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Appendix

A Configurations of the test function

In this section, for the test functions used in Table 1,
we provide the detailed configurations in Table 2 be-
low. We show the mathematical form of these four test
functions. We also include the distributions to sample
the truths a ~ N (9, £?) and the distributions of the
priors a ~ N(9°,299). Note all the test functions
chosen here can be written as linear expansions with
respect to basis functions only containing x. Also,
these functions were designed to be minimized, so all
the coefficients were achieved by taking the negative
of the functions. Here each function is scaled to have a
range of 100, so that the measurement noises are given
on the same scale. For HDGPO, we spend the initial
25 samples on dimension reduction and the other 25
samples to run GP-UCB algorithm.

B Technical proofs

In this section, we show the detailed proof of Theo-
rem 4.1. We first provide a sketch of the proof. As
one can see from the updating equations in (12) and
(11), the posterior mean estimate 197§+1 is the weighted

sum of prior 9% and the current Lasso estimate 5’;“.
Therefore, if the Lasso estimate has an error bound
as described in Lemma B.1 Zhang and Huang (2008),
then the posterior estimate should also have a similar
bound under certain conditions of the weighted co-
variance matrix. One should note that both the mean
and the covariance are updated on some support S
from the current Lasso estimate. Thus we work on a
sequence of Lasso solutions and prove the bound on
the intersection support set as large enough samples
are made. Also note that in order to use the bound
in Lemma B.1, we need to make sure that assump-
tions 4.1 and 4.2 are satisfied for every Lasso problem
in such a sequence. Assumption 4.1 is easy to satisfy.
To show that all the sequential Lasso problems sat-
isfy Assumption 4.2, we work from a “warm” start at
time N’. Then Proposition B.1 actually verifies that if
the design matrix at time N’ satisfies Assumption 4.2,
then the following ones should also satisfy the SRC,
only with a slight loose up to some constant. We be-
gin by introducing the bound of Lasso estimates as
proved in Zhang and Huang (2008) (refer to Theorem
1, 2 and 3 of the paper).

Lemma B.1 (Zhang and Huang (2008)). Suppose As-
sumption 4.1 is satisfied and the design matric X!
satisfies SRC(s, ¢y, c*). Let {cs, c*, co, s} be fivred and
p — oo. If we solve the Lasso given in (9) with
A" = X(n,p), then the following properties hold with
probability converging to 1 as n — oo:

(1) |S| < C3|S*| for some finite positive constant C
defined as C3 = 2 + 4¢;

(2) Any optimal solution 9" to (9) satisfies the fol-
lowing error bound

l9" — 93 <

Cyo?s* logp
n )

for some positive constant Cy depending only on

Cy,C*, and cq.

Then the following proposition proves that all the fol-
lowing design matrix satisfy SRC only with looser
spectrum bounds.

Proposition B.1. Let Assumption 4.8 be satisfied.
Besides, assume for some large enough N', the de-
sign matriz XN ~1 satisfies condition SRC (s, cy,C").
Then, for all N' < n' < ¢N’, of which ¢ > 1 is
some constant, the design matriz X"~ can satisfy
SRC (s,ci/c, B).

Proof. To begin with, let us define the following no-
tation. For any square matrix M, let Ap.x(M) and
Amin (M) be the largest eigenvalue and smallest eigen-
value of M. Let us define %"~ be the sample co-
. . . X.n—1 (Xn—HTxn-1
variance matrix, that is 3% = *=—————. For
any N’ < n’ < ¢N’'| let us divide the design matrix

X1 ag
- XN’fl
n'—1
s [

We need to prove X" =1 gatisfies condition SRC
(s,ce/c, B). Note that X ~1 satisfies SRC (s, cx, c*)
is equivalent to

o < Apin (EXV 7Y < A (B2 Y <
VS with s = |S| and v € R®.

Then we have that for VS with s = |S]|

(Xis DTXis

X,n' -1
z]Sn - n/
RN (T
n/
_NEEY T (X)X
n’ '

This implies that

A EX,n'fl > N/A ZX’NI71 > C*
min( S ) F min( S ) - (15)

and

’ N/ ’
X,n'—1 X,N'—1
Amax(zs ) S ?Amax(zg ) +
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Table 2: Detailed configurations for test functions in Table 1.

Test function

Mean

Matyas
pw(x) = 0.26(z7 + z3) — 0.48z1 72,
X = [-10,10)

9 = [—0.26,—-0.26,0.48,0,...,0]
9% = [-0.18,-0.34,0.3,0,...,0]

Six-hump Camel

9 =[-4,21,-1/3,—1,4,—4,0,...,0]

w(x) = (4 — 2.123 4+ z1/3)2? 90 =[-3.2,1.5,-0.1,—1.5,4.5, —3.6,0, ..., 0]
+x1z0 + (—4 + 423)23,
X =[-3,3] x [-2,2]
Trid 9=[-1,...,-12,...,2,1,...,1,-6,0,...,0]
6 6 5
wax) =" (zi—1)2 =4 iz, 9°=[-06 —0.6,2.3,...,2.3,1.5,...,1.5,—4,0,...,0]
6 6 5
d=6,X =[-36,36]°
. 9n 9,N' -1 a9, N’
Since e g (B

(X)X g =2 (@) + 2y @y )T+
4 wg 71(:1:2 71)T
and
A [:c”(:c”)T] = Ha:"||2 < B, Vn
max [+ S S Sl2 = ) 5

we can get that

, N/ nl _ N/
X,n'—1 *
Amax(zg ) < WC + TB
< max(c*,B) = B. (16)
Combining (15) and (16) completes the proof. O

Thus we have all the ingredients to complete the proof
of Theorem 4.1.

Proof of Theorem 4.1

Proof. We begin with the proof of part (1).

Theorem 4.1 assumes that XM =1 satisfies
SRC(C1s*,¢x,c*). By Proposition B.1, we know
that for all cN’ < n’ < &N’, the design matrix X -1
can satisfy SRC(Cys*,c¢./¢, B). Thus the result of
part (1) directly follows from part(1) of Lemma B.1.

We now proceed to prove part (2). Throughout the
proof, we let ¢, c*, cg, ¢, ¢, and B be fixed. We also let
the bounds [Chin, Cimax| for truncating the eigenvalues
of @(zs)("“‘l) be fixed positive constants, so in the
following, the C;s are some positive constants depend-
ing only on these quantities. If we let S := (% _ 5, S™,
then from the updating formula in (12) and (11), we
have

SN’

9% = 39" [(ZPV T TN T [(E0Y) s0Y +

-1
SO
S+ (B s

Then if we define

’

n —
&Y =
-~ 7

n .—
&Y =

9% — 95
ﬂg _1937

for all N’ — 1 < n’ < n to simplify notation, we have

53 = x5 [(22”'—1)*61?-1 (S2Y) 1588 +
(B8]
This gives us the following bound on 47,

9, 9N —1\— N'—
10512 < 125" ll2 |12 ) H2ll6g e+

IEZY ) sl285 2 + -+ NEEM s 211822 -

We now proceed to bound each of the quantities. Let
us for now assume that N’ < n' < n. As we suppose
the design matrix for the Lasso solution 9% " satisfies
SRC(C1s*, ¢k, c*), by Proposition B.1 and Lemma B.1,
if we choose A" = A(n, p) such that

A" = 0(y/n'logp),

then there exists some constant Cy such that

~ *1
1821 < Curey| B2 ot o' < ' < . 18)
n

with probability converging to 1. We know from (10)

(17)

that ES’”// is computed by:

2197} _ Mn 710,2 + ()\n/)QMgln_,l(TO\V(Z )(" )Mgn_’lv
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where
1

ML= (X h X

The SRC(C1s, ¢y, ¢*) gives us

! 1
N'-1
Amax(Ms ) S N/C* < 00,
A Sy s
min(Mg 7)) > Nier > 0,

for any S with |S| = Cys*.

Therefore, since |S™| <

Cs*, which is proved in part (1), by Proposition B.1,

we can show that for all N/ < n’ < n, there exist

positive constants C5 and Cg, such that

n— Cs
Amax(Msn/ ) S F < 00,
/ C
n'—1 6
Amin(Mgrh) > 2> 0.

It is not hard to prove

Amin (MN) 2 Amin (M)Amin (N)

for any positive semidefinite matrices M and N, so us-
ing Weyl’s inequality in matrix theory, (10), and (20),

we have the following bound,

I\[(ng ) sl < H(ng )2 = Amm(ng
1
= Apmin (02M 1) 4 (A7)2A (Cov(
min S" min
C7n
~ o2logp’

n’—1
(MSn’ )

(21)

for some constant C7. Similarly, by (17), (19), and

(10), we can also get
S0’ 9,0/
[Zgr ll2 = Amx(zsn )
< 0’2Amax(M (A" )2Amax(Cov(
lop logp

< CS )

s )

n —1
(M7,

for some constant Cg. Thus, for the posterior covari-

ance matrix, we have

for some constant Cy. If we let
9N —1\— -
As(N') = [1(Zg™ )7 20165 e,

then combining (18),(21), and (22) gives us the follow-
ing bound on &%

Coo? logp i C4C7x/s*n’
n? it aex/logp
Croocy/s*logp | Coo?logpAg(N')

< + )

> \/ﬁ n2

for some constant Cig. After dropping off the higher
order term, (23) is equivalent to

105 1l2

IN

(23)

Cyo?s* logp
9L —Pg|2 < === =8
9% - osl3 < 227

and thus completes the proof. O

)
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