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Appendix

A Configurations of the test function

In this section, for the test functions used in Table 1,
we provide the detailed configurations in Table 2 be-
low. We show the mathematical form of these four test
functions. We also include the distributions to sample
the truths ↵ ⇠ N (#,⌃#) and the distributions of the
priors ↵ ⇠ N (#0,⌃#,0). Note all the test functions
chosen here can be written as linear expansions with
respect to basis functions only containing x. Also,
these functions were designed to be minimized, so all
the coe�cients were achieved by taking the negative
of the functions. Here each function is scaled to have a
range of 100, so that the measurement noises are given
on the same scale. For HDGPO, we spend the initial
25 samples on dimension reduction and the other 25
samples to run GP-UCB algorithm.

B Technical proofs

In this section, we show the detailed proof of Theo-
rem 4.1. We first provide a sketch of the proof. As
one can see from the updating equations in (12) and
(11), the posterior mean estimate #n+1

S is the weighted

sum of prior #n

S and the current Lasso estimate b
#

n+1

S .
Therefore, if the Lasso estimate has an error bound
as described in Lemma B.1 Zhang and Huang (2008),
then the posterior estimate should also have a similar
bound under certain conditions of the weighted co-
variance matrix. One should note that both the mean
and the covariance are updated on some support S
from the current Lasso estimate. Thus we work on a
sequence of Lasso solutions and prove the bound on
the intersection support set as large enough samples
are made. Also note that in order to use the bound
in Lemma B.1, we need to make sure that assump-
tions 4.1 and 4.2 are satisfied for every Lasso problem
in such a sequence. Assumption 4.1 is easy to satisfy.
To show that all the sequential Lasso problems sat-
isfy Assumption 4.2, we work from a “warm” start at
time N 0. Then Proposition B.1 actually verifies that if
the design matrix at time N 0 satisfies Assumption 4.2,
then the following ones should also satisfy the SRC,
only with a slight loose up to some constant. We be-
gin by introducing the bound of Lasso estimates as
proved in Zhang and Huang (2008) (refer to Theorem
1, 2 and 3 of the paper).

Lemma B.1 (Zhang and Huang (2008)). Suppose As-
sumption 4.1 is satisfied and the design matrix Xn�1

satisfies SRC(s, c⇤, c⇤). Let {c⇤, c⇤, c0, s} be fixed and
p ! 1. If we solve the Lasso given in (9) with
�n = �(n, p), then the following properties hold with
probability converging to 1 as n ! 1:

(1) |S̄|  C
3

|S⇤| for some finite positive constant C
3

defined as C
3

= 2 + 4bc;

(2) Any optimal solution b
#

n to (9) satisfies the fol-
lowing error bound

kb#n � #k2
2

 C
4

�2

✏

s⇤ log p

n
,

for some positive constant C
4

depending only on
c⇤, c

⇤, and c
0

.

Then the following proposition proves that all the fol-
lowing design matrix satisfy SRC only with looser
spectrum bounds.

Proposition B.1. Let Assumption 4.3 be satisfied.
Besides, assume for some large enough N 0, the de-
sign matrix XN

0�1 satisfies condition SRC (s, c⇤, c⇤).
Then, for all N 0 < n0  cN 0, of which c > 1 is
some constant, the design matrix Xn

0�1 can satisfy
SRC (s, c⇤/c,B).

Proof. To begin with, let us define the following no-
tation. For any square matrix M, let ⇤

max

(M) and
⇤
min

(M) be the largest eigenvalue and smallest eigen-
value of M. Let us define ⌃X,n�1 be the sample co-

variance matrix, that is ⌃X,n�1 = (Xn�1
)

TXn�1

n

. For
any N 0 < n0  cN 0, let us divide the design matrix
Xn

0�1 as

Xn

0�1 =


XN

0�1

X+

�
.

We need to prove Xn

0�1 satisfies condition SRC
(s, c⇤/c,B). Note that XN

0�1 satisfies SRC (s, c⇤, c⇤)
is equivalent to

c⇤  ⇤
min

(⌃X,N

0�1

S )  ⇤
max

(⌃X,N

0�1

S )  c⇤,

8S with s = |S| and ⌫ 2 Rs.

Then we have that for 8S with s = |S|

⌃X,n

0�1

S =
(Xn

0�1

⇤S )TXn

0�1

⇤S
n0

=
(XN

0�1

⇤S )TXN

0�1

⇤S + (X+

⇤S)
TX+

⇤S
n0

=
N 0⌃X,N

0�1

S + (X+

⇤S)
TX+

⇤S
n0 .

This implies that

⇤
min

(⌃X,n

0�1

S ) � N 0

n0 ⇤min

(⌃X,N

0�1

S ) � c⇤
c

(15)

and

⇤
max

(⌃X,n

0�1

S )  N 0

n0 ⇤max

(⌃X,N

0�1

S ) +
⇤
max

[(X+

⇤S)
TX+

⇤S ]

n0 .
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Table 2: Detailed configurations for test functions in Table 1.

Test function Mean

Matyas # = [�0.26,�0.26, 0.48, 0, . . . , 0]

µ(x) = 0.26(x

2
1 + x

2
2)� 0.48x1x2, #

0
= [�0.18,�0.34, 0.3, 0, . . . , 0]

X = [�10, 10]

2

Six-hump Camel # = [�4, 2.1,�1/3,�1, 4,�4, 0, . . . , 0]

µ(x) = (4� 2.1x

2
1 + x

4
1/3)x

2
1 #

0
= [�3.2, 1.5,�0.1,�1.5, 4.5,�3.6, 0, . . . , 0]

+x1x2 + (�4 + 4x

2
2)x

2
2,

X = [�3, 3]⇥ [�2, 2]

Trid # = [�1, . . . ,�1| {z }
6

2, . . . , 2| {z }
6

, 1, . . . , 1| {z }
5

,�6, 0, . . . , 0]

µ(x) =

Pd
i=1(xi � 1)

2 �
Pd

i=2 xixi�1, #

0
= [�0.6, . . . ,�0.6| {z }

6

, 2.3, . . . , 2.3| {z }
6

, 1.5, . . . , 1.5| {z }
5

,�4, 0, . . . , 0]

d = 6,X = [�36, 36]

6

Since

(X+

⇤S)
TX+

⇤S = x

N

0

S (xN

0

S )T + x

N

0
+1

S (xN

0
+1

S )T+

· · ·+ x

n

0�1

S (xn

0�1

S )T

and

⇤
max

[xn

S(x
n

S)
T ] = kxn

Sk22  B, 8n,

we can get that

⇤
max

(⌃X,n

0�1

S )  N 0

n0 c
⇤ +

n0 �N 0

n0 B

 max(c⇤, B) = B. (16)

Combining (15) and (16) completes the proof.

Thus we have all the ingredients to complete the proof
of Theorem 4.1.

Proof of Theorem 4.1

Proof. We begin with the proof of part (1).

Theorem 4.1 assumes that XN

0�1 satisfies
SRC(C

1

s⇤, c⇤, c
⇤). By Proposition B.1, we know

that for all cN 0  n0  c̄N 0, the design matrix Xn

0�1

can satisfy SRC(C
1

s⇤, c⇤/c̄, B). Thus the result of
part (1) directly follows from part(1) of Lemma B.1.

We now proceed to prove part (2). Throughout the
proof, we let c⇤, c⇤, c0, c, c̄, and B be fixed. We also let
the bounds [C

min

, C
max

] for truncating the eigenvalues

of dCov(zS)(n+1) be fixed positive constants, so in the
following, the C

i

s are some positive constants depend-
ing only on these quantities. If we let S̄ :=

T
n

n

0
=N

0 Sn

0
,

then from the updating formula in (12) and (11), we
have

#

n

¯S = ⌃#,n

¯S

h
(⌃#,N

0�1

¯S )�1

#

N

0�1

¯S + [(b⌃#,N

0

SN

0 )�1]
¯S
b
#

N

0
¯S +

· · ·+ [(b⌃#,n

Sn

)�1]
¯S
b
#

n

¯S

i
,

⌃#,n

¯S =
h
(⌃#,N

0�1

¯S )�1 + [(b⌃#,N

0

SN

0 )�1]
¯S+

· · ·+ [(b⌃#,n

Sn

)�1]
¯S

i�1

.

Then if we define

�

n

0
¯S := #

n

0
¯S � #

¯S

b
�

n

0
¯S := b

#

n

0
¯S � #

¯S ,

for all N 0 � 1  n0  n to simplify notation, we have

�

n

¯S = ⌃#,n

¯S

h
(⌃#,N

0�1

¯S )�1

�

N

0�1

¯S + [(b⌃#,N

0

SN

0 )�1]
¯S
b
�

N

0
¯S +

· · ·+ [(b⌃#,n

Sn

)�1]
¯S
b
�

n

¯S

i
.

This gives us the following bound on �

n

¯S ,

k�n
¯Sk2  k⌃#,n

¯S k
2

h
k(⌃#,N

0�1

¯S )�1k
2

k�N
0�1

¯S k
2

+

k[(b⌃#,N

0

SN

0 )�1]
¯Sk2kb�N

0
¯S k

2

+ · · ·+ k[(b⌃#,n

Sn

)�1]
¯Sk2kb�n¯Sk2

i
.

We now proceed to bound each of the quantities. Let
us for now assume that N 0  n0  n. As we suppose
the design matrix for the Lasso solution b

#

N

0

S satisfies
SRC(C

1

s⇤, c⇤, c
⇤), by Proposition B.1 and Lemma B.1,

if we choose �n

0
= �(n, p) such that

�n

0
= O(

p
n0 log p), (17)

then there exists some constant C
4

such that

kb�n
0

¯S k
2

 C
4

�
✏

r
s⇤ log p

n0 , for all cN 0  n0  n, (18)

with probability converging to 1. We know from (10)

that b⌃#,n

0

Sn

0 is computed by:

b⌃#,n

0

Sn

0 = Mn

0�1

Sn

0 �2

✏

+ (�n

0
)2Mn

0�1

Sn

0 dCov(zSn

0 )(n
0
)Mn

0�1

Sn

0 ,
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where

Mn

0! 1
Sn 0 =

!
(Xn

0! 1
"S n 0 )TXn

0! 1
"S n 0

" ! 1
.

The SRC(C1s, c" , c
" ) gives us

⇤max (M
N

0! 1
S )  1

N#c"
< 1,

⇤min (M
N

0! 1
S ) � 1

N#c" > 0,

for any S with |S| = C1s
" . Therefore, since |Sn

0 | 
C1s

" , which is proved in part (1), by Proposition B.1,
we can show that for all N#  n#  n, there exist
positive constants C5 and C6, such that

⇤max (M
n

0! 1
Sn 0 )  C5

n# < 1, (19)

⇤min (M
n

0! 1
Sn 0 ) � C6

n# > 0. (20)

It is not hard to prove

⇤min (MN) � ⇤min (M)⇤min (N)

for any positive semidefinite matrices M and N, so us-
ing Weyl’s inequality in matrix theory, (10), and (20),
we have the following bound,

k[(#⌃#,n

0

Sn 0 )! 1] øSk2  k(#⌃#,n

0

Sn 0 )! 1k2 = ⇤! 1
min (

#⌃#,n

0

Sn 0 )

 1

⇤min (�2
✏

Mn

0! 1
Sn 0 ) + (�n

0)2⇤min ($Cov(zn

0

Sn 0 ))⇤2
min (M

n

0! 1
Sn 0 )

 C7n
#

�2
✏

log p
, (21)

for some constant C7. Similarly, by (17), (19), and
(10), we can also get

k#⌃#,n

0

Sn 0 k2 = ⇤max (#⌃#,n

0

Sn 0 )

 �2
✏

⇤max (M
n

0! 1
Sn 0 ) + (�n

0
)2⇤max ($Cov(zn

0

Sn 0 ))⇤2
max (M

n

0! 1
Sn 0 )

 C8
�2
✏

log p

n# ,

for some constant C8. Thus, for the posterior covari-
ance matrix, we have

k⌃#,n

øS k2

= ⇤! 1
min

!
(⌃#,N

0! 1
øS )! 1 + [(#⌃#,N

0

SN 0 )! 1] øS + · · ·+ [(#⌃#,n

Sn )! 1] øS

"

 1

⇤min

!
[(#⌃#,N

0

SN 0 )! 1] øS

"
+ · · ·⇤min

!
(#⌃#,n

Sn )! 1
"

øS

=
1

⇤! 1
max (#⌃#,N

0

SN 0 ) + · · ·⇤! 1
max (#⌃#,n

Sn )

 2C8�
2
✏

log p

(N#+ n)(n�N#+ 1)

 C9�
2
✏

log p

n2 , (22)

for some constant C9. If we let

� øS(N
#) = k(⌃#,N

0! 1
øS )! 1k2k�N

0! 1
øS k2,

then combining (18),(21), and (22) gives us the follow-
ing bound on �

n

øS

k�nøSk2  C9�
2
✏

log p

n2

%

� øS(N
#) +

n&

n

0= N

0

C4C7
p
s" n#

�
✏

p
log p

'

 C10�✏

p
s" log pp
n

+
C9�

2
✏

log p� øS(N
#)

n2 , (23)

for some constant C10. After dropping o↵ the higher
order term, (23) is equivalent to

k#n

øS � # øSk2
2  C2�

2
✏

s" log p

n

and thus completes the proof.


