt

Choosing W =
λL1/2+

√
λ2L+8λ2Q

4λ2 , we destine if E
[
‖wt −w∗‖2

]
≤W then E

[
‖wt+1 −w∗‖2

]
≤W .

Here we note that we have bounded E
[
‖δt‖2

]
≤ 2

(
E
[
‖gt‖2

]
+ E

[∥∥∥l′ (wt′ ;xt′ , y
′
t)
∥∥∥2
])

= 2 (G+ L) = Q and

E
[
Z2
t

]
= P (Zt = 1) = pt ≤ 1.

Theorem 5. If w∗ = argmin
w

(
λ
2 ‖w‖

2
+ 1

N

∑N
i=1

(
yi −wTΦ (xi)

)2)
then ‖w∗‖ ≤ ymaxλ

−1/2.

Proof. Let us consider the equivalent constrains optimization problem

min
w,ξ

(
λ

2
‖w‖2 +

1

N

N∑
i=1

ξ2
i

)
s.t.: ξi = yi −wTΦ (xi) , ∀i

The Lagrange function is of the following form

L (w, ξ, α) =
λ

2

∥∥w2
∥∥+

1

N

N∑
i=1

ξ2
i +

N∑
i=1

αi
(
yi −wTΦ (xi)− ξi

)
Setting the derivatives to 0, we gain

∇wL = λw −
N∑
i=1

αiΦ (xi) = 0→ w = λ−1
N∑
i=1

αiΦ (xi)

∇ξiL =
2

N
ξi − αi = 0→ ξi =

Nαi
2

Substituting the above to the Lagrange function, we gain the dual form

W (α) =− λ

2
‖w‖2 +

N∑
i=1

yiαi −
N

4

N∑
i=1

α2
i

= − 1

2λ

∥∥∥∥∥∑
i=1

αiΦ (xi)

∥∥∥∥∥
2

+

N∑
i=1

yiαi −
N

4

N∑
i=1

α2
i

Let us denote (w∗, ξ∗) and α∗ be the primal and dual solutions, respectively. Since the strong duality holds,
we have

λ

2
‖w∗‖2 +

1

N

N∑
i=1

ξ∗2i = −λ
2
‖w∗‖2 +

N∑
i=1

yiα
∗
i −

N

4

N∑
i=1

α∗2i
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λ ‖w∗‖2 =

N∑
i=1

yiα
∗
i −

N

4

N∑
i=1

α∗2i −
1

N

N∑
i=1

ξ∗2i

≤
N∑
i=1

(
yiα
∗
i −

N

4
α∗2i

)
≤

N∑
i=1

y2
i

N
≤ y2

max

We note that we have used g (α∗i ) = yiα
∗
i − N

4 α
∗2
i ≤ g

(
2yi
N

)
=

y2i
N . Hence, we gain the conclusion.

Lemma 6. Assume that L2 loss is using, the following statement holds

‖wT+1‖ ≤ λ−1

(
ymax +

1

T

T∑
t=1

‖wt‖

)

where ymax = max
y∈Y
|y|.

Proof. We have the following

wt+1 =
∏
S

(
t− 1

t
wt − ηtαtΦ (xt)

)
It follows that

‖wt+1‖ ≤
t− 1

t
‖wt‖+

1

λt
|αt| since ‖Φ (xt)‖ = 1

It happens that l
′
(wt;xt, yt) = αtΦ (xt). Hence, we gain

|αt| =
∣∣yt −wT

t Φ (xt)
∣∣ ≤ ymax + ‖wt‖ ‖Φ (xt)‖ ≤ ymax + ‖wt‖

It implies that
t ‖wt+1‖ ≤ (t− 1) ‖wt‖+ λ−1 (ymax + ‖wt‖)

Taking sum when t = 1, 2, . . . , T , we achieve

T ‖wT+1‖ ≤ λ−1

(
Tymax +

T∑
t=1

‖wt‖

)

‖wT+1‖ ≤ λ−1

(
ymax +

1

T

T∑
t=1

‖wt‖

)
(1)

Theorem 7. If λ > 1 then ‖wT+1‖ ≤ ymax

λ−1

(
1− 1

λT

)
< ymax

λ−1 for all T .

Proof. First we consider the sequence {sT }T which is identified as sT+1 = λ−1 (ymax + sT ) and s1 = 0. It is easy
to find the formula of this sequence as

sT+1 −
ymax

λ− 1
= λ−1

(
sT −

ymax

λ− 1

)
= . . . = λ−T

(
s1 −

ymax

λ− 1

)
=
λ−T ymax

λ− 1

sT+1 =
ymax

λ− 1

(
1− 1

λT

)
We prove by induction by T that ‖wT ‖ ≤ sT for all T . It is obvious that ‖w1‖ = s1 = 0. Assume that ‖wt‖ ≤ st

for t ≤ T , we verify it for T + 1. Indeed, we have

‖wT+1‖ ≤ λ−1

(
ymax +

1

T

T∑
t=1

‖wt‖

)
≤ λ−1

(
ymax +

1

T

T∑
t=1

st

)
≤ λ−1 (ymax + sT ) = sT+1
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Theorem 8. Let us consider running of Algorithm 2 where (xt, yt) is sampled from the training set D or the join
distribution PX,Y . Let define the gradient error as Mt = ∆t

ηt
= −l′ (wt′ ;xt′ , yt′). We have the following

E [f (wT )− f (w∗)] ≤ Q (log T + 1)

2λT
+

1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
P (Zt = 1)

1/2

≤ Q (log T + 1)

2λT
+

1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
Proof. Let us define δt = gt + ZtMt. We have wt+1 = wt − ηtδt.

‖wt+1 −w∗‖2 = ‖wt − ηtδt −w∗‖2 = ‖wt −w∗‖2 + η2
t ‖δt‖

2 − 2ηt 〈wt −w∗, δt〉

〈wt −w∗, gt〉 =
‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2ηt
+
ηt ‖δt‖2

2
− 〈wt −w∗, ZtMt〉

Taking the conditional expectation w.r.t wt, we achieve

〈wt −w∗,E [gt]〉 =
E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηtE

[
‖δt‖2

]
2

− 〈wt −w∗,E [ZtMt]〉

〈
wt −w∗, f

′
(wt)

〉
=

E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηtE

[
‖δt‖2

]
2

− 〈wt −w∗,E [ZtMt]〉

f (wt)− f (w∗) +
λ

2
‖wt −w∗‖2 ≤

E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηtE

[
‖δt‖2

]
2

− 〈wt −w∗,E [ZtMt]〉

Taking expectation, we come to the following

E [f (wt)− f (w∗)] ≤ λ

2
(t− 1)E

[
‖wt −w∗‖2

]
− λ

2
tE
[
‖wt+1 −w∗‖2

]
+

Q

2λt

+ E
[
‖wt −w∗‖2

]1/2
E
[
‖Mt‖2

]1/2
E
[
Z2
t

]1/2
Summing when t = 1, 2, . . . , T , we gain

E

[∑T
t=1 f (wt)

T
− f (w∗)

]
≤ Q

2λT

T∑
t=1

1

t
+

1

T

T∑
t=1

E
[
‖wt −w∗‖2

]1/2
E
[
‖Mt‖2

]1/2
E
[
Z2
t

]1/2
≤ Q (log T + 1)

2λT
+

1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
P (Zt = 1)

1/2

≤ Q (log T + 1)

2λT
+

1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
(2)

Let wT = 1
T

∑T
t=1 wt, we reach

E [f (wT )− f (w∗)] ≤ Q (log T + 1)

2λT
+

1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
P (Zt = 1)

1/2

≤ Q (log T + 1)

2λT
+

1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
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Theorem 9. We denote the gap

dT =
1

T
W 1/2

T∑
t=1

E
[
‖Mt‖2

]1/2
P (Zt = 1)

1/2

Let r be an integer picked uniformly at random from {1, 2, . . . , T}. Then, with probability of at least 1 − δ we
have

f (wr) ≤ f (w∗) + dT +
Q (log T + 1)

2λTδ

Proof. Let us denote X = f (wr)− f (w∗) ≥ 0 and Y =
∑T
t=1 f(wt)

T − f (w∗). Then, we have

Er [X] = Er [f (wr)− f (w∗)] =

∑T
t=1 f (wt)

T
− f (w∗) = Y

Therefore, we gain

E [X] = E(xt,yt)
T
1

[Er [X]] = E [Y ] ≤ Q (log T + 1)

2λT
+ dT

or equivalently

E [X − dT ] = E [Y − dT ] ≤ Q (log T + 1)

2λT

where (xt, yt)
T
1 specifies the sequence of incoming instances {(x1, y1) , . . . , (xT , yT )} and we refer to Eq. (2) for last

inequality.
According to Markov inequality, we have

P (X − dT ≥ ε) ≤
E [X − dT ]

ε
≤ Q (log T + 1)

2λTε

P (X − dT < ε) ≥ 1− Q (log T + 1)

2λTε

Choosing ε = Q(log T+1)
2λTδ , we obtain the conclusion.

Corollary 10. If E
[
Z2
t

]
= P (Zt = 1) = pt ∼ O

(
1
t

)
then E

[
‖wt −w∗‖2

]
∼ O

(
1
t

)
.

Proof. Let us define δt = gt − Ztl
′
(wt′ ;xt′ , yt′). We have the following

wt+1 = wt − ηtδt

‖wt+1 −w∗‖2 = ‖wt − ηtδt −w∗‖2 = ‖wt −w∗‖2 + η2
t ‖δt‖

2 − 2ηt 〈wt −w∗, δt〉

= ‖wt −w∗‖2 + η2
t ‖δt‖

2 − 2ηt 〈wt −w∗, gt〉+ 2ηt

〈
wt −w∗, Ztl

′
(wt′ ;xt′ , yt′)

〉
Taking conditional expectation w.r.t w1

t , x
t−1
1 and note that t′ < t, we gain

E
[
‖wt+1 −w∗‖2

]
= E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
− 2ηt 〈wt −w∗,E [gt]〉+ 2ηt

〈
wt −w∗, l

′
(wt′ ;xt′ , yt′)E [Zt]

〉
=E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
− 2ηt

〈
wt −w∗, f

′
(wt)

〉
+ 2ηt

〈
wt −w∗, ptl

′
(wt′ ;xt′ , yt′)

〉
≤E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηt

〈
wt −w∗, ptl

′
(wt′ ;xt′ , yt′)

〉
+ 2ηt

(
f (w∗)− f (wt)−

λ

2
‖wt −w∗‖2

)
Since the function f (.) is λ-strongly convex and w∗ is the optimal solution, we have

f (wt)− f (w∗) ≥
〈
f
′
(wt) ,wt −w∗

〉
+
λ

2
‖wt −w∗‖2 ≥ λ

2
‖wt −w∗‖2
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It follows that

E
[
‖wt+1 −w∗‖2

]
≤ E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηt 〈wt −w∗, ptl (wt′ ;xt′ , yt′)〉 − 2ηtλ ‖wt −w∗‖2

Taking expectation the above inequality, we achieve

E
[
‖wt+1 −w∗‖2

]
≤ E

[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[〈
wt −w∗, ptl

′
(wt′ ;xt′ , yt′)

〉]
− 2ηtλE ‖[wt −w∗‖2

=
t− 2

t
E
[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[〈
wt −w∗, ptl

′
(wt′ ;xt′ , yt′)

〉]
≤ t− 2

t
E
[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[
‖wt −w∗‖2

]1/2
E
[
p2
t

∥∥∥l′ (wt′ ;xt′ , yt′)
∥∥∥2
]1/2

Since pt ∼ O
(

1
t

)
, we have pt <

C
t for some C > 0. Therefore, the above inequality becomes

E
[
‖wt+1 −w∗‖2

]
≤ t− 2

t
E
[
‖wt −w∗‖2

]
+ η2

tE
[
‖δt‖2

]
+ 2ηtE

[
‖wt −w∗‖2

]1/2 C
t
E
[∥∥∥l′ (wt′ ;xt′ , yt′)

∥∥∥]1/2
≤ t− 2

t
E
[
‖wt −w∗‖2

]
+

Q

λ2t2
+

E
[
‖wt −w∗‖2

]1/2
CL1/2

λt2

By choosing Wt = Q2λ−2+M1/2CL1/2

t , we gain if E
[
‖wt −w∗‖2

]
≤Wt, then E

[
‖wt+1 −w∗‖2

]
≤Wt+1.

Theorem 11. Let us consider running of Algorithm 3 where (xt, yt) is sampled from the training set D or the join
distribution PX,Y . Let define the gradient error as Mt = ∆t

ηt
= −l′ (wt′ ;xt′ , yt′). We have the following

E [f (wγ
T )− f (w∗)] ≤ Dλ2 +Q log (1/ (1− γ))

2γT
+
βD1/2

γT

T∑
t=(1−γ)T+1

E
[
‖Mt‖2

]1/2
t3/2

(3)

Proof. Let us define δt = gt + ZtMt. We have the following

wt+1 = wt − ηtδt

‖wt+1 −w∗‖2 = ‖wt − ηtδt −w∗‖2 = ‖wt −w∗‖2 + η2
t ‖δt‖

2 − 2ηt 〈wt −w∗, δt〉

〈wt −w∗, gt〉 =
‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2ηt
+
ηt ‖δt‖2

2
− 〈wt −w∗, ZtMt〉

Taking the conditional expectation w.r.t w1
t , we achieve

〈wt −w∗,E [gt]〉 =
E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηtE

[
‖δt‖2

]
2

− 〈wt −w∗,E [ZtMt]〉

〈
wt −w∗, f

′
(wt)

〉
=

E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηtE

[
‖δt‖2

]
2

− 〈wt −w∗,E [ZtMt]〉

f (wt)− f (w∗) ≤
E
[
‖wt −w∗‖2

]
− E

[
‖wt+1 −w∗‖2

]
2ηt

+
ηtE

[
‖δt‖2

]
2

− 〈wt −w∗,E [ZtMt]〉

Taking expectation and summing when t = (1− γ)T + 1, . . . , T , let wγ
T = 1

γT

∑T
t=(1−γ)T+1 wt and note that

pt ≤ P (St = 1) ≤ β
t , we reach the following
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γTE

[∑T
t=(1−γ)T+1 f (wt)

γT
− f (w∗)

]
≤

E
[∥∥w(1−γ)T+1 −w∗

∥∥2
]

2η(1−γ)T+1
+

T∑
t=(1−γ)T+2

E
[
‖wt −w∗‖2

]( 1

2ηt
− 1

2ηt−1

)
(4)

+

T∑
t=(1−γ)T+1

ηtE
[
‖δt‖2

]
2

+ E
[
‖wt −w∗‖2

]1/2
E
[
‖Mt‖2

]1/2
pt


≤ WTλ ((1− γ)T + 1)

2
+
WTλ (γT − 1)

2
+
Q

2λ

T∑
t=(1−γ)T+1

1

t
+

T∑
t=(1−γ)T+1

W
1/2
t E

[
‖Mt‖2

]1/2 β
t

≤ WTλT

2
+ +

Q

2λ

T∑
t=(1−γ)T+1

1

t
+ βD1/2

T∑
t=(1−γ)T+1

E
[
‖Mt‖2

]1/2
t3/2

≤ Dλ

2
+
Q log (1/ (1− γ))

2λ
+ βD1/2

T∑
t=(1−γ)T+1

E
[
‖Mt‖2

]1/2
t3/2

γTE [f (wγ
T )− f (w∗)] ≤ Dλ

2
+
Q log (1/ (1− γ))

2λ
+ βD1/2

T∑
t=(1−γ)T+1

E
[
‖Mt‖2

]1/2
t3/2

To derive the last inequality, we use the facts
∑T
t=(1−γ)T+1

1
t ≤ log (1/ (1− γ)) and Wt ≤ D

t for all t.
Finally, we achieve

E [f (wγ
T )− f (w∗)] ≤ Dλ2 +Q log (1/ (1− γ))

2γT
+
βD1/2

γT

T∑
t=(1−γ)T+1

E
[
‖Mt‖2

]1/2
t3/2

Theorem 12. Let us consider running of Algorithm 3 where (xt, yt) is sampled from the training set D or the join
distribution PX,Y . We have the following

E [f (wγ
T )− f (w∗)] ≤ Dλ2 +Q log (1/ (1− γ)) + 2βLD1/2 log (1/ (1− γ))

2γT

Proof. To gain the conclusion, we use inequality in Eq. (3) and note that E
[
‖Mt‖2

]1/2
= E

[∥∥∥l′ (wt′ ;xt′ , yt′)
∥∥∥2
]1/2

≤

L.

Theorem 13. Let r be an integer randomly picked from {(1− γ)T + 1, . . . , T}. Then, with probability at least
1− δ, we have

f (wr) ≤ f (w∗) +
R

2γδT

where we have defined R = Dλ2 +Q log (1/ (1− γ)) + 2βLD1/2 log (1/ (1− γ)).

Proof. Let us denote X = f (wr)− f (w∗) ≥ 0 and Y =
∑T
t=(1−γ)T+1 f(wt)

γT − f (w∗). Then, we have

Er [X] = Er [f (wr)− f (w∗)] =

∑T
t=(1−γ)T+1 f (wt)

γT
− f (w∗) = Y

9



Therefore, we gain

E [X] = E(xt,yt)
T
1

[Er [X]] = E [Y ] ≤ R

2γT
(5)

Note that to achieve the last inequality in Eq. (5), we refer to Eq. (4).
According to Markov inequality, we have

P (X ≥ ε) ≤ E [X]

ε
≤ R

2γT

P (X < ε) ≥ 1− R

2γT

Choosing ε = R
2γδT , we gain the conclusion.

4 Exact Projection

We present in detail how to incrementally maintain the inverse matrix K−1
t . We consider two cases

� |It| ≤ B
We compute as follows:
Compute d = K−1

t−1kt

Set ‖δt‖2 = K (xt, xt)− kTt d
Update

K−1
t =


0

K−1
t−1 ...

0
0 ... 0 0

+
1

‖δt‖2

[
d
−1

] [
dT −1

]
The computational cost to maintain K−1

t when t varies from 1 to B is
∑B
t=1 O

(
t2
)

= O
(
B3
)
.

� |It| = B + 1
To update K−1

t from K−1
t−1 we observe that these two matrices Kt−1 and Kt are distinct in one row and one

column. Concretely, to transform Kt−1 to Kt, we can substitute the column kp by kt and do the same for
the corresponding row. Therefore, we can formulate Kt = Kt−1 + L where L is a sparse matrix of all zeros
except for one column and row, which can be computed as Lp = kt − kp. It is apparent that rank (L) = 2.
To update K−1

t from Kt−1, we rely on Thm. 14 (cf. [1]).

We assume that the i-th collumn and row in B × B matrice Kt−1 and Kt is mapped to the element
xπ(i) in {x1, x2, . . . , xt}. We further assume the removal element xp locates at m-th collumn in matrix
Kt−1. To gain Kt from Kt−1, we replace xp by xt and hence π−1 (t) = π−1 (p) = m. It is evident that
Kt = Kt−1 + L where L is a matrix of all zeros except for m−th column and row, which is computed as
Lm (i) = K

(
xt, xπ(i)

)
−K

(
xp, xπ(i)

)
for i = 1, . . . , B. It is apparent that rank (L) = 2 and it can be decom-

posed as L = L1 +L2 where L1, L2 are matrices of all zeros except for m-th column and m-th row respectively
and hence rank (L1) = rank (L2) = 1.
To directly apply Thm. 14, we denote C1 = A = Kt−1, B1 = L1, and B2 = L2. We first compute C−1

2 by

C−1
2 = C−1

1 − g1C
−1
1 B1C

−1
1 (6)

It is obvious the computational cost to compute C−1
2 as in Eq. (6) is O

(
B2
)
.

We then compute K−1
t = (A+B)

−1
= (A+B1 +B2)

−1
as

K−1
t = (A+B)

−1
= C−1

2 − g2C
−1
2 B2C

−1
2 (7)

The computional cost of Eq. (7) is again O
(
B2
)
.

Theorem 14. Let A and A+B be nonsingular matrices, and let B have rank r > 0. Let B = B1+· · ·+Br, where each
Bi has rank 1, and each Ck+1 = A+B1 + · · ·+Bk is nonsingular. Setting C1 = A, then C−1

k+1 = C−1
k −gkC

−1
k BkC

−1
k

where gk = 1
1+trace(C=1

k Bk)
. In particular, (A+B)−1 = C−1

r − grC−1
r BrC

−1
r .
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