Supplementary Material for Nonparametric Budgeted Stochastic Gradient Descent

1 Notion

We introduce some notions used in this supplementary material.
For regression task, we define $y_{\max }=\max _{y}|y|$. We further denote the set S as

$$
S= \begin{cases}\mathcal{B}\left(\mathbf{0}, y_{\max } \lambda^{-1 / 2}\right) & \text { if } \mathrm{L} 2 \text { is used and } \lambda \leq 1 \\ \mathbb{R}^{D} & \text { otherwise }\end{cases}
$$

where $\mathcal{B}\left(\mathbf{0}, y_{\max } \lambda^{-1 / 2}\right)=\left\{\mathbf{w} \in \mathbb{R}^{D}:\|\mathbf{w}\| \leq y_{\max } \lambda^{-1 / 2}\right\}$ and \mathbb{R}^{D} specifies the whole feature space.

2 Loss Functions

We introduce five types of loss functions that can be used in our proposed algorithm, namely Hinge, Logistic, L2, L1, and ε-insensitive losses. We verify that these loss functions satisfying the necessary condition, that is, $\left\|l^{\prime}(\mathbf{w} ; x, y)\right\| \leq A\|\mathbf{w}\|^{1 / 2}+B$ for some appropriate positive numbers A, B. Without loss of generality, we assume that feature domain are bounded, i.e., $\|\Phi(x)\| \leq 1, \forall x \in \mathcal{X}$.

- Hinge loss

$$
\begin{aligned}
l(\mathbf{w} ; x, y) & =\max \left\{0,1-y \mathbf{w}^{\top} \Phi(x)\right\} \\
l^{\prime}(\mathbf{w} ; x, y) & =-\mathbb{I}_{\left\{y \mathbf{w}^{\top} \Phi(x) \leq 1\right\}} y \Phi(x)
\end{aligned}
$$

Therefore, by choosing $A=0, B=1$ we have

$$
\left\|l^{\prime}(\mathbf{w} ; x, y)\right\|=\|\Phi(x)\| \leq 1=A\|\mathbf{w}\|^{1 / 2}+B
$$

- L2 loss

In this case, at the outset we cannot verify that $\left\|l^{\prime}(\mathbf{w} ; x, y)\right\| \leq A\|\mathbf{w}\|^{1 / 2}+B$ for all \mathbf{w}, x, y. However, to support the proposed theory, we only need to check that $\left\|l^{\prime}\left(\mathbf{w}_{t} ; x, y\right)\right\| \leq A\left\|\mathbf{w}_{t}\right\|^{1 / 2}+B$ for all $t \geq 1$. We derive as follows

$$
\begin{gathered}
l(\mathbf{w} ; x, y)=\frac{1}{2}\left(y-\mathbf{w}^{\top} \Phi(x)\right)^{2} \\
l^{\prime}(\mathbf{w} ; x, y)=\left(\mathbf{w}^{\top} \Phi(x)-y\right) \Phi(x) \\
\left\|l^{\prime}\left(\mathbf{w}_{t} ; x, y\right)\right\|
\end{gathered} \begin{aligned}
& \left\|\mathbf{w}_{t}^{\top} \Phi(x)+y\left|\|\Phi(x)\| \leq\left|\mathbf{w}_{t}^{\top} \Phi(x)\right|+y_{\max }\right.\right. \\
& \leq\|\Phi(x)\|\left\|\mathbf{w}_{t}\right\|+y_{\max } \leq A\left\|\mathbf{w}_{t}\right\|^{1 / 2}+B
\end{aligned}
$$

where $B=y_{\max }$ and $A=\left\{\begin{array}{ll}y_{\max }^{1 / 2} \lambda^{-1 / 4} & \text { if } \lambda \leq 1 \\ y_{\max }^{1 / 2}(\lambda-1)^{-1 / 2} & \text { otherwise }\end{array}\right.$.
Here we note that we make use of the fact that $\left\|\mathbf{w}_{t}\right\| \leq y_{\max }(\lambda-1)^{-1}$ if $\lambda>1$ (cf. Thm. 7) and $\left\|\mathbf{w}_{t}\right\| \leq y_{\max } \lambda^{-1 / 2}$ otherwise (cf. Line 13 in Alg. 2 and Line 16 in Alg. 3).

- L1 loss

$$
\begin{aligned}
l(\mathbf{w} ; x, y) & =\left|y-\mathbf{w}^{\top} \Phi(x)\right| \\
l^{\prime}(\mathbf{w} ; x, y) & =\operatorname{sign}\left(\mathbf{w}^{\top} \Phi(x)-y\right) \Phi(x)
\end{aligned}
$$

Therefore, by choosing $A=0, B=1$ we have

$$
\left\|l^{\prime}(\mathbf{w} ; x, y)\right\|=\|\Phi(x)\| \leq 1=A\|\mathbf{w}\|^{1 / 2}+B
$$

- Logistic loss

$$
\begin{aligned}
l(\mathbf{w} ; x, y) & =\log \left(1+\exp \left(-y \mathbf{w}^{\top} \Phi(x)\right)\right) \\
l^{\prime}(\mathbf{w} ; x, y) & =\frac{-y \exp \left(-y \mathbf{w}^{\top} \Phi(x)\right) \Phi(x)}{\exp \left(-y \mathbf{w}^{\top} \Phi(x)\right)+1}
\end{aligned}
$$

Therefore, by choosing $A=0, B=1$ we have

$$
\left\|l^{\prime}(\mathbf{w} ; x, y)\right\|<\|\Phi(x)\| \leq 1=A\|\mathbf{w}\|^{1 / 2}+B
$$

- ε-insensitive loss

$$
\begin{aligned}
l(\mathbf{w} ; x, y) & =\max \left\{0,\left|y-\mathbf{w}^{\top} \Phi(x)\right|-\varepsilon\right\} \\
l^{\prime}(\mathbf{w} ; x, y) & =\mathbb{I}_{\left\{\left|y-\mathbf{w}^{\top} \Phi(x)\right|>\varepsilon\right\}} \operatorname{sign}\left(\mathbf{w}^{\top} \Phi(x)-y\right) x
\end{aligned}
$$

Therefore, by choosing $A=0, B=1$ we have

$$
\left\|l^{\prime}(\mathbf{w} ; x, y)\right\|=\|\Phi(x)\| \leq 1=A\|\mathbf{w}\|^{1 / 2}+B
$$

3 Proofs

In this section, we present the full proofs of the corollaries and theorems in our paper.
Corollary 1. The following holds for all t,

$$
\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]<P^{2}=\left(\frac{A+\sqrt{A^{2}+B \lambda}}{\lambda}\right)^{2}
$$

Proof. We prove by induction in t that $\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]^{1 / 2}<P=\frac{A+\sqrt{A^{2}+B \lambda}}{\lambda}, \forall t=1,2, \ldots$
It is obvious for $t=1$ from $\mathbb{E}\left[\left\|\mathbf{w}_{1}\right\|^{2}\right]^{1 / 2}=0$.
Assume that the statement holds for t, according to Minkowski inequality we then have

$$
\begin{aligned}
\sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t+1}\right\|^{2}\right]} & \leq \frac{t-1}{t} \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]}+\frac{1}{\lambda t} \sqrt{\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t} ; x_{t}, y_{t}\right)\right\|^{2}\right]}+\frac{1}{\lambda t} \sqrt{\mathbb{E}\left[Z_{t}^{2}\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|^{2}\right]} \\
& \leq \frac{t-1}{t} \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]}+\frac{1}{\lambda t} \sqrt{\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t} ; x_{t}, y_{t}\right)\right\|^{2}\right]}+\frac{1}{\lambda t} \sqrt{\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|^{2}\right]} \\
& \leq \frac{t-1}{t} \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]}+\frac{1}{\lambda t}\left(A \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|\right]}+B+A \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t^{\prime}}\right\|\right]}+B\right) \\
& \leq \frac{t-1}{t} P+\frac{2}{\lambda t}(A \sqrt{P}+B)=P
\end{aligned}
$$

Note that we have used the assumption about loss function $\left\|l^{\prime}(\mathbf{w} ; x, y)\right\| \leq A\|\mathbf{w}\|^{1 / 2}+B$ for all \mathbf{w}, x, y.
Corollary 2. The following holds for all t,

$$
\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t} ; x_{t}, y_{t}\right)\right\|^{2}\right] \leq L=(A \sqrt{P}+B)^{2}
$$

Proof. We have the following

$$
\sqrt{\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t} ; x_{t}, y_{t}\right)\right\|^{2}\right]} \leq \sqrt{\mathbb{E}\left[\left(A\left\|\mathbf{w}_{t}\right\|^{1 / 2}+B\right)^{2}\right]} \leq A \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|\right]}+B \leq A \sqrt{P}+B
$$

Corollary 3. The following holds for all t,

$$
\mathbb{E}\left[\left\|g_{t}\right\|^{2}\right] \leq G=(\lambda P+A \sqrt{P}+B)^{2}
$$

Proof. Again using Minkowski inequality

$$
\sqrt{\mathbb{E}\left[\left\|g_{t}\right\|^{2}\right]} \leq \lambda \sqrt{\mathbb{E}\left[\left\|\mathbf{w}_{t}\right\|^{2}\right]}+\sqrt{\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t} ; x_{t}, y_{t}\right)\right\|^{2}\right]} \leq \lambda P+A \sqrt{P}+B
$$

Corollary 4. The following holds for all t,

$$
\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right] \leq W=\frac{\lambda L^{1 / 2}+\sqrt{\lambda^{2} L+8 \lambda^{2} Q}}{4 \lambda^{2}}
$$

Proof. Let us define $\delta_{t}=g_{t}-Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)$. We have the following

$$
\begin{gathered}
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \delta_{t} \\
\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\eta_{t} \delta_{t}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\delta_{t}\right\|^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \delta_{t}\right\rangle \\
=\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\delta_{t}\right\|^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, g_{t}\right\rangle+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle
\end{gathered}
$$

Taking conditional expectation w.r.t \mathbf{w}_{t}^{1}, we gain

$$
\begin{aligned}
\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] & =\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[g_{t}\right]\right\rangle+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right]\right\rangle \\
= & \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right]\right\rangle \\
\leq & \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right]\right\rangle \\
& +2 \eta_{t}\left(f\left(\mathbf{w}^{*}\right)-f\left(\mathbf{w}_{t}\right)-\frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right)
\end{aligned}
$$

Since the function $f($.$) is \lambda$-strongly convex and \mathbf{w}^{*} is the optimal solution, we have

$$
f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{*}\right) \geq\left\langle f^{\prime}\left(\mathbf{w}_{t}\right), \mathbf{w}_{t}-\mathbf{w}^{*}\right\rangle+\frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2} \geq \frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}
$$

It follows that
$\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right]\right\rangle-2 \eta_{t} \lambda\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}$

Taking expectation the above inequality, we achieve

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle\right]-2 \eta_{t} \lambda \mathbb{E}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2} \\
&=\frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle\right] \\
& \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[Z_{t}^{2}\right]^{1 / 2} \\
& \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|^{2}\right]^{1 / 2} \mathbb{P}\left(Z_{t}=1\right)^{1 / 2} \\
& \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\frac{Q}{\lambda^{2} t^{2}}+\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} L^{1 / 2}}{\lambda t} \\
& \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\frac{Q}{\lambda^{2}}+\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} L^{1 / 2}}{\lambda t}
\end{aligned}
$$

Choosing $W=\frac{\lambda L^{1 / 2}+\sqrt{\lambda^{2} L+8 \lambda^{2} Q}}{4 \lambda^{2}}$, we destine if $\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right] \leq W$ then $\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq W$.
Here we note that we have bounded $\mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right] \leq 2\left(\mathbb{E}\left[\left\|g_{t}\right\|^{2}\right]+\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t}^{\prime}\right)\right\|^{2}\right]\right)=2(G+L)=Q$ and $\mathbb{E}\left[Z_{t}^{2}\right]=P\left(Z_{t}=1\right)=p_{t} \leq 1$.

Theorem 5. If $\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}}\left(\frac{\lambda}{2}\|\mathbf{w}\|^{2}+\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{\top} \Phi\left(x_{i}\right)\right)^{2}\right)$ then $\left\|\mathbf{w}^{*}\right\| \leq y_{\max } \lambda^{-1 / 2}$.
Proof. Let us consider the equivalent constrains optimization problem

$$
\begin{aligned}
& \qquad \min _{\mathbf{w}, \boldsymbol{\xi}}\left(\frac{\lambda}{2}\|\mathbf{w}\|^{2}+\frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{2}\right) \\
& \text { s.t.: } \xi_{i}=y_{i}-\mathbf{w}^{\top} \Phi\left(x_{i}\right), \forall i
\end{aligned}
$$

The Lagrange function is of the following form

$$
\mathcal{L}(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha})=\frac{\lambda}{2}\left\|\mathbf{w}^{2}\right\|+\frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{2}+\sum_{i=1}^{N} \alpha_{i}\left(y_{i}-\mathbf{w}^{\top} \Phi\left(x_{i}\right)-\xi_{i}\right)
$$

Setting the derivatives to 0 , we gain

$$
\begin{gathered}
\nabla_{\mathbf{w}} \mathcal{L}=\lambda \mathbf{w}-\sum_{i=1}^{N} \alpha_{i} \Phi\left(x_{i}\right)=0 \rightarrow \mathbf{w}=\lambda^{-1} \sum_{i=1}^{N} \alpha_{i} \Phi\left(x_{i}\right) \\
\nabla_{\xi_{i}} \mathcal{L}=\frac{2}{N} \xi_{i}-\alpha_{i}=0 \rightarrow \xi_{i}=\frac{N \alpha_{i}}{2}
\end{gathered}
$$

Substituting the above to the Lagrange function, we gain the dual form

$$
\begin{aligned}
\mathcal{W}(\boldsymbol{\alpha})= & -\frac{\lambda}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} y_{i} \alpha_{i}-\frac{N}{4} \sum_{i=1}^{N} \alpha_{i}^{2} \\
& =-\frac{1}{2 \lambda}\left\|\sum_{i=1} \alpha_{i} \Phi\left(x_{i}\right)\right\|^{2}+\sum_{i=1}^{N} y_{i} \alpha_{i}-\frac{N}{4} \sum_{i=1}^{N} \alpha_{i}^{2}
\end{aligned}
$$

Let us denote $\left(\mathbf{w}^{*}, \boldsymbol{\xi}^{*}\right)$ and $\boldsymbol{\alpha}^{*}$ be the primal and dual solutions, respectively. Since the strong duality holds, we have

$$
\frac{\lambda}{2}\left\|\mathbf{w}^{*}\right\|^{2}+\frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{* 2}=-\frac{\lambda}{2}\left\|\mathbf{w}^{*}\right\|^{2}+\sum_{i=1}^{N} y_{i} \alpha_{i}^{*}-\frac{N}{4} \sum_{i=1}^{N} \alpha_{i}^{* 2}
$$

$$
\begin{aligned}
\lambda\left\|\mathbf{w}^{*}\right\|^{2} & =\sum_{i=1}^{N} y_{i} \alpha_{i}^{*}-\frac{N}{4} \sum_{i=1}^{N} \alpha_{i}^{* 2}-\frac{1}{N} \sum_{i=1}^{N} \xi_{i}^{* 2} \\
& \leq \sum_{i=1}^{N}\left(y_{i} \alpha_{i}^{*}-\frac{N}{4} \alpha_{i}^{* 2}\right) \leq \sum_{i=1}^{N} \frac{y_{i}^{2}}{N} \leq y_{\max }^{2}
\end{aligned}
$$

We note that we have used $g\left(\alpha_{i}^{*}\right)=y_{i} \alpha_{i}^{*}-\frac{N}{4} \alpha_{i}^{* 2} \leq g\left(\frac{2 y_{i}}{N}\right)=\frac{y_{i}^{2}}{N}$. Hence, we gain the conclusion.
Lemma 6. Assume that L2 loss is using, the following statement holds

$$
\left\|\mathbf{w}_{T+1}\right\| \leq \lambda^{-1}\left(y_{\max }+\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{w}_{t}\right\|\right)
$$

where $y_{\max }=\max _{y \in \mathcal{Y}}|y|$.
Proof. We have the following

$$
\mathbf{w}_{t+1}=\prod_{S}\left(\frac{t-1}{t} \mathbf{w}_{t}-\eta_{t} \alpha_{t} \Phi\left(x_{t}\right)\right)
$$

It follows that

$$
\left\|\mathbf{w}_{t+1}\right\| \leq \frac{t-1}{t}\left\|\mathbf{w}_{t}\right\|+\frac{1}{\lambda t}\left|\alpha_{t}\right| \quad \text { since }\left\|\Phi\left(x_{t}\right)\right\|=1
$$

It happens that $l^{\prime}\left(\mathbf{w}_{t} ; x_{t}, y_{t}\right)=\alpha_{t} \Phi\left(x_{t}\right)$. Hence, we gain

$$
\left|\alpha_{t}\right|=\left|y_{t}-\mathbf{w}_{t}^{\top} \Phi\left(x_{t}\right)\right| \leq y_{\max }+\left\|\mathbf{w}_{t}\right\|\left\|\Phi\left(x_{t}\right)\right\| \leq y_{\max }+\left\|\mathbf{w}_{t}\right\|
$$

It implies that

$$
t\left\|\mathbf{w}_{t+1}\right\| \leq(t-1)\left\|\mathbf{w}_{t}\right\|+\lambda^{-1}\left(y_{\max }+\left\|\mathbf{w}_{t}\right\|\right)
$$

Taking sum when $t=1,2, \ldots, T$, we achieve

$$
\begin{gather*}
T\left\|\mathbf{w}_{T+1}\right\| \leq \lambda^{-1}\left(T y_{\max }+\sum_{t=1}^{T}\left\|\mathbf{w}_{t}\right\|\right) \\
\left\|\mathbf{w}_{T+1}\right\| \leq \lambda^{-1}\left(y_{\max }+\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{w}_{t}\right\|\right) \tag{1}
\end{gather*}
$$

Theorem 7. If $\lambda>1$ then $\left\|\mathbf{w}_{T+1}\right\| \leq \frac{y_{\max }}{\lambda-1}\left(1-\frac{1}{\lambda^{T}}\right)<\frac{y_{\max }}{\lambda-1}$ for all T.
Proof. First we consider the sequence $\left\{s_{T}\right\}_{T}$ which is identified as $s_{T+1}=\lambda^{-1}\left(y_{\max }+s_{T}\right)$ and $s_{1}=0$. It is easy to find the formula of this sequence as

$$
\begin{gathered}
s_{T+1}-\frac{y_{\max }}{\lambda-1}=\lambda^{-1}\left(s_{T}-\frac{y_{\max }}{\lambda-1}\right)=\ldots=\lambda^{-T}\left(s_{1}-\frac{y_{\max }}{\lambda-1}\right)=\frac{\lambda^{-T} y_{\max }}{\lambda-1} \\
s_{T+1}=\frac{y_{\max }}{\lambda-1}\left(1-\frac{1}{\lambda^{T}}\right)
\end{gathered}
$$

We prove by induction by T that $\left\|\mathbf{w}_{T}\right\| \leq s_{T}$ for all T. It is obvious that $\left\|\mathbf{w}_{1}\right\|=s_{1}=0$. Assume that $\left\|\mathbf{w}_{t}\right\| \leq s_{t}$ for $t \leq T$, we verify it for $T+1$. Indeed, we have

$$
\begin{aligned}
\left\|\mathbf{w}_{T+1}\right\| & \leq \lambda^{-1}\left(y_{\max }+\frac{1}{T} \sum_{t=1}^{T}\left\|\mathbf{w}_{t}\right\|\right) \leq \lambda^{-1}\left(y_{\max }+\frac{1}{T} \sum_{t=1}^{T} s_{t}\right) \\
& \leq \lambda^{-1}\left(y_{\max }+s_{T}\right)=s_{T+1}
\end{aligned}
$$

Theorem 8. Let us consider running of Algorithm 2 where $\left(x_{t}, y_{t}\right)$ is sampled from the training set \mathcal{D} or the join distribution $\mathbb{P}_{X, Y}$. Let define the gradient error as $M_{t}=\frac{\Delta_{t}}{\eta_{t}}=-l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)$. We have the following

$$
\begin{gathered}
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}\right)-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{Q(\log T+1)}{2 \lambda T}+\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \mathbb{P}\left(Z_{t}=1\right)^{1 / 2} \\
\leq \frac{Q(\log T+1)}{2 \lambda T}+\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}
\end{gathered}
$$

Proof. Let us define $\delta_{t}=g_{t}+Z_{t} M_{t}$. We have $\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \delta_{t}$.

$$
\begin{aligned}
\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2} & =\left\|\mathbf{w}_{t}-\eta_{t} \delta_{t}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\delta_{t}\right\|^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \delta_{t}\right\rangle \\
\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, g_{t}\right\rangle & =\frac{\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}-\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}}{2 \eta_{t}}+\frac{\eta_{t}\left\|\delta_{t}\right\|^{2}}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, Z_{t} M_{t}\right\rangle
\end{aligned}
$$

Taking the conditional expectation w.r.t \mathbf{w}_{t}, we achieve

$$
\begin{gathered}
\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[g_{t}\right]\right\rangle=\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{t}}+\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} M_{t}\right]\right\rangle \\
\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle=\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{t}}+\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} M_{t}\right]\right\rangle \\
f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{*}\right)+\frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2} \leq \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{t}} \\
+\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} M_{t}\right]\right\rangle
\end{gathered}
$$

Taking expectation, we come to the following

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{*}\right)\right] & \leq \frac{\lambda}{2}(t-1) \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\frac{\lambda}{2} t \mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]+\frac{Q}{2 \lambda t} \\
& +E\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[Z_{t}^{2}\right]^{1 / 2}
\end{aligned}
$$

Summing when $t=1,2, \ldots, T$, we gain

$$
\begin{align*}
\mathbb{E}\left[\frac{\sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)}{T}-f\left(\mathbf{w}^{*}\right)\right] & \leq \frac{Q}{2 \lambda T} \sum_{t=1}^{T} \frac{1}{t}+\frac{1}{T} \sum_{t=1}^{T} E\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[Z_{t}^{2}\right]^{1 / 2} \\
& \leq \frac{Q(\log T+1)}{2 \lambda T}+\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \mathbb{P}\left(Z_{t}=1\right)^{1 / 2} \\
& \leq \frac{Q(\log T+1)}{2 \lambda T}+\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \tag{2}
\end{align*}
$$

Let $\overline{\mathbf{w}}_{T}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_{t}$, we reach

$$
\begin{aligned}
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}\right)-f\left(\mathbf{w}^{*}\right)\right] & \leq \frac{Q(\log T+1)}{2 \lambda T}+\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \mathbb{P}\left(Z_{t}=1\right)^{1 / 2} \\
& \leq \frac{Q(\log T+1)}{2 \lambda T}+\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}
\end{aligned}
$$

Theorem 9. We denote the gap

$$
d_{T}=\frac{1}{T} W^{1 / 2} \sum_{t=1}^{T} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \mathbb{P}\left(Z_{t}=1\right)^{1 / 2}
$$

Let r be an integer picked uniformly at random from $\{1,2, \ldots, T\}$. Then, with probability of at least $1-\delta$ we have

$$
f\left(\mathbf{w}_{r}\right) \leq f\left(\mathbf{w}^{*}\right)+d_{T}+\frac{Q(\log T+1)}{2 \lambda T \delta}
$$

Proof. Let us denote $X=f\left(\mathbf{w}_{r}\right)-f\left(\mathbf{w}^{*}\right) \geq 0$ and $Y=\frac{\sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)}{T}-f\left(\mathbf{w}^{*}\right)$. Then, we have

$$
\mathbb{E}_{r}[X]=\mathbb{E}_{r}\left[f\left(\mathbf{w}_{r}\right)-f\left(\mathbf{w}^{*}\right)\right]=\frac{\sum_{t=1}^{T} f\left(\mathbf{w}_{t}\right)}{T}-f\left(\mathbf{w}^{*}\right)=Y
$$

Therefore, we gain

$$
\mathbb{E}[X]=\mathbb{E}_{\left(x_{t}, y_{t}\right)_{1}^{T}}\left[\mathbb{E}_{r}[X]\right]=\mathbb{E}[Y] \leq \frac{Q(\log T+1)}{2 \lambda T}+d_{T}
$$

or equivalently

$$
\mathbb{E}\left[X-d_{T}\right]=\mathbb{E}\left[Y-d_{T}\right] \leq \frac{Q(\log T+1)}{2 \lambda T}
$$

where $\left(x_{t}, y_{t}\right)_{1}^{T}$ specifies the sequence of incoming instances $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{T}, y_{T}\right)\right\}$ and we refer to Eq. (2) for last inequality.

According to Markov inequality, we have

$$
\begin{gathered}
\mathbb{P}\left(X-d_{T} \geq \varepsilon\right) \leq \frac{\mathbb{E}\left[X-d_{T}\right]}{\varepsilon} \leq \frac{Q(\log T+1)}{2 \lambda T \varepsilon} \\
\mathbb{P}\left(X-d_{T}<\varepsilon\right) \geq 1-\frac{Q(\log T+1)}{2 \lambda T \varepsilon}
\end{gathered}
$$

Choosing $\varepsilon=\frac{Q(\log T+1)}{2 \lambda T \delta}$, we obtain the conclusion.
Corollary 10. If $\mathbb{E}\left[Z_{t}^{2}\right]=\mathbb{P}\left(Z_{t}=1\right)=p_{t} \sim O\left(\frac{1}{t}\right)$ then $\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right] \sim O\left(\frac{1}{t}\right)$.
Proof. Let us define $\delta_{t}=g_{t}-Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)$. We have the following

$$
\begin{gathered}
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \delta_{t} \\
\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\eta_{t} \delta_{t}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\delta_{t}\right\|^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \delta_{t}\right\rangle \\
=\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\delta_{t}\right\|^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, g_{t}\right\rangle+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, Z_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle
\end{gathered}
$$

Taking conditional expectation w.r.t $\mathbf{w}_{t}^{1}, x_{1}^{t-1}$ and note that $t^{\prime}<t$, we gain

$$
\begin{aligned}
\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] & =\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[g_{t}\right]\right\rangle+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right) \mathbb{E}\left[Z_{t}\right]\right\rangle \\
= & \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, p_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle \\
\leq & \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, p_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle \\
& +2 \eta_{t}\left(f\left(\mathbf{w}^{*}\right)-f\left(\mathbf{w}_{t}\right)-\frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right)
\end{aligned}
$$

Since the function $f($.$) is \lambda$-strongly convex and \mathbf{w}^{*} is the optimal solution, we have

$$
f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{*}\right) \geq\left\langle f^{\prime}\left(\mathbf{w}_{t}\right), \mathbf{w}_{t}-\mathbf{w}^{*}\right\rangle+\frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2} \geq \frac{\lambda}{2}\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}
$$

It follows that

$$
\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, p_{t} l\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle-2 \eta_{t} \lambda\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}
$$

Taking expectation the above inequality, we achieve

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, p_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle\right]-2 \eta_{t} \lambda \mathbb{E} \|\left[\mathbf{w}_{t}-\mathbf{w}^{*} \|^{2}\right. \\
&=\frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, p_{t} l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\rangle\right] \\
& \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[p_{t}^{2}\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|^{2}\right]^{1 / 2}
\end{aligned}
$$

Since $p_{t} \sim O\left(\frac{1}{t}\right)$, we have $p_{t}<\frac{C}{t}$ for some $C>0$. Therefore, the above inequality becomes

$$
\begin{gathered}
\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\eta_{t}^{2} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]+2 \eta_{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \frac{C}{t} \mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|\right]^{1 / 2} \\
\leq \frac{t-2}{t} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]+\frac{Q}{\lambda^{2} t^{2}}+\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} C L^{1 / 2}}{\lambda t^{2}}
\end{gathered}
$$

By choosing $W_{t}=\frac{Q^{2} \lambda^{-2}+M^{1 / 2} C L^{1 / 2}}{t}$, we gain if $\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right] \leq W_{t}$, then $\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right] \leq W_{t+1}$.
Theorem 11. Let us consider running of Algorithm 3 where $\left(x_{t}, y_{t}\right)$ is sampled from the training set \mathcal{D} or the join distribution $\mathbb{P}_{X, Y}$. Let define the gradient error as $M_{t}=\frac{\Delta_{t}}{\eta_{t}}=-l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)$. We have the following

$$
\begin{equation*}
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right)-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D \lambda^{2}+Q \log (1 /(1-\gamma))}{2 \gamma T}+\frac{\beta D^{1 / 2}}{\gamma T} \sum_{t=(1-\gamma) T+1}^{T} \frac{\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}}{t^{3 / 2}} \tag{3}
\end{equation*}
$$

Proof. Let us define $\delta_{t}=g_{t}+Z_{t} M_{t}$. We have the following

$$
\begin{gathered}
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \delta_{t} \\
\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\eta_{t} \delta_{t}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}+\eta_{t}^{2}\left\|\delta_{t}\right\|^{2}-2 \eta_{t}\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \delta_{t}\right\rangle \\
\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, g_{t}\right\rangle=\frac{\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}-\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}}{2 \eta_{t}}+\frac{\eta_{t}\left\|\delta_{t}\right\|^{2}}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, Z_{t} M_{t}\right\rangle
\end{gathered}
$$

Taking the conditional expectation w.r.t \mathbf{w}_{t}^{1}, we achieve

$$
\begin{gathered}
\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[g_{t}\right]\right\rangle=\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{t}}+\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} M_{t}\right]\right\rangle \\
\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, f^{\prime}\left(\mathbf{w}_{t}\right)\right\rangle=\frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{t}}+\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} M_{t}\right]\right\rangle \\
f\left(\mathbf{w}_{t}\right)-f\left(\mathbf{w}^{*}\right) \leq \frac{\mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\mathbf{w}_{t+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{t}}+\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}-\left\langle\mathbf{w}_{t}-\mathbf{w}^{*}, \mathbb{E}\left[Z_{t} M_{t}\right]\right\rangle
\end{gathered}
$$

Taking expectation and summing when $t=(1-\gamma) T+1, \ldots, T$, let $\overline{\mathbf{w}}_{T}^{\gamma}=\frac{1}{\gamma T} \sum_{t=(1-\gamma) T+1}^{T} \mathbf{w}_{t}$ and note that $p_{t} \leq P\left(S_{t}=1\right) \leq \frac{\beta}{t}$, we reach the following

$$
\begin{gather*}
\gamma T \mathbb{E}\left[\frac{\sum_{t=(1-\gamma) T+1}^{T} f\left(\mathbf{w}_{t}\right)}{\gamma T}-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{\mathbb{E}\left[\left\|\mathbf{w}_{(1-\gamma) T+1}-\mathbf{w}^{*}\right\|^{2}\right]}{2 \eta_{(1-\gamma) T+1}}+\sum_{t=(1-\gamma) T+2}^{T} \mathbb{E}\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]\left(\frac{1}{2 \eta_{t}}-\frac{1}{2 \eta_{t-1}}\right) \\
+\sum_{t=(1-\gamma) T+1}^{T}\left(\frac{\eta_{t} \mathbb{E}\left[\left\|\delta_{t}\right\|^{2}\right]}{2}+E\left[\left\|\mathbf{w}_{t}-\mathbf{w}^{*}\right\|^{2}\right]^{1 / 2} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} p_{t}\right) \tag{4}\\
\leq \frac{W_{T} \lambda((1-\gamma) T+1)}{2}+\frac{W_{T} \lambda(\gamma T-1)}{2}+\frac{Q}{2 \lambda} \sum_{t=(1-\gamma) T+1}^{T} \frac{1}{t}+\sum_{t=(1-\gamma) T+1}^{T} W_{t}^{1 / 2} \mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2} \frac{\beta}{t} \\
\leq \frac{W_{T} \lambda T}{2}++\frac{Q}{2 \lambda} \sum_{t=(1-\gamma) T+1}^{T} \frac{1}{t}+\beta D^{1 / 2} \sum_{t=(1-\gamma) T+1}^{T} \frac{\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}}{t^{3 / 2}} \\
\leq \frac{D \lambda}{2}+\frac{Q \log (1 /(1-\gamma))}{2 \lambda}+\beta D^{1 / 2} \sum_{t=(1-\gamma) T+1}^{T} \frac{\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}}{t^{3 / 2}} \\
\gamma T \mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right)-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D \lambda}{2}+\frac{Q \log (1 /(1-\gamma))}{2 \lambda}+\beta D^{1 / 2} \sum_{t=(1-\gamma) T+1}^{T} \frac{\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}}{t^{3 / 2}}
\end{gather*}
$$

To derive the last inequality, we use the facts $\sum_{t=(1-\gamma) T+1}^{T} \frac{1}{t} \leq \log (1 /(1-\gamma))$ and $W_{t} \leq \frac{D}{t}$ for all t.
Finally, we achieve

$$
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right)-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D \lambda^{2}+Q \log (1 /(1-\gamma))}{2 \gamma T}+\frac{\beta D^{1 / 2}}{\gamma T} \sum_{t=(1-\gamma) T+1}^{T} \frac{\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}}{t^{3 / 2}}
$$

Theorem 12. Let us consider running of Algorithm 3 where $\left(x_{t}, y_{t}\right)$ is sampled from the training set \mathcal{D} or the join distribution $\mathbb{P}_{X, Y}$. We have the following

$$
\mathbb{E}\left[f\left(\overline{\mathbf{w}}_{T}^{\gamma}\right)-f\left(\mathbf{w}^{*}\right)\right] \leq \frac{D \lambda^{2}+Q \log (1 /(1-\gamma))+2 \beta L D^{1 / 2} \log (1 /(1-\gamma))}{2 \gamma T}
$$

Proof. To gain the conclusion, we use inequality in Eq. (3) and note that $\mathbb{E}\left[\left\|M_{t}\right\|^{2}\right]^{1 / 2}=\mathbb{E}\left[\left\|l^{\prime}\left(\mathbf{w}_{t^{\prime}} ; x_{t^{\prime}}, y_{t^{\prime}}\right)\right\|^{2}\right]^{1 / 2} \leq$ L.

Theorem 13. Let r be an integer randomly picked from $\{(1-\gamma) T+1, \ldots, T\}$. Then, with probability at least $1-\delta$, we have

$$
f\left(\mathbf{w}_{r}\right) \leq f\left(\mathbf{w}^{*}\right)+\frac{R}{2 \gamma \delta T}
$$

where we have defined $R=D \lambda^{2}+Q \log (1 /(1-\gamma))+2 \beta L D^{1 / 2} \log (1 /(1-\gamma))$.
Proof. Let us denote $X=f\left(\mathbf{w}_{r}\right)-f\left(\mathbf{w}^{*}\right) \geq 0$ and $Y=\frac{\sum_{t=(1-\gamma) T+1}^{T} f\left(\mathbf{w}_{t}\right)}{\gamma T}-f\left(\mathbf{w}^{*}\right)$. Then, we have

$$
\mathbb{E}_{r}[X]=\mathbb{E}_{r}\left[f\left(\mathbf{w}_{r}\right)-f\left(\mathbf{w}^{*}\right)\right]=\frac{\sum_{t=(1-\gamma) T+1}^{T} f\left(\mathbf{w}_{t}\right)}{\gamma T}-f\left(\mathbf{w}^{*}\right)=Y
$$

Therefore, we gain

$$
\begin{equation*}
\mathbb{E}[X]=\mathbb{E}_{\left(x_{t}, y_{t}\right)_{1}^{T}}\left[\mathbb{E}_{r}[X]\right]=\mathbb{E}[Y] \leq \frac{R}{2 \gamma T} \tag{5}
\end{equation*}
$$

Note that to achieve the last inequality in Eq. (5), we refer to Eq. (4).
According to Markov inequality, we have

$$
\begin{gathered}
\mathbb{P}(X \geq \varepsilon) \leq \frac{\mathbb{E}[X]}{\varepsilon} \leq \frac{R}{2 \gamma T} \\
\mathbb{P}(X<\varepsilon) \geq 1-\frac{R}{2 \gamma T}
\end{gathered}
$$

Choosing $\varepsilon=\frac{R}{2 \gamma \delta T}$, we gain the conclusion.

4 Exact Projection

We present in detail how to incrementally maintain the inverse matrix K_{t}^{-1}. We consider two cases

- $\left|\mathcal{I}_{t}\right| \leq B$

We compute as follows:
Compute $d=K_{t-1}^{-1} k_{t}$
Set $\left\|\delta_{t}\right\|^{2}=K\left(x_{t}, x_{t}\right)-k_{t}^{\top} d$
Update

$$
K_{t}^{-1}=\left[\begin{array}{cccc}
& & & 0 \\
& K_{t-1}^{-1} & & \cdots \\
& & & 0 \\
0 & \ldots & 0 & 0
\end{array}\right]+\frac{1}{\left\|\delta_{t}\right\|^{2}}\left[\begin{array}{c}
d \\
-1
\end{array}\right]\left[\begin{array}{ll}
d^{\top} & -1
\end{array}\right]
$$

The computational cost to maintain K_{t}^{-1} when t varies from 1 to B is $\sum_{t=1}^{B} \mathrm{O}\left(t^{2}\right)=\mathrm{O}\left(B^{3}\right)$.

- $\left|\mathcal{I}_{t}\right|=B+1$

To update K_{t}^{-1} from K_{t-1}^{-1} we observe that these two matrices K_{t-1} and K_{t} are distinct in one row and one column. Concretely, to transform K_{t-1} to K_{t}, we can substitute the column \boldsymbol{k}_{p} by \boldsymbol{k}_{t} and do the same for the corresponding row. Therefore, we can formulate $K_{t}=K_{t-1}+L$ where L is a sparse matrix of all zeros except for one column and row, which can be computed as $L_{p}=\boldsymbol{k}_{t}-\boldsymbol{k}_{p}$. It is apparent that $\operatorname{rank}(L)=2$. To update K_{t}^{-1} from K_{t-1}, we rely on Thm. 14 (cf. [1]).

We assume that the i-th collumn and row in $B \times B$ matrice K_{t-1} and K_{t} is mapped to the element $x_{\pi(i)}$ in $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$. We further assume the removal element x_{p} locates at m-th collumn in matrix K_{t-1}. To gain K_{t} from K_{t-1}, we replace x_{p} by x_{t} and hence $\pi^{-1}(t)=\pi^{-1}(p)=m$. It is evident that $K_{t}=K_{t-1}+L$ where L is a matrix of all zeros except for m-th column and row, which is computed as $L_{m}(i)=K\left(x_{t}, x_{\pi(i)}\right)-K\left(x_{p}, x_{\pi(i)}\right)$ for $i=1, \ldots, B$. It is apparent that $\operatorname{rank}(L)=2$ and it can be decomposed as $L=L_{1}+L_{2}$ where L_{1}, L_{2} are matrices of all zeros except for m-th column and m-th row respectively and hence $\operatorname{rank}\left(L_{1}\right)=\operatorname{rank}\left(L_{2}\right)=1$.
To directly apply Thm. 14, we denote $C_{1}=A=K_{t-1}, B_{1}=L_{1}$, and $B_{2}=L_{2}$. We first compute C_{2}^{-1} by

$$
\begin{equation*}
C_{2}^{-1}=C_{1}^{-1}-g_{1} C_{1}^{-1} B_{1} C_{1}^{-1} \tag{6}
\end{equation*}
$$

It is obvious the computational cost to compute C_{2}^{-1} as in Eq. (6) is $\mathrm{O}\left(B^{2}\right)$.
We then compute $K_{t}^{-1}=(A+B)^{-1}=\left(A+B_{1}+B_{2}\right)^{-1}$ as

$$
\begin{equation*}
K_{t}^{-1}=(A+B)^{-1}=C_{2}^{-1}-g_{2} C_{2}^{-1} B_{2} C_{2}^{-1} \tag{7}
\end{equation*}
$$

The computional cost of Eq. (7) is again O $\left(B^{2}\right)$.
Theorem 14. Let A and $A+B$ be nonsingular matrices, and let B have rank $r>0$. Let $B=B_{1}+\cdots+B_{r}$, where each B_{i} has rank 1, and each $C_{k+1}=A+B_{1}+\cdots+B_{k}$ is nonsingular. Setting $C_{1}=A$, then $C_{k+1}^{-1}=C_{k}^{-1}-g_{k} C_{k}^{-1} B_{k} C_{k}^{-1}$ where $g_{k}=\frac{1}{1+\operatorname{trace}\left(C_{k}^{-1} B_{k}\right)}$. In particular, $(A+B)^{-1}=C_{r}^{-1}-g_{r} C_{r}^{-1} B_{r} C_{r}^{-1}$.

References

[1] K. S. Miller. On the Inverse of the Sum of Matrices. Mathematics Magazine, 54(2):67-72, 1981.

