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Abstract

In this paper we propose a primal-dual prox-
imal extragradient algorithm to solve the
generalized Dantzig selector (GDS) estima-
tion problem, based on a new convex-concave
saddle-point (SP) reformulation. Our new
formulation makes it possible to adopt recent
developments in saddle-point optimization,
to achieve the optimal O(1/k) rate of con-
vergence. Compared to the optimal non-SP
algorithms, ours do not require specification
of sensitive parameters that affect algorithm
performance or solution quality. We also
provide a new analysis showing a possibil-
ity of local acceleration to achieve the rate of
O(1/k?) in special cases even without strong
convexity or strong smoothness. As an appli-
cation, we propose a GDS equipped with the
ordered ¢1-norm, showing its false discovery
rate control properties in variable selection.
Algorithm performance is compared between
ours and other alternatives, including the lin-
earized ADMM, Nesterov’s smoothing, Ne-
mirovski’s mirror-prox, and the accelerated
hybrid proximal extragradient techniques.

1 INTRODUCTION

The Dantzig selector (Candes and Tao, 2007) has been
proposed as an alternative approach for penalized re-
gression, mainly in the context of sparse or group
sparse regression in high dimensions. A generalized
Dantzig selector (GDS) (Chatterjee et al., 2014) has
been recently proposed extending the original Dantzig
selector, to use any norm R(-) for regularization and
its dual norm RP(-) for measuring estimation error.
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For linear models of the form y = Xw* + £, where
y € R™ contains observations, X € R"*? is a design
matrix, and £ is an i.i.d. standard Gaussian noise vec-
tor, the GDS searches for the best parameter solving
the following problem with a constant ¢ > 0:

min R(w) st. RP(XT(y —Xw)) <ec. (1)

weRP
The original Dantzig selector is attained when R(-) =
|- 1l and RP(:) = || - [loo- The GDS requires to solve
a non-separable and non-smooth convex optimization
problem, which does not contain any strongly smooth
part (with Lipschitz continuous gradients) required to
apply (accelerated) proximal gradient methods (Nes-
terov, 1983; Beck and Teboulle, 2009). Subgradient
methods (Shor et al., 1985) can be applied, but their
very slow O(1/vk) convergence rate (for an iteration
counter k) is not desirable for practical use.

Chatterjee et al. (2014) proposed an algorithm to solve
(1) based on a linearized version of alternating di-
rection method of multipliers (L-ADMM) (Wang and
Banerjee, 2014; Wang and Yuan, 2012), of which two
subproblems are simplified to two proximal operations
thanks to linearization and fast projection: regard-
ing the latter, projection was onto the dual ball de-
fined with RP(-) and therefore can be easily com-
puted via the proximal operator of R(-) and Moreau’s
identity (Rockafellar, 1997). The algorithm exhibits
O(1/k) convergence rate when its penalty parameter
is set to a value at least ||X||3 (Chatterjee et al., 2014;
Wang and Banerjee, 2014). However, its practical per-
formance tends to be quite sensitive to the parameter,
whose best value is not easy to determine a priori run-
ning the algorithm.

Recently, there have been attractive improvements in
ADMM, although they are not applicable to our prob-
lem due to their extra requirements. Local linear
convergence has been shown for ADMM, but for the
limited cases of minimizing a quadratic objective un-
der linear constraints (Boley, 2013), or minimizing a
sum of strongly convex smooth functions (Shi et al.,
2014). Accelerated versions of ADMM recently ap-
peared achieving a better O(1/k?) rate, however, with
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an assumption that the objective is strongly convex
in case of ADMM (Goldstein et al., 2014; Kadkho-
daie et al., 2015), or with a smoothness assumption of
the part to be linearized in case of L-ADMM (Ouyang
et al., 2015).

The GDS problem (1) can also be solved using the
smoothing technique due to Nesterov (2005). It is
based on creating a smooth approximation of a non-
smooth function by adding a strongly convex regu-
larizer to the conjugate of the non-smooth function,
where the strong convexity is modulated by a parame-
ter pu > 0. It is shown that the smooth approximation
has Lipschitz continuous gradients and therefore can
be optimized via accelerated gradient methods (Nes-
terov, 1983). The smoothing technique achieves
O(1/k) rate of convergence when p = O(e) (Nesterov,
2005; Theorem 3) for an optimality gap e. However,
using small values of u to achieve a near-optimal so-
lution tends to slow down the algorithm quite sig-
nificantly in practice. Implementations of Nesterov’s
smoothing such as TFOCS (Becker et al., 2011) re-
quire users to specify this parameter with only little
guidance.

In this paper, we propose a new convex-concave
saddle-point (CCSP) formulation of the GDS, in fact
a slightly more generalized version of it to allow for
using any convex function for regularization. Our re-
formulation allows us to provide a fast and simple al-
gorithm to find solutions of GDS instances, achieving
the optimal O(1/k) convergence rate without relying
on sensitive parameters affecting convergence or solu-
tion quality. Our algorithm is applied to a new kind of
GDS defined with the ordered ¢;-norm: we prove its
false discovery rate control properties in variable selec-
tion, where the norm itself has been recently studied in
other contexts (Bogdan et al., 2013, 2015; Figueiredo
and Nowak, 2014).

We show that our proposed algorithm suits better than
existing solvers when high-precision solutions are de-
sired for accurate variable selection, for example in sta-
tistical simulation studies. We denote the Euclidean
norm by || - || and inner products by (-, -).

2 CONVEX-CONCAVE
SADDLE-POINT FORMULATION

2.1 (More) Generalized Dantzig Selector

In this paper we consider a slightly more general form
of the GDS problem (1),

(GDS) min F(w) st. GP(XT(y — Xw)) < 1.

weRP
(2)

where F : RP — (—o00,400] is a proper, convex, and
lower-semicontinuous (1.s.c.) function, and GP(-) is the
dual norm of a norm G(+), possibly parametrized by a
vector A. Unlike (1), G is not necessarily the same as
F, and also F does not have to be a norm. Neither F
nor G is assumed to be differentiable.

2.2 Reformulation

Denoting by Cgp the constraint set of residuals in (2),
Cgp :={reRF : GP(r) <1},

and using an indicator function J¢,, (r), which re-

turns 0 if r € Cgp or 400 otherwise, it is trivial to see

the GDS problem (2) can be restated as,

min F(w)+dc,p XT(y — Xw)). (3)

weR

Now, we invoke a simple lemma to replace the indica-
tor function with its adjoint form.

Lemma 1. For any w € RP, we have

Tio _ y o
Do, (X7(y = Xw) = max (A ]3] v) - 600,
where A = X7 [In —X] e RPX("tP) qnd 1, is the
n X n identity matriz.

Proof. Since Y¥¢_,, is an indicator function on a closed
set, we have Vo, () = ﬁg*gD () with the biconjugation

sup {(r,v) —9¢_, (v)}.

&, () =
veRP

Also, from conjugacy, ﬁggD(J = SUPyrerr (W,-) —
Vogp (W) = maxy:.go(wh<1(W,-), which is by defi-
nition the dual norm of GP(-), i.e., G(-). The result
follows when we set r = X7 (y — Xw). O

The following convex-concave saddle-point reformula-
tion of the GDS (2) follows when we apply the above
lemma to (3),

min max <A [3;] ,v> + F(w) = G(v).

weEeRP veRP
(4)

This reformulation allows us to benefit from recent de-
velopments in saddle-point optimization, including our
algorithm discussed later. Hereafter, we assume that
both F and G are simple, so that their proxzimal oper-
ator, defined below for F, can be computed efficiently:

(GDS-SP)

1
prox £ (z) := arg min {2|w' —z|? + }'(W')} .

Note that it suffices to meet this requirement for either
F or its conjugate F* (similarly for G or G*), since
the prox operation for one can be computed by that
of the other by Moreau’s identity (Rockafellar, 1997),
i.e., z = proxr(z) + prox z. (z).
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2.3 Related Works

It is worthwhile to note that the Tikhonov-type formu-
lation of the GDS (3) is closely related to the popular
regularized estimation problems in machine learning
and statistics,
in F E(Dw),
Inin - F(w) + &(Dw)
where D is a data matrix and £ is a proper convex
l.s.c. loss function. Using biconjugation of £ similarly
to the proof of Lemma 1, this can be reformulated as
the following convex-concave saddle-point problem,
. — (D _ ox
Inin max ¢(w,v) := (Dw,v) + F(w) - £°(v),
given that a maximizer in V can be attained (in our
case it is true as V = {w’ : GP(w’) < 1} is compact).

This type of reformulation has been studied quite re-
cently in machine learning to design new algorithms.
For example, Zhang and Xiao (2015) proposed a
stochastic primal-dual coordinate descent (SPDC) al-
gorithm based on a saddle-point reformulation for
the case when F is strongly convex and £ is a sum
of smooth loss functions with Lipschitz continuous
gradients, in which case the conjugate £* becomes
strongly convex (Rockafellar and Wets, 2004; Propo-
sition 12.60): both do not hold in case of the GDS.
Although SPDC can be extended for nonsmooth cases
by augmenting strongly convex terms, then it shares
similar issues to Nesterov’s smoothing that a param-
eter needs to be specified depending on an unknown
quantity ||w*|| when (w*,v*) is a saddle point.

Another example is Taskar et al. (2006) who consid-
ered a saddle-point reformulation of max-margin esti-
mation for structured output prediction and proposed
an algorithm more memory efficient than its quadratic
program alternative, based on the dual extragradient
technique of Nesterov (2007). The dual extragradient
method itself is closely related to our method, but it
additionally requires that both F and £ are smooth
with Lipschitz continuous gradients to achieve an er-
godic O(1/k) convergence rate, or both dF and OE are
bounded in which case the algorithm exhibits a slower

O(1/Vk) rate.

Extragradient techniques to handle the CCSP prob-
lems are of our particular interest. The mirror-prox
method (Nemirovski, 2004) has extended one of the
earliest extragradient algorithm of Korpelevich (1976),
establishing the O(1/k) ergodic (in terms of averaged
iterates) rate of convergence with two proximal oper-
ations per iteration. This method however requires
to choose stepsizes carefully with the knowledge of
L = ||A]. Tseng (2008) suggested a line search pro-
cedure to find better estimates of L, which requires to

compute two extra proximal operations per line search
step.

The hybrid proximal extragradient (HPE) algo-
rithm (Solodov and Svaiter, 1999a,b) belongs to an-
other family of extragradient methods that can be seen
as a generalization of Korpelevich’s method and some
extensions (Monteiro and Svaiter, 2011), and can solve
CCSP problems with the same O(1/k) ergodic conver-
gence rate. In each iteration of the HPE framework,
an extragradient is computed by solving a subproblem
with controlled inaccuracy. The subproblem itself can
be solved using an accelerated method similar to Nes-
terov’s smoothing (He and Monteiro, 2014) using three
proximal operations in each inner iteration. A pitfall
however is that the accuracy of solving the subproblem
tends to affect the overall runtime.

Recently, Chambolle and Pock (2011) proposed a sim-
ple extragradient technique with O(1/k) ergodic con-
vergence rate, which is quite different in its nature to
the aforementioned extragradient methods, although
it may look similar to Nesterov’s dual extragradient
technique (Nesterov, 2007). In Chambolle and Pock
(2011), proximal steps are taken in each of the primal
and the dual spaces, then a linear gradient extrapola-
tion is considered either in the primal or in the dual.
We base our algorithm on this technique, since it has
been the fastest with the smallest variations in runtime
to solve the problem of our interest in its saddle-point
reformulation (4). Both properties were desired in par-
ticular for studying statistical properties of the GDS
based on random simulations.

3 ALGORITHM

Solving the GDS-SP problem (4), we assume that
there exists a saddle point (w*, v*) satisfying the con-
ditions

y T T * *
Al Y | =XTy - XTXw* € 9G(v*),
[W ] Y RS
—(A(nt1):ntp)) V= XXV € OF(w)

where 0F and 0G are the subdifferentials of F and G,
respectively. Denoting the objective by ¢, i.e.,

otwv) = (& [3] v} + 7w - 6w

the above conditions (5) imply that the following
saddle-point inequality holds for any (w,v),

dp(w*,v) < p(w*,v*) < d(w,v").
We present our primal-dual saddle-point (PDSP) al-

gorithm in Algorithm 1, which solves the CCSP for-
mulation of the GDS problem (4).
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Algorithm 1: Primal-Dual Saddle-Point (PDSP)
Data : X e R™*P y e R?, L = || XT [In —X} II;
Initialize: (wg, vg) € R? x RP, w(, = wo;
Params : 7 > 0, 0p > 0 satisfying rgooL? < 1,

v > 0 : strong convexity modulus of G;
for k=0,1,2,... do

Vit1 = prox, g (vi +on(XTy — XTXw})),
Vi1 = Vi1 (or 2viqq, see Section 3.1),
Wit1 = prox,, r (Wi + 73X Xv} 1),

Or = 1/y/1+ 2y,
Te1 = kT, Oky1 = ok /O,
Wi = Wiyt + 0 (Wep1 — wi).

Check (both if v = 0, only pointwise if v > 0):
— Pointwise convergence of (W41, Vi41);

— Ergodic convergence ofk
S — +1
(Wt 1, Vit1) = 707 Doty (Wi, Vi);

end

We define the primal-dual gap, following Chambolle
and Pock (2011), restricted to the set X' x ),

Tyt = max {(a ]3] ) + 70 - 6v)

v'ey

~ min {(A m V) + F(w) —g<v)}.

w'eX

When X' x) contains a saddle-point (w*, v*) satisfying
(5), then it is easy to check that

Toaytww) = {(A[3] v+ 7w - 0000}

- {(A [‘Z] V) + F(w) —g(v)} > 0.

Theorem 1. Suppose that (w*,v*) is a saddle-point
of the GDS-SP problem (4). Then the iterates (W, V)
generated by Algorithm 1 with v =0 and 0 = 1 for all
k (therefore T, = 19 and o = o) satisfy the following
properties:

(a) (Wi, Vi) is bounded for any k, i.e.,

[wi = w | lve = v

+

70 00

e (Wo - w2 4o = V"||2>
To oo

for a constant C < 1/(1 — 1900L?).

(b) For averaged iterates Wy, = %Zle w; and Vi, =

k
T30, vi, we have

1+C W*—W 2 V*_v 2
T (Wi, Vi) < (H o +|| oll .

k 27’0 20’0

Moreover, limit points of (Wi, Vi) are saddle-
points of (4).

(c) There exists a saddle-point (W, V) of (4) such that
(W, Vi) = (W, V) as k — oo.

Proof. Define augmentations of w’s with y, e.g. zx :=
[y; wi] € R""P and define H(z) = H(y,w) := F(w).
Using these, the GDS-SP problem (4) can be written
equivalently as

Jnin max {Az,v) +H(z) - G(v).
Then the result essentially follows from Theorem 1 of
Chambolle and Pock (2011). For completeness, we
provide the full proof in the supplementary material,

part of which will be used to show Theorem 2 as well.
O

The ergodic convergence in Theorem 1 part (b) indi-
cates that the primal-dual gap converges with O(1/k)
rate for averaged iterates, which is known to be
the best rate in general convex-concave saddle-point
solvers (Nemirovski, 2004; Tseng, 2008; Solodov and
Svaiter, 1999a,b; He and Monteiro, 2014).

The part (c) states pointwise convergence without av-
eraging, where its rate is unknown: one can conjecture
from related extragradient methods, e.g. He and Mon-
teiro (2014; Theorem 3.4), that the convergence might
be at a slower rate of O(1/vk), but it is only an ed-
ucated guess since the methods are not exactly the
same. In fact, in our experiments the iterates tend to
converge faster than averaged iterates, which we will
discuss further in detail later.

The part (a) of the above theorem is indeed crucial
for our discussion in the sequel. (We note that simi-
lar boundedness results are available for some related
methods, e.g. Nemirovski (2004); Tseng (2008), but
not for all). In particular, in many sparse regres-
sion scenarios in high-dimensions, we expect that ||w*||
may not be very large due to the small support size
(the number of nonzero components) of a true signal.
As our algorithm naturally starts from the zero vector
(wog = 0), it is therefore likely from Theorem 1 (a),
with some proper values of 7y and oy, that ||wj —w*||
(or even ||lwg||) would be small as well, although we
need more information about ||vyp — v*|| to say it defi-
nitely.
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3.1 Local Strong Convexity and Acceleration

When F or G is strongly convex, it can be shown that
Algorithm 1 exhibits a faster O(1/k?) pointwise con-
vergence rate due to Chambolle and Pock (2011), using
the same trick as in the proof of Theorem 1.

Here, we claim that such an acceleration is also possi-
ble, at least locally, without strong convexity. Let us
focus on F, since our arguments here can be equally
applied for G. When F is strongly convex, it satisfies

F(W) = F(w)+ (g, w'—w)+ 2 [w—w|?, g€ oF(w),

for some modulus v > 0 and for any w/, w € dom F.

Suppose that F is not strongly convex (i.e., v = 0),
as in the general GDS cases (4). Also, suppose that
F is indeed a norm, so that it satisfies the (reverse)
triangle inequality, F(w*) — F(wy) < F(W* — wy),
for a solution w* and an iterate wy of Algorithm 1.
If F(w* — wy) is bounded so that F(w* — wy) <
c/|w* — wy|| holds for some ¢ > 0, where the right-
hand side is bounded due to Theorem 1 (a), then we
can find constants ¢, > 0 such that

F(w*) = F(wy) > eF(w* —wy) > §|w* —wyi|?, (6)

for all k > ko, with some ko > 0 (note that w, — w*
due to Theorem 1 (c)). Together with the inequal-
ity from the convexity of F, i.e., F(w*) > F(wy) +
(g, w* —wy) with g € 9F(wy,), it follows that

1 1)
F(w*) > }—(Wk)+§<g7W*—Wk>+§|\W*—WkH2~ (7)

Comparing to the above inequality of strong convexity,
this provides us a weaker notion of strong convexity
in the region where (6) holds. We show that this is
enough to establish a local accelerated pointwise con-
vergence rate even in non-strongly convex cases:

Theorem 2. Let the iterates (wy,vy) be generated by
Algorithm 1 with the choices of 79 and o¢ such that
21900L* = 1, and v, = 2Viy1. Suppose that the
local strong convexity (7) holds for F with a constant
& > 0 about wy, Yk > ko with some kg > 0. Then for
a saddle-point (w*,v*) of the GDS-SP problem (4),
there exists k1 > ko depending on € > 1 and d1y such
that for all k > k1,

4e HW* — W()H2 L?
* 2

W — W < — £ 20000000 U -
|| k” < 45273

The proof is provided in the supplementary material
due to its length. In reality, the constant § > 0 can be
very small, probably enough to make the rate similar
to O(1/k). Also the condition (6) is not easily veri-
fiable without knowing F(w™*) a priori. Further, (6)

implies F(w*) > F(wy) for k > ko, which is not en-
forced by our algorithm. Nonetheless, our new result
shows that local pointwise convergence with an accel-
erated rate O(1/k?) is possible without strong convex-
ity, under some special conditions. In our experience,
Algorithm 1 seemed to exhibit pointwise convergence
rate as fast as, or even faster than, O(1/k), in surpris-
ingly many cases, even if we chose v}, 41 = Vi1 and
0 = 0: this motivated us to check both pointwise and
ergodic convergence in Algorithm 1 for non-strongly
convex cases.

4 DANTZIG SELECTOR WITH
THE ORDERED /;-NORM

Here we introduce a new kind of GDS, defined with the
ordered ¢;-norm: for given p parameters A\y > --- >
Ap > 0, the Ordered Dantzig Selector (ODS) performs
penalized estimation by solving the problem

p
min Jy(w) := Z)‘ilwki)
i=1

(ODS)  werr = (8)
st. J2(XT(y —Xw)) <1
where A := (A1,...,Ap), |w|(;) denotes the ith largest

absolute value of the components of the vector w =
(w1, ...,w,), and JL is the dual norm of Jx. It has
been shown that Jx(-) is indeed a norm (Bogdan et al.,
2015; Proposition 1.2). Its dual norm has a rather
complicated expression,

lw| v wl
J)?(w):max{ /\i),...’ 5}21/\;) .

Although the ODS (8) can be formulated as a linear
program, it requires exponentially many constraints
to express the constraint set. Our algorithm can avoid
handling this thanks to the fact that in our saddle-
point reformulation the dual norm appears in forms of
the double dual norm, i.e., Jx(-):

min max <XT 1 —X] m ,v> + Ia(W) — Ja(v).

weRP veRP

The proximal operator for Jx(:) can be computed in
O(plogp) time using the stack-based FastProxSL1 al-
gorithm (Bogdan et al., 2015; Algorithm 4).

4.1 False Discovery Rate Control

In high-dimensional variable selection, some types of
statistical confidence about selection is desired since
otherwise the power of detection of true regressors
might be very low or, on the contrary, the number
false discoveries can be too large.
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In the popular LASSO approach, variable selection is
performed based on an {;-penalized regression,

o1 2
min S ly = Xw[ + Alwll. (9)
When observations follow the model y = Xw* + £
with orthogonal design (X7X = I,,) and noise & ~
N(0,0%1,,), one can choose A ~ o+/2logp to control
the family-wise error rate (FWER), the probability of
at least one false rejection. However, this choice is non-
adaptive to data as it does not depend on the sparsity
and magnitude of the true signal, being likely to result
in a loss of power (Bogdan et al., 2015).

In contrast, in an alternative strategy called the
SLOPE which replaces the ¢i-term in (9) with the
ordered ¢;-norm Jy(-), it has been shown that data-
adaptive false discovery rate (FDR) control is pos-
sible (Bogdan et al., 2015). The SLOPE follows
the spirit of the Benjamini-Hochberg correction (Ben-
jamini and Hochberg, 1995) in multiple hypothesis
testing, which can adapt to unknown signal sparsity
with improved asymptotic optimality (Abramovich
et al., 2006; Bogdan et al., 2011; Frommlet and Bog-
dan, 2013; Wu and Zhou, 2013).

Our new proposal, the ODS, shares the same motive
as the SLOPE to use the ordered ¢;-norm, yet in a
different context of the Dantzig Selector. Our next
theorem shows that ODS can control FDR, in orthog-
onal design cases.

Theorem 3. Under the linear data model y = Xw* +
¢ with X € R"?, XTX =1, and & ~ N(0,0°1,),
suppose that we choose A = (A1, ,\p) according to

A\ =o0d ! (1 — 12(;)

where ®(-) denotes the cdf of the standard normal dis-
tribution. Then the ODS problem (8) has a unique
solution W with its FDR controlled at the level

14 Po
FDR=E|———| <q- 2 <
k {max{R,l}] =1 p ¢
po = ‘{z Cwf = 0}’ (# true null hypotheses)
Vo= |{iw; =0,%; #0}| (# false rejections)
R = |{i:; #0}| (# all rejections)

Proof. Our proof is based on showing the equivalence
between the ODS and the SLOPE estimates under the
given conditions, and thereby both share the same
FDR control. Our full proof is quite technical, and
is provided in the supplementary. O

For non-orthogonal design, we may need to use a dif-
ferent sequence of \;’s. For instance, we can consider

an adjustment for Gaussian design cases,

N =N
Moo= a1 2o

and then for ¢ = arg min,{\;}, take

)\G _ A;a
i >\t

The second step is required to make the sequence {)\ZG}
to be non-increasing since otherwise Jyc (-) may not be
a convex function. For details about the adjustment,
we refer to (Bogdan et al., 2015; Section 3.2.2).

i<t

1>t (10)

5 EXPERIMENTS

We demonstrate our algorithm on the ODS instances
with randomly generated data in various settings.
Since the ordered f;-norm is not strongly convex, we
run Algorithm 1 with v = 0 and v ; = vi41 unless
otherwise specified.

Under the data model y = Xw + £, we sampled each
entry of the Gaussian design matrix X € R"*? and the
noise vector £ independently from the normal distri-
bution A(0,1). The true signal w € R? was generated
to be an s-sparse vector, where the signal strength was
set to w; = /2logp for all nonzero elements i. The
\; values were chosen according to Theorem 3 and the
adjustment (10), with the target FDR level of ¢ = 0.1.

The performance of Algorithm 1 (PDSP) has been
compared to the following alternatives:

SP Algorithms:

— HPE: accelerated hybrid proximal extragradient
method (He and Monteiro, 2014).

— MPL: a variant of the mirror-prox (Nemirovski,
2004) with linesearch (Tseng, 2008).

Non-SP Algorithms:

— LADMM: linearized ADMM customized for the
GDS (Chatterjee et al., 2014).

— TFOCS: an implementation of Nesterov’s smooth-
ing technique (Becker et al., 2011).

Unlike the SP algorithms, the non-SP algorithms re-
quire to specify extra parameters difficult to deter-
mine: in particular, the penalty parameter p > || X||*
for LADMM and the smoothing parameter y ~ O(e)
for TFOCS. Whenever needed, the values of ||X]| and
Al = [|XT [I, —X] || were estimated by taking in-
ner products of the matrices with random unit vectors.
For TFOCS, we fixed u = 1072 > ¢, since a larger
value than the target optimality e is usually recom-
mended for better performance.
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Figure 1: Mean FDR and Power Detecting Signals of
Different Sparsity (s = 5, 10,15, 20, 25).

All algorithms were stopped if the following condition
was satisfied with an optimality threshold of e = 1077,

26 — 21 [|/ max{L, [|z4[|} <,

for either z, = (wy,vy) (pointwise) or z; = (Wi, V)
(ergodic convergence). A tight optimality threshold is
typically required for accurate variable selection.

All experiments were performed on a Linux machine
with a quadcore 3.20 GHz Intel Xeon CPU and 24 GB
of memory, using MATLAB R2015a.

5.1 Algorithm Performance

The primary advantage of our method (PDSP) is its
fast speed with small runtime variations while being
simple to implement. Table 1 compares the runtime
of the algorithms over 50 randomly generated ODS
instances in different scenarios, i.e., the combinations
of problem dimensions (p < n, p = n, p > n) and
signal sparsity (s = 5,10, 15).

Our method has been the most favorable over all cases,
except for few where HPE performed slightly better.
However, the HPE algorithm is far more complicated
than ours (see Algorithm 3 and 4 in the supplemen-
tary), having an iterative subproblem solver which re-
quires to specify extra parameters to control subprob-
lem accuracy.

The advantage of SP methods over non-SP counter-
parts also looks apparent. In particular, LADMM,
previously proposed for the GDS, performed well for
p < n, but quite poorly for the other situations. Over-
all, TFOCS has been slower than LADMM. Note that
both LADMM and TFOCS may have performed bet-
ter if their parameters were tuned for individual cases:
which is exactly what we tried to avoid.

5.2 FDR Control

To show the FDR control property of the ODS (solved
with our algorithm), we generated random ODS in-
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Figure 2: Pointwise and Ergodic Convergence. (Left)
Primal; (Right) Dual.

stances with orthogonal and Gaussian design matrices
of the dimension n = 2000 and p = 1000, and com-
pared the FDR and the power of the two cases for the
target FDR level of ¢ = 0.1.

Figure 1 shows the mean values of these quality criteria
over 300 repetitions, for increasing numbers of relevant
features (s) in the true signal (also referred to as signal
sparsity). FDR was indeed controlled at the desired
level of 10% in both orthogonal and Gaussian cases, as
we claimed. We observed slightly improved power with
orthogonal design compared to the Gaussian cases: it
is natural since A values were adjusted to control FDR,
resulting in larger penalty for the latter.

Comparing to SLOPE using the same A values under
Gaussian design, ODS appeared to be slightly more
conservative, improving FDR and the average number
of false discoveries at the cost of a small decrease in
power (data not shown). So ODS would be appeal-
ing for applications like finding biomarkers from high-
dimensional genomic data where false positive discov-
eries can cost much for follow-up validation. We leave
more precise comparison to SLOPE as future work.

5.3 Convergence Rate

Using our algorithm in experiments, we observed fast
pointwise convergence in almost every case. This was
quite surprising, since pointwise convergence rate is
not, explained by the existing analysis in Theorem 1,
and also expected to be slow, as we discussed earlier.

Figure 2 shows one instance of the randomly generated
Gaussian design cases with p = n = 1000, s = 15, and
g = 0.1 (behavior was quite similar in other settings).
We ran our algorithm twice for the same data, 1) to
obtain the primal and the dual solutions, then 2) to
obtain the relative distances of iterates to their corre-
sponding solution, such as ||wy — w*||/||w*||.

As we can see, the averaged iterate (denoted by “Er-
godic”) showed the expected O(1/k) convergence rate.
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Table 1: Algorithm Runtimes (Suboptimality e < 10~7). Mean (Std) in Seconds over 50 Random ODS Instances.

s » n Saddle-Point Algorithm Non Saddle-Point
PDSP HPE MPL LADMM TFOCS
100 1000 || 0.04 (0.03) | 0.05 (0.03) 0.20 (0.12) 0.10  (0.22) | 2.92 (4.88)
5 | 1000 1000 || 1.35 (3.38) | 48.96 (339.70) | 3.98  (6.56) || 15.47 (29.39) | 54.43 (291.03)
1000 100 || 2.79 (1.63) | 2.28 (1.57) 8.15  (4.05) || 31.87 (19.99) | 20.02  (48.73)
100 1000 || 0.19 (0.40) | 54.22 (382.27) | 0.74  (1.30) 0.41 (0.53) | 14.33  (45.28)
10 | 1000 1000 || 2.47  (6.07) 1.97 (3.97) 6.31 (11.74) || 29.82 (31.77) | 37.73  (85.57)
1000 100 || 4.99 (5.61) | 30.05 (188.19) | 12.93 (11.34) || 46.78 (24.39) | 57.27 (101.36)
100 1000 || 0.33 (0.68) | 13.95 (67.75) 1.07  (1.49) 1.32  (1.70) | 27.56  (50.32)
15 | 1000 1000 || 3.99 (8.35) | 2.69 (5.18) 9.76  (15.43) || 39.52 (32.66) | 38.95 (103.08)
1000 100 || 9.88 (10.70) | 6.93 (8.00) | 23.86 (20.82) || 91.52 (33.56) | 85.77 (124.23)

Primal

Dual

0 20 20 80 80 100
In all the last t iterations

Figure 3: (Top; Middle) Local Strong Convexity Esti-

mates for Primal: F and Dual: G in the last 100 itera-

tions. (Bottom) Probability of Local Strong Convexity
in Primal or in Dual, for all of the last ¢ iterations.

In contrast, the non-averaged iterates (“pointwise”)
converged much faster, even exhibiting typical fluc-
tuation patterns of accelerated gradient method. We
believe that this behavior is closely related to the local
strong convexity and acceleration we discussed.

In fact, in Figure 2, neither any information of local
strong convexity nor the alternative choice of v}, 1=
2vi41 was used. When the latter option was used, our
algorithm showed even faster pointwise convergence,
but there were some cases the algorithm did not con-
verge, which would be when the required local strong
convexity assumption was not satisfied.

5.4 Local Strong Convexity

We again generated 300 random ODS instances with
the same settings as in the previous experiment, to
simulate how often the local strong convexity condi-

tion (7) would be fulfilled, and to what degree.

Figure 3 (top and middle) reports the box-plots of the
local strong convexity estimates:

F(w*) = F(wy) — 3(g. w*

[w* — w2

_ Wk>

, 8 € 0F(wy),

in the primal, and equivalent quantities regarding G in
the dual, evaluated for the last 100 iterations of each
run. As we approached the last iteration, these values
varied more away from zero, where the chance of being
positive was nearly 50% in the primal and dual, resp.
In fact, for acceleration to happen, it is very likely
from Theorem 2 that the values need to be positive
in either primal or dual: Figure 3 (bottom) shows the
chance of such events to happen, in all of the last ¢
iterations: the probability seemed to approach one as
t — 1. This indicates that local acceleration near an
optimal solution would be highly likely.

6 CONCLUSION

We proposed PDSP, a fast and simple primal-dual al-
gorithm to solve the saddle-point formulation of the
generalized Dantzig selector. While achieving the
known optimal convergence rate, we showed that our
algorithm can exhibit a faster rate, taking the advan-
tage of local acceleration. We also introduced the or-
dered Dantzig selector with FDR control, a new in-
stance of the GDS, which we hope will foster further
research in variable selection and signal recovery.

Acknowledgements

SL was supported by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Cen-
ter SFB 876, project C1. D.B. and M.B. were sup-
ported by European Union’s 7th Framework Pro-
gramme under Grant Agreement no 602552 and by
the Polish Ministry of Science and Higher Education
under grant agreement 2932/7.PR/2013/2.

787



Sangkyun Lee, Damian Brzyski, Malgorzata Bogdan

References

F. Abramovich, Y. Benjamini, D. L. Donoho, and I. M.
Johnstone. Adapting to unknown sparsity by con-
trolling the false discovery rate. Annals of Statistics,
34(2):584-653, 2006.

A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183-202,
2009.

S. R. Becker, E. J. Candés, and M. C. Grant. Tem-
plates for convex cone problems with applications to
sparse signal recovery. Mathematical Programming
Computation, 3:165-218, 2011.

Y. Benjamini and Y. Hochberg. Controlling the false
discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical
Society. Series B, 57(1):289-300, 1995.

M. Bogdan, A. Chakrabarti, F. Frommlet, and J. K.
Ghosh. Asymptotic bayes-optimality under spar-
sity of some multiple testing procedures. Annals of
Statistics, 39(3):1551-1579, 2011.

M. Bogdan, E. van den Berg, W. Su, and E. J. Candes.
Statistical estimation and testing via the sorted 11
norm. arXiw:1310.1969, 2013.

M. Bogdan, E. van den Berg, C. Sabatti, W. Su, and
E. J. Candes. SLOPE — adaptive variable selection
via convex optimization. Annals of Applied Statis-
tics, 9(3):1103-1140, 2015.

D. Boley. Local linear convergence of the alternating
direction method of multipliers on quadratic or lin-
ear programs. SIAM Journal on Optimization, 23
(4):2183-2207, 2013.

E. Candes and T. Tao. The dantzig selector: Statisti-
cal estimation when p is much larger than n. Annals
of Statistics, 35(6):2313-2351, 2007.

A. Chambolle and T. Pock. A first-order primal-dual
algorithm for convex problems with applications to
imaging. Journal of Mathematical Imaging and Vi-
sion, 40(1):120-145, 2011.

S. Chatterjee, S. Chen, and A. Banerjee. Generalized
dantzig selector: Application to the k-support norm.

In Advances in Neural Information Processing Sys-
tems 27, pages 1934-1942. 2014.

M. Figueiredo and R. Nowak. Sparse estimation with
strongly correlated variables using ordered weighted
{1 regularization. arXiv:1409.4005, 2014.

F. Frommlet and M. Bogdan. Some optimality proper-
ties of fdr controlling rules under sparsity. Flectronic
Journal of Statistics, 7:1328-1368, 2013.

T. Goldstein, B. O'Donoghue, S. Setzer, and R. Bara-
niuk. Fast alternating direction optimization meth-
ods. SIAM Journal on Imaging Sciences, 7(3):1588—
1623, 2014.

Y. He and R. D. C. Monteiro. An accelerated HPE-
type algorithm for a class of composite convex-
concave saddle-point problems. Optimization On-
line, April 2014.

M. Kadkhodaie, K. Christakopoulou, M. Sanjabi,
and A. Banerjee. Accelerated alternating direction
method of multipliers. In Proceedings of the 21st
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD, 2015.

G. M. Korpelevich. The extragradient method for find-
ing saddle points and other problems. Ekonomika i
Matematicheskie Metody, 12:747-756, 1976.

R. D. C. Monteiro and B. F. Svaiter. Complexity of
variants of tseng’s modified f-b splitting and kor-
pelevich’s methods for hemivariational inequalities
with applications to saddle-point and convex opti-
mization problems. SIAM Journal on Optimization,
21(4):1688-1720, 2011.

A. Nemirovski. Prox-method with rate of convergence
o(1/t) for variational inequalities with lipschitz con-
tinuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on
Optimization, 15(1):229-251, 2004.

Y. Nesterov. A method of solving a convex program-
ming problem with convergence rate o(1/k?). Soviet
Math. Dokl., 27(2), 1983.

Y. Nesterov.
functions.
152, 2005.

Smooth minimization of non-smooth
Mathematical Programming, 103:127—

Y. Nesterov. Dual extrapolation and its applications
to solving variational inequalities and related prob-
lems. Mathematical Programming, 109(2-3):319-
344, 2007.

Y. Ouyang, Y. Chen, G. Lan, and E. P. Jr. An acceler-
ated linearized alternating direction method of mul-
tipliers. SIAM Journal on Imaging Sciences, 2015.

R. T. Rockafellar. Conver Analysis. Princeton Land-
marks in Mathematics and Physics. Princeton Uni-
versity Press, 1997.

R. T. Rockafellar and R. J.-B. Wets. Variational Anal-
ysis, volume 317 of A Series of Comprehensive Stud-
ies in Mathematics. Springer, 2nd edition, 2004.

W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On
the linear convergence of the ADMM in decentral-
ized consensus optimization. IEFE Transactions on
Signal Processing, 62(7), 2014.

788



Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with Ordered 11-Norm

N. Z. Shor, K. C. Kiwiel, and A. Ruszcaynski. Min-
imization methods for non-differentiable functions.
Springer-Verlag New York, Inc., NY, USA, 1985.

M. V. Solodov and B. F. Svaiter. A hybrid approxi-
mate extragradient-proximal point algorithm using
the enlargement of a maximal monotone operator.
Set-Valued Analysis, 7(4):323-345, 1999a.

M. V. Solodov and B. F. Svaiter. A hybrid projection-
proximal point algorithm. Journal of Convexr Anal-
ysis, 6(1), 1999b.

B. Taskar, S. Lacoste-Julien, and M. I. Jordan. Struc-
tured prediction, dual extragradient and bregman
projections. Journal of Machine Learning Research,
7:1627-1653, 2006.

P. Tseng. On accelerated proximal gradient methods
for convex-concave optimization. submitted to STAM
Journal on Optimization, 2008.

H. Wang and A. Banerjee. Bregman alternating di-
rection method of multipliers. In Advances in Neu-
ral Information Processing Systems 27, pages 2816—
2824. 2014.

X. Wang and X. Yuan. The linearized alternating
direction method of multipliers for dantzig selec-
tor. SIAM Journal on Scientific Computing, 34(5):
A2792-A2811, 2012.

Z. Wu and H. Zhou. Model selection and sharp asymp-
totic minimaxity. Probability Theory and Related
Fields, 156(1-2):165-191, 2013.

Y. Zhang and L. Xiao. Stochastic primal-dual coor-
dinate method for regularized empirical risk mini-
mization. In Proceedings of the 32nd International
Conference on Machine Learning, 2015.

789



