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Abstract

One of the most challenging problems in ker-
nel online learning is to bound the model
size. Budgeted kernel online learning ad-
dresses this issue by bounding the model size
to a predefined budget. However, determin-
ing an appropriate value for such predefined
budget is arduous. In this paper, we propose
the Nonparametric Budgeted Stochastic Gra-
dient Descent that allows the model size to
automatically grow with data in a principled
way. We provide theoretical analysis to show
that our framework is guaranteed to converge
for a large collection of loss functions (e.g.
Hinge, Logistic, L2, L1, and e-insensitive)
which enables the proposed algorithm to per-
form both classification and regression tasks
without hurting the ideal convergence rate
O (#) of the standard Stochastic Gradient
Descent. We validate our algorithm on the
real-world datasets to consolidate the theo-
retical claims.

1 Introduction

In machine learning, online learning represents a fam-
ily of efficient and scalable learning algorithms for
building a predictive model incrementally from a se-
quence of data examples [19]. Different from the con-
ventional learning algorithms which usually require a
costly procedure to retrain the entire dataset when
a new instance arrives [11, 2|, online learning algo-
rithms aim at adapting the model using new incoming
instances without hurting the predictive performance,
making them more suitable for large-scale online ap-
plications wherein data usually arrive sequentially and
evolve rapidly.
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The seminal line of work in online learning, referred
to as linear online learning [19, 3, 7], aims to learn
a linear predictor in the input space. The key lim-
itation of this approach lies in its over-simplified as-
sumption of linearity, hence fail to deal with nonlinear
data. This motivates the work of kernel-based online
learning [8, 12] in which a linear model in the feature
space corresponding to a nonlinear model in the input
space is capable of modeling complex and nonlinear
functions.

Recently, Stochastic gradient descent (SGD) method
[18] has gained increasing attention in developing scal-
able online learning methods which can efficiently han-
dle large-scale dataset. It is currently regarded as one
of the simplest and most effective first-order method
to solve convex optimization problems. Given a con-
vex loss function and a training set of N examples,
SGD can be used to obtain a sequence of T predictors,
whose average has a generalization error which con-
verges (with T') to the optimal one in the class of pre-
dictors we are considering [17]. A typical convergence

rate of SGD is known to be O (k’%T [9, 20]; and sev-

eral works have recently attained a better convergence
rate at O (4) for strongly convex case [10, 13, 17].
However, the kernelization of a standard SGD setting
is vulnerable to the curse of kernelization which may
cause a linear growth in the model size accumulated
over time and hence increases training time signifi-
cantly [21].

To resolve this issue, Budgeted Stochastic Gradient
Descent (BSGD) has been proposed in [21] to bound
the model size using a predefined and fixed budget
B. Particularly, when the current model size exceeds
this budget, a budget maintenance strategy (e.g., re-
moval, projection, or merging) is triggered to recover
the model size back to the budget B. The conver-
gence analysis presented in [21] reveals that there is
an error gap between the approximate and optimal
solutions. Furthermore, determining a suitable value
for the predefined budget in a principled way is im-
portant, but challenging, since setting a small bud-
get makes the learning faster but may suffer underfit-
ting phenomenon, whereas a large budget makes the
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model fitter to data but may dramatically slow down
the training process.

In this paper, we propose Nonparametric Budgeted
Stochastic Gradient Descent (NBSGD) to address the
problem of model selection and adaptation in BSGD
wherein the model size can automatically grow with
the data. We provide convergence analysis of our pro-
posed method. Our analysis covers widely used loss
functions in classification (Hinge and Logistic) and re-
gression (L2, L1, and e-insensitive). We also would
like to point out that the original BSGD proposed in
[21] only covers Hinge loss case. Moreover, we provide
an insightful analysis of the error gap which enables us
to quantify the influences of the budget maintenance
rate and gradient error to this gap. In light of this
result, we introduce a Bernoulli random variable to
control the budget maintenance rate. The resulting
NBSGD simultaneously achieves two major aims: (1)
adjusting the model size in a principled way and (2)
eradicating the error gap to recover the ideal conver-
gence rate O (%) for the proposed algorithm.

Another issue of budget online learning is that al-
though the number of support vectors is bounded for
each intermediate classifier f;, it is usually not the case
for the final solution, which is computed as the aver-
age of the intermediate classifiers [24]. We overcome
this obstacle by theoretically showing that if we output
the last decision boundary, with a high confidence level
we still approximate the optimal solution with a good
convergence rate (cf. Thm. 6 and 12). We are aware
that the last decision boundary is used in the previous
work of budgeted SGD [21] without any theoretical
guarantee of convergence to the optimal solution.

2 Related Work

In this section, we review existing literature on bud-
geted online kernel learning that are closely related to
our work. The most popular approach is to bound the
model size using one of three following budget main-
tenance strategies:

Support vector removal. Forgetron [6] is the first bud-
geted online learning method that employs removal
strategy for budget maintenance. At each iteration,
if the classifier makes a mistake, it conducts a three-
step update: first, running the standard Perceptron
[19] update; second, shrinking the coefficients of sup-
port vectors with a scaling factor; and lastly, remov-
ing the support vector which has the smallest coeffi-
cient. Another method is Randomized Budget Percep-
tron (RBP) [1] that randomly removes a support vec-
tor when the model size exceeds the budget. Besides,
several methods including Budget Perceptron [4], Bud-
geted Passive Aggressive (BPA-S) algorithm [23], and

Budgeted Stochastic Gradient Descent with removal
strategy [21] attempt to discard the most redundant
support vector (SV).

Projection. The work in this category first projects the
incoming instance onto the linear span of support vec-
tors in the feature space to compute the corresponding
distance. If this distance exceeds a predefined thresh-
old, the new instance is then added to the support
set, otherwise the coeflicients of support vectors are
incremented by the projection coefficients. Typical ex-
amples are Projectron [16], Budgeted Passive Aggres-
sive Nearest Neighbor (BPA-NN) [23], and Budgeted
Stochastic Gradient Descent with projection strategy
[21] .

Support vector merging. The goal of this strategy is to
maintain the budget by merging two existing support
vectors into a new one. Typical methods include Twin
Support Vector Machine (TVM) algorithm [22] and
Budgeted Stochastic Gradient Descent with merging
strategy [21] .

3 Problem Settings

We consider two following optimization problems for
batch (Eq. (1)) and online (Eq. (2)) settings:

AN

. A
min f (w) £ Z{wl* + B gy [ (Wi, 9)]
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min f (W) = 3 [W]" + E@y)arxy [(wiz,9)] (2)
where | (w; z,y) is a convex loss function, Px y is the
joint distribution of (z,y) over X x ), and Py specifies
the uniformly empirical distribution over the training
set D ={(z1,y1),.-.,(xN,yn)}. Furthermore, we as-
sume that the convex loss function ! (w;z,y) satisfies
the following property, that is, there exists two positive
numbers A, B such that Hl/ (W;:v,y)H < Alw|'? +
B, VYw,z,y. As demonstrated in Sec. 1 of supplemen-
tary material accompanied with this paper, this condi-
tion is valid for all typical loss functions. It is evident
that given any w, there exists a random variable g such
that E[g|lw] = f (w). In particular, we can specify
g = AW + 1 (w;a, ;) where (4, 9:) ~ Pxy or Py.
Let us further define w* = argmin f (w).

We recap the standard stochastic gradient descent
(SGD) in Alg. 1. In Alg. 1, we use the standard

learning rate 7, = % and oy is a scalar such that

I (W, y¢) = ay® () (this scalar exists for all typ-
ical loss functions) where ® (.) is the transformation
from the input space to the feature space. In the case
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Algorithm 1 Stochastic Gradient Descent algorithm.

Algorithm 2 Budgeted SGD algorithm.

Input: A\, K (.,.)

1: w; =0

2: for t=1,2,...T do
3 Receive (¢, 1) //(z, y) ~ Pxy or Py
4 gr= 2w+ 1 (Wi e, y)
5 Wi = Wy — g = S wy — ey ® ()
6: end for

_ T
Output: wpr = % D i1 Wi OF Wryq

of kernelization, this standard SGD algorithm is vul-
nerable to the curse of kernelization, that is, in online
setting or batch setting with large-scale dataset, the
size of support set or the model size, almost linearly
grows with data accumulated over time. Consequently,
the computation gradually becomes slower or even in-
feasible when the data size grows rapidly.

4 Budgeted SGD

To break the curse of kernelization for SGD, [21] pro-
poses to perform a budget maintenance procedure
(e.g., removal, projection, or merging), whenever the
model size exceeds the predefined budget B. The anal-
ysis in [21] further discloses that there exists an error
gap between the approximate solution of SGD with
budget maintenance and that of standard SGD. How-
ever, this analysis only focuses on the Hinge loss case
and hence restricts itself for only classification task.

In this paper, we propose a new theoretical analysis
for all typical loss functions (i.e., Hinge, Logistic, L2,
L1, e-insensitive), and hence handles both classifica-
tion and regression tasks. In addition, our analysis of-
fers a deeper insightful view which enables us to quan-
tify the influences of the frequency of budget mainte-
nance and the gradient error to the gap. The proposed
algorithm is presented in Alg. 2.

Let Z; be a binary random variable which indicates if
budget maintenance is performed. By its definition,
Z; = 1 only when one support vector is added and the
number of support vectors b exceeds the budget B, i.e.,

Hl, (Wt;xt,yt)H > 0 and b > B. The update rule is

Wip1 = Wy — gy — Zi\y

t—1 '
= Wi el (Wes e, ye) — Zi Ay

The instance (zy,yy) arriving in at the time ¢ will
possess the coefficient at the time ¢ as

t—1

-l (Wers e, Ypr) t _ -~ (W e, ypr)

At t'+1x"'x t At

Input: B >0, )\ K (.)
1: w1 =0
2: for t=1,2,...T do
3:  Receive (x4, y1) //(z,yt) ~ Pxy or Py

4 Wi = W

5. if (Hl/ (wt;xt,yt)H > O) then

6: Wip1 = Wip1 — 77tl/ (Wes 2, U¢)

7 b=b+1

8: if (b > B) then

9: Wit1 = Wip1 — Ay //maintenance
10: b=b—-1
11: end if
12: if L2 is used and A <1 then
13: Wip1 = HB(O,ymax)\—l/2) (Wt+1)
14: end if
15:  end if
16: end for

_ T
Output: W = % Y i1 Wi OF Wrgq

Therefore, we have A; = M The update
rule is rewritten as follows
t—1 ! (Wt§mtayt) ! (Wt’;ﬂﬂt’,yt’)
Wil = Wy — +Z
b t ! Y ’ M

It is noteworthy that to ensure |wy|| is bounded,
in Alg. 2 and 3 with L2 loss, if A < 1 then we
project w; onto the hypersphere with centre origin
and radius ymaxA\"/2 (ie., lS’(O,;gm.om/\_l/Q))7 since
it can be shown that the optimal solution w* lies in
B(O,ymax)\*lp) in this case (c¢f. Thm. 1). In ad-
dition, with L2 loss and A > 1, we do not need to
perform a projection to bound ||w||, since according
to Thm. 2, ||w;|| is bounded by == . We further
define Ymax = maxy |y|.

Theorem 1. If

then |[wW*|| < YmaeA ™12

Theorem 2. If\ > 1 then [[wry | < §=e (1 _ /\LT) <
Yoez for all T.

The following theorem quantifies the influences of the
budget maintenance rate and the gradient error to the
gap between the BSGD and standard SGD.

Theorem 3. In Alg. 2, let define the gradient error as

M, = % S— (Wysxp,yp). We have the following
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inequality where Q, W are two positive constants.

Q(logT +1)
AT

ehwe S e ] Crz -0 @
T v t t

Elf(wr) = f (W] <

T
QUogT+1) 1 1/ 211/2
<X\ T,
<D W gE[thn ] (4)

Remark 4. The inequality in Eq. (3) shows the influ-
ences of the budget maintenance rate (i.e., P(Z; = 1))

1/2
and the gradient error E [HMtHZ} to the error gap.

It is evident that to demote this gap, we need to re-
duce either the probability P (Z; = 1) or the gradient

2 1/2 1/2 .

error E [HMtH ] =E[a?]'"||® (z;)|. This obser-
vation supports us in designing the budget mainte-
nance strategies.

Remark 5. Our analysis also encompasses the stan-
dard analysis. Precisely, if P(Z; =1) = 0 (ie.,
the budget maintenance is never performed), the in-
equality in Eq. (4) becomes E[f (W) — f(w*)] <

Qlog T+1)
20T :

Theorem 6. We denote the gap

L o1/2 ¢ 2]/? 1/2
dr = W2 E [[MlF] P (Z = 1)
t=1

Let r be an integer picked uniformly at random from
{1,2,...,T}. Then, with probability of at least 1 — §
we have
Qlog T+1)

20T

Remark 7. Thm. 6 reveals that when outputting
any w, with a high confidence level, we can approx-
imate the optimal solution with the convergence rate

0 (leT).

5 Nonparametric Budgeted SGD

f(wy) < f (W) +dr +

Motivated from Thm. 3, another way to narrow the
gap is to control the rate of budget maintenance.
In what follows, we prove that if the rate of bud-
get maintenance downgrades proportional to % (i.e.,
P(Z,=1) ~0O (%)), the gap vanishes. Moreover, us-
ing the v-suffix averaging [17] we can obtain the con-
vergence rate O (%) (cf. Thm. 11). We start this

section with an important corollary.

Corollary 8. IfE[ZZ] = P(Z,=1) ~ O(3) then
E [||wt - W*||2:| ~ O (1), i.e., there exists D > 0 such
that E [||Wt - W*HQ} <L forallt.

In Alg. 3, to control the budget maintenance rate, we
employ a Bernoulli binary random variable Z; where
Z; = 1 indicates that budget maintenance is performed

and specifically establish P (Z; = 1) = min (%, 1).

Algorithm 3 Nonparametric BSGD algorithm.
Input: B, 3,v, A\, K (.,.)

1: wy = 0

2: for t=1,2,...T do

3:  Receive (z¢,yt) //(z,yt) ~Pxy or Py

4: Wiyl = [ Wy
5. if (Hl/ (W, ye) || > 0) then
6: Wil = Wiyl — 7]tl/ (We; 24, Yt)
7 b=b+1
8: if (b> B) then
9: Sample Z; ~ Ber [min (%, 1)}
10: if (Z,=1) then
11: Wit = Wi — 4y
12: b=b—-1
13: end if
14: end if
15: if L2 is used and A <1 then
16: Wiyl = HB(O,ymafol/Z) (W)
17: end if
18:  end if
19: end for
Output: W, = W“—“T;—M or Wiy

Remark 9. In Alg. 3, 8 is used to govern the budget
maintenance rate. When § rises up, the budget main-
tenance is performed more frequently and the sparsity
is encouraged.

Theorem 10. In Alg. 3, let define the gradient error

as M = % = —I' (wWysae,yp). We have the follow-
ing inequality

. o1 o PN +Qlog (1/(1—7))
E[f (WF) — f (w")] < T

sz & E[ia?]”

3/2
/7T t=(1—~)T+1 t

Theorem 11. Consider the running of Alg. 8 , we
have the following inequality

2
B (W) - f (w)) < 2 QLe 0/ 0 =7)
25LD"/?1og (1/ (1))
+ 2yT
Theorem 12. Let r be an integer randomly picked
from {(1—~)T +1,...,T}. Then, with probability at
least 1 — § we have

fwr) < f W)+

R
2v6T
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where we have defined
R = DN+Qlog (1/ (1 —7))+28LD"?log (1/ (1 — 7))

Remark 13. Thm. 11 shows the convergence rate
0] (%) if we employ -suffix average output. However,
as a consequence, model size is increased. Thm. 12
points out that if we take the last hyperplane, with a
high confidence level, we can approach the optimal so-
lution with convergence rate O (%) In fact, the model
size is not bounded. However, we will demonstrate in
the experiment that tuning 3 efficiently inspires the
sparsity and NBSGD always gains much better spar-
sity than the standard SGD.

6 Budget Maintenance Strategy

Driven by Thm. 3 and 10, to speed up the reduction
of the error gap, we should concentrate on the support
vector x,, in the support set such that

112
p=argmin | M;]| = argmin |la?|" @ (@))]*  (5)

JEL JEL

where Z; specifies the support indices and without loss
of generality, we assume that Z, = {1,2,...,t}.

As in [21], we use two budget maintenance strate-
gies which are removal and projection. Regarding
the projection strategy, different from [21], we exam-
ine two different cases: 1) |Z;| < B where the ma-
trix inversion is incrementally updated as in [5, 16]
and 2) |Z;| = B + 1 to maintain the inversion of the
Gram matrix K; = [K (2i,2;)]; ;c7,- We note that
the projection strategy proposed in [21] did not cover
the second case and hence, cannot result in the ex-
act computation for the inverse matrix. Moreover,
to speed up the projection strategy, we propose to
use a heuristic procedure as follows. Before remov-
ing x,, we project ® (z,) onto the k most-correlated
vectors in {® (x1),..., P (z;)} and preserve informa-
tion of ® (z,) using these k principle components. The
advantage is twofold. First, the £ most-correlated vec-
tors turn out to be the k nearest neighbors of z, in
the input space. Second, to find the projection, we
only need to compute the inversion of an k X k matrix,
where k is usually a small number (e.g., kK = 4). Our
experiment shows that this heuristic procedure is very
efficient. It offers comparable accuracy with the exact
projection while achieving a significant speed-up.

6.1 Removal strategy

We choose to remove z, according to Eq. (5). It
is noteworthy that if a radial kernel is used then
|® (z,)||> = K (z¢,2;) = 1 and only Ha(j)HQ is in-
volved in selecting x,.

6.2 Projection strategy

We also choose to remove z, according to Eq. (5).
Before removing z,, we project ®(x,) onto the
span ({® (z;) : i € Zyandi # p}) and then substitute
® (z,) by this projection. Let us further denote
the projection by Pz, = ZiEL\{p} d;z;. We can
find the projection by d = Kt_lkzp where K; =

(K (7, ;)] and ky, = [K (zp, ;)]

1,5€L \{p} i€ \{p}"

6.2.1 Exact projection

|Z:] < B: we use the incremental formula as in [5, 16]
for maintaining K, 1. We note that the budget main-
tenance is not carried out in this stage.

|Z;| = B + 1: for updating K, ' from K, ', we ob-
serve that the two matrices K;_; and K; are distinct
in one row and one column. To transform K;_; to
K, we can substitute the column and row k, by k.
Therefore, we can formulate K; = K;_1 + L where L
is a sparse matrix of all zeros except for the p-th col-
umn and row which are L, and L; respectively where
L, = k; — k,. It is apparent that rank (L) = 2. To
update K, ! from K; 1, we rely on Thm. 14 (cf. [15]).
The derivation is provided in the supplementary ma-
terial.

Theorem 14. Let A and A+ B be non-singular matri-

ces, and let B have rankr > 0. Let B= By +---+ B,,

where each B; has rank 1, and each Cxy1 = A+ By +

-+ -+ By, is non-singular. Setting C1 = A, then C,;_&l =
-1 —1 —1 _ 1

C.” — agC}, BrC, "~ where g = Trtrace(CTBn) In

particular, (A+ B)™' = C ! — g,.C71B.C 1.

6.2.2 Approximate projection

Although we can incrementally update the inverse
matrix, the matrix inversion still costs O (BS)
which circumvents the application of the projec-
tion strategy when the budget B is large. To
address this issue, we propose to use the heuris-
tic procedure that instead of projecting @ (x,) onto
span ({® (z;) : ¢ € Zyand i # p}), we project it onto
the linear span of the images of k most-correlated vec-
tors which turns out to be the £ nearest neighbors of x,,
in the input space. Our intuition behind this heuristic
is that if a vector x; lies too far z,, their similarity
K (xp, ;) in the feature space is small. Consequently,
they are nearly orthogonal in the feature space, and
thereby the projection of ® (x,) onto ® (x;) (in the
feature space) is negligible.
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Objective Function Comparison
\

2007
Y --v-- SGD (ModelSz=32,243)
\ —*—BSGD (ModelSz=500)

\ \ —=—NBSGD (ModelSz=790)
150 1 | \

100 -

Structural Loss

50

1 6000
Iteration

Figure 1: Objective function comparison.

7 Experiment

In this experiment, we demonstrate the efficiency of
the proposed method in automatically identifying the
suitable model size for the kernel online learning task.
We conduct the experiments with five loss functions:
Hinge and Logistic for classification and L2, L1 and
e-insensitive for regression.

As almost all algorithms are random, we run each ex-
periment 5 times and then average the performance.
We carry out the experiments using Matlab on the
Windows machine equipped with Core i7 2.60GHz
CPU, 24GB RAM. All models are trained a single pass
for fair comparisons.

We use 10 datasets downloaded from LIBSVM site!
to perform a number of tasks including binary, multi-
class classification and regression.

Baselines

e Kernel Stochastic Gradient Descend [20].
e Budgeted Stochastic Gradient Descend [21].

e Random Perceptron (RBP) [1]: Budgeted Percep-
tron algorithm with random support vector re-
moval strategy.

e Forgetron [6]: Forgetron maintains the budget
size by discarding the oldest support vectors.

e Projectron++ [16]: The aggressive version of Pro-
jectron algorithm that updates with both margin
error and mistake case.

e Budgeted Passive Aggressive (BPAs) [23] and
Budgeted Online Gradient Descent (BOGD) [25]:
The budgeted versions of the original PA and
OGD with simple support removal strategy.

The RBP, Forgetron, Projectron++ and BPAs are ob-
tained from LSOKL library [14].

Hyperparameters setting Throughout the ex-
periment, we utilize RBF kernel, K (z,a') =
exp (—v x || — @'[|*). We use cross-validation with 5
folds for selecting the best parameters v and A whose
ranges are in {2_8, 274 1,24, 210}. In all experiments,
we heuristically set 8 = 0.6 X #train which can be
again selected using cross-validation.

7.1 Analysis of NBSGD learning behavior

To gain deeper understanding into model behavior,
we analyze NBSGD on the objective function, the im-
pact of 8 and the learning with different maintenance
schemes.

Objective function We compare the objective
function (defined in Eq. (1)) of NBSGD with that of
the standard SGD and the Budgeted SGD in Fig. 1.
As our NBSGD can discover the appropriate model
size in such a way that we minimize the empirical
loss E(; yy~py [[ (W;2,5)] and control the regulariza-
tion quantity 3||w|[? , we secure the best objective
function. Budgeted SGD’s objection function con-
verges more slowly than NBSGD, but more rapidly
than SGD. SGD produces a larger model size or heav-
ier structural loss and converges more slowly than the
budgeted counterparts. The reason is that NBSGD
results in sparser model than SGD while its empirical
loss is comparable.

Impact of 8 on model size We investigate the ef-
fect of 8 on model size in Fig. 2 (right). We vary
B from 1 to #train of 70,000, then record the model
size on SenselT Vehicle dataset. We observe that the
larger 8 yields smaller model size and decreases clas-
sification accuracy. Reversely, smaller 3 yields larger
model size and increases classification accuracy. Using
this analysis, we can learn the trade-off between the
model size and accuracy through . In addition, we
can use the plot on the right Fig. 2 for model selec-
tion, e.g., choosing £ from 40,000 to 50,000 (given the
total 70,000 data points) would result in the optimal
performance which has a relatively good accuracy and
a low model size.

Learning with different maintenance schemes
To maintain a low model size, NBSGD performs the
budget maintenance procedure when a support vector
is added into the model, the current model size exceeds
the budget, and the Bernoulli variable Z; is sampled
with 1. We note that the budget maintenance strate-
gies described in Sec. 6 and in [21] may have differ-

"https:/ /www.csie.ntu.edu.tw/ " cjlin/libsvmtools/datasets/ ent effects on speed and accuracy. We examine the
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10" Model Size wrt Iteration

Training Time wrt Iteration

Model Behavior wrt Beta
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Figure 2: Model size, training time behavior w.r.t. number of iterations and parameter .

performance using both two Removal and Projection
strategies with Hinge and Logistic in Table 1.

As Removal is pretty simpler and requires less opera-
tion than Projection, Removal is much faster although
we have sped up the Projection using approximate pro-
jection described in Sec. 6.2.2. For learning quality
with NBSGD, both maintenance approaches are com-
parable and neither outperforms the other. Particu-
larly, Removal with Logistic loss holds the best perfor-
mance in all three datasets (Gisette, Skin and DNA)
while Projection obtains the best in two out of three
datasets.

7.2 NBSGD for Kernelized Budgeted Online
Regression

SGD is vulnerable to the curse of kernelization which
may cause unbounded linear growth in the model size
and the training time as a consequence. Therefore,
the proposed NBSGD is a promising candidature for
the kernel online regression problem wherein the model
size is much sparser.

We conduct experiments on the kernel budgeted online
regression task where the budget size is data-drivenly
identified. As it is hard to specify the suitable number
of budget size in advance, we design two settings for
BSGD as Under Budgeted SGD with a smaller budget
size than NBSGD and Over Budgeted SGD with a
larger budget size than NBSGD. Then, we show that
our NBSGD is automatically adapted to the growth of
the data and produces better performances than the
fixed budget counterparts [21].

We present the results in Table 2. SGD outperforms
the budgeted counterparts in terms of regression qual-
ity with the lowest RMSE score since SGD utilizes al-
most all training data points as the support vectors for
learning (2,795 in Space GA and 18,575 in Cadata). In
contrast, our NBSGD and BSGD with fixed budgets
run faster and have smaller model size while we also
secure the comparable RMSE scores.

The performance may depend on the loss function and

the individual dataset. In Space GA and Cadata, e-
insensitive and L1 attain the best performance with
the lowest RMSE score.

7.3 Classification Comparison with Budgeted
Online Competitors

To demonstrate the advantage of NBSGD in the bud-
geted online learning paradigm, we further compare
our model with the other baselines in Table 3. NB-
SGD consistently gains much sparser model, thus run
significantly faster while still outperforming SGD in
accuracy (except A9A). This observation is consistent
with our experiment of objective function comparison
in Fig. 1. For fixed budget algorithms including RBP,
Forgetron, BPAs, BOGD, although we use Over Bud-
geted setting, NBSGD outperforms them on all exper-
imental datasets. Comparing with Projectron++, a
method that can adapt its model size, NBSGD sur-
passes it in accuracy, sparsity, and training time on
A9A and IJCNN. For DNA, NBSGD achieves compa-
rable accuracy and a little higher model size. More-
over, NBSGD’s training time is lower due to the high
computation demand of projection in Projectron++.

8 Conclusion

In this paper, we have proposed Nonparametric Bud-
geted Stochastic Gradient Descent which can automat-
ically discover the model size that fits data in a princi-
pled way. We have analyzed the convergence property
of NBSGD for common loss functions. In addition,
the proposed model does not hurt the ideal conver-
gence rate O (%). The experiment shows that our
method can gain much sparser model while simulta-
neously achieving the comparable accuracy.
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Dataset [#train|[#feat] Gisette [6,000][5,000] Skin [220,551][3] DNA [1,400][180]
Scheme Loss Acc | Time | ModSz || Acc | Time | ModSz || Acc | Time | ModSz
al Hinge | 0.92 | 748 3,096 || 1.00 | 4,062 | 139,445 || 82.4 | 1.74 | 1,399
Q| mone Logistic | 0.89 | 906 | 3,793 || 1.00 | 3,865 | 139,434 || 82.4 | 1.76 | 1,399
A | Removal | Hinge21] | 0.86 | 3055 100 1.00 | 3,378 | 30,000 || 81.0 | 1.56 | 1,000
T Logistic | 0.86 | 30.59 100 1.00 | 3,357 | 30,000 || 85.6 | 1.56 | 1,000
2 | Hinge[21] | 0.86 | 35.59 100 0.95 | 4,145 | 30,000 || 81.0 | 1.75 | 1,000
Projection —
Logistic | 0.86 | 35.62 100 1.00 | 4,145 | 30,000 || 85.6 | 1.75 | 1,000
A | Romoval Hinge | 0.92 | 101.7 | 7746 || 0.99 | 2,494 | 4,984 | 77.2 | 060 | 2674
2 Logistic | 0.92 | 98.7 | 758.8 || 1.00 | 2,541 | 5,008 | 88.3 | 0.62 | 272.0
I Hinge | 0.92 | 103.9 | 765.6 || 0.99 | 2,688 | 4,963 | 76.1 | 1.17 | 2754
Z. | Frojection o stic 1 0.92 | 1051 | 757.8 | 1.00 | 2,686 | 4,977 || 877 | 1.19 | 2732

Table 1: Classification performance with different maintenance schemes of Removal and Projection. The number
of training points and feature size are indicated in the brackers. Blue and magenta colors indicate the best
performance for Logistic and Hinge losses, respectively.

Data Exam [#train 3,653][#test 406][#feature 8]

Method | SGD [M=3,653] | UBSGD [M=200] | OBSGD [M=2,000] | NBSGD [M=1,{44]
Loss L2 L1 Eps | L2 L1 Eps L2 L1 Eps L2 L1 Eps
RMSE 0.90 | 0.90 | 0.90 | 0.98 | 1.04 | 1.04 | 0.90 | 0.95 0.95 0.90 | 0.96 0.96
Time 1.23 | 1.20 | 1.21 | 0.84 | 0.82 | 0.92 | 1.14 | 1.14 1.15 0.98 | 0.96 0.96

Data Space GA [#train 3,759][#test 418][#feature 8]
Method | SGD [M=2,795] | UBSGD [M=200] | OBSGD [M=2,000] | NBSGD [M=1,249]
Loss L2 L1 Eps | L2 L1 Eps L2 L1 Eps L2 L1 Eps
RMSE 0.70 | 0.61 | 0.61 | 0.84 | 0.80 | 0.81 | 0.71 | 0.68 0.70 0.73 | 0.68 0.69
Time 0.98 | 0.92 | 0.98 | 0.74 | 0.66 | 0.61 | 0.93 | 0.81 0.98 0.73 | 0.75 | 0.66

Data Cadata [#train 18,576][#test 2,064][#feature 8]
Method | SGD [M=18,576] | UBSGD [M=500] | OBSGD [M=10,000] | NBSGD [M=1,027]
Loss L2 L1 Eps | L2 L1 Eps L2 L1 Eps L2 L1 Eps

RMSE | 0.95 | 0.96 | 0.96 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 0.99 0.98 | 0.98 0.98
Time 24.3 | 25.1 | 235 | 4.80 | 4.99 | 449 | 326 | 328 328 5.04 | 4.79 5.33

Table 2: Regression performance comparison. Due to the property of L2, L1 and e-insensitive losses in regression
task, SGD uses all of data points as a support vectors. The BSGD is specified in two settings as Under Budgeted
SGD (smaller budget size than NBSGD) and Over Budgeted SGD (larger budget size than NBSGD). The model
size is emphasized in the bracket as [M]. Magenta, blue and red colors indicate the best performance for L2, L1
and ¢ -insensitive losses, respectively.

Dataset A9A DNA IJCNN
Data Size [#train 32,561][#feat 123] [#train 2,000][#feat 180] [#train 35,000][#feat 22]
Methods Acc Time ModSz Acc Time | ModSz Acc Time | ModSz
RBP 78.9(1) | 484(2.5) 8,000 67.7(18) 1.29 300 94.9(1) | 25.1 4,000
Forgetron 78.9(1) | 485(1.5) 8,000 87.6(2) 1.25 300 94.8(1) 27.1 4,000
Projectron++ | 81.7(1) | 7,363(99) 7,125 88.4(4) 1.62 245.6 95.7 676 2,218
BPAs 82(2) 713(3.5) 8,000 85.8(2) 11.84 300 96.1 28.2 4,000
BOGD 76.4 705(5) 8,000 76.3(7) 1.79 300 90.5 27.7 4,000
SGD 84.1 1,076 20,579 82.2 1.74 1,399 96.4 894 34,999
NBSGD 83.6 60.4 3,559 88.1(2) 0.62 272 97.3 121 759

Table 3: Classification with baselines budgeted methods. SGD and NBSGD use Hinge loss and Removal scheme.
The standard deviation, where is significant, is in the parenthesis ().
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