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Abstract

We propose a sequential learning policy for
noisy discrete global optimization and rank-
ing and selection (R&S) problems with high
dimensional sparse belief functions, where
there are hundreds or even thousands of fea-
tures, but only a small portion of these fea-
tures contain explanatory power. Our prob-
lem setting, motivated by the experimen-
tal sciences, arises where we have to choose
which experiment to run next. Here the
experiments are time-consuming and expen-
sive. We derive a sparse knowledge gra-
dient (SpKG) decision policy based on the
`1-penalized regression Lasso to identify the
sparsity pattern before our budget is ex-
hausted. This policy is a unique and novel
hybrid of Bayesian R&S with a frequentist
learning approach. Theoretically, we provide
the error bound of the posterior mean esti-
mate, which has shown to be at the minimax
optimal

p
s log p/n rate. Controlled exper-

iments on both synthetic data and real ap-
plication for automatically designing exper-
iments to identify the structure of an RNA
molecule show that the algorithm e�ciently
learns the correct set of nonzero parame-
ters. It also outperforms several other learn-
ing policies.

1 INTRODUCTION

The sequential optimal learning problem arises when
we are trying to find the best of a set of compet-
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ing alternatives through a process of sequentially test-
ing di↵erent choices, which we have to evaluate us-
ing noisy measurements. Furthermore, our experi-
ments are time-consuming and expensive, forcing us
to learn quickly within a finite budget. Specifically, in
this paper, we are maximizing an unknown function
µx : x 2 X 7! R, where X = {1, . . . , M} is a finite
set with M alternatives. Our problem is to carefully
identify which experiment to perform next so that we
can identify the best alternative when our budget is
exhausted. Also we assume that the objective func-
tion µ cannot be written in closed form and does not
have easily available derivatives. These problems have
been studied in di↵erent communities, which refer to
the problem under names such as: Bayesian optimiza-
tion (Brochu et al., 2010b), experimental design, ban-
dits (Robbins, 1985), and optimal learning (Powell and
Ryzhov, 2012).

In the artificial intelligence community, we have wit-
nessed many important advances in sequential learning
in applications such as interactive animation (Brochu
et al., 2010a), autonomous robots (Martinez-Cantin
et al., 2009), and automatic algorithm configuration
(Snoek et al., 2012), but these applications are typ-
ically restricted to problems of moderate dimension
(e.g. up to a few dozen). By contrast, our work is
motivated by an important application to discover the
structure of an RNA molecule (Vazquez-Anderson and
Contreras, 2013; Sowa et al., 2014), where the dimen-
sion of the problem is equal to the length of an RNA
molecule (⇠ 400). Our objective is to identify regions
of the RNA molecule that are accessible to chemical
interactions, which is evaluated by the fluorescence of
a marker molecule. We need to learn coe�cients that
capture accessibility; since there are relatively few of
these regions, our model will be sparse.

The early ranking and selection (R&S) literature as-
sumes a lookup table belief model (Frazier et al., 2008,
2009), but recent research has used a parametric belief
model, making it possible to represent many thousands

417



A Lasso-based Sparse Knowledge Gradient Policy for Sequential Optimal Learning

or even millions of alternatives using a low-dimensional
model. Let µ = [µ1, . . . , µM ]T 2 RM be the vector
representing values of all alternatives. Linear beliefs
assume the truth µ can be represented as a linear com-
bination of a set of parameters, that is, µ = X↵. Here
↵ 2 Rp is the underlying coe�cient, and X 2 RM⇥p is
the design matrix, where each row is a feature vector
corresponding to a particular experiment.

In our work we consider problems where the coe�-
cient vector ↵ can have hundreds or even thousands
of components. However, we assume that most of the
components of ↵ are zeros. Sparsity is a property that
appears in a plethora of natural as well as man-made
systems. In such problems, we are confronted with
two challenges. First, we need to design an e�cient
experimental policy to search for the best alternative
to maximize µx using just a few dozen experiments.
Second, learning the underlying sparsity structure will
produce a more parsimonious model which will stream-
line the experimental work and simplify the ultimate
design problem.

This paper tackles the two challenges by first deriving
a sparse knowledge gradient (SpKG) policy from the
knowledge gradient (KG) policy proposed by Frazier
et al. (2008). KG is a learning policy that maximizes
the marginal value of information from each expensive
experiment. In the sparse belief setting, we introduce
a random indicator variable ⇣ and maintain a Beta-
Bernoulli conjugate prior to model our belief about
which variables should be included in or dropped from
the model. Second, for the learning procedure, our
algorithm adopts the frequentist homotopy recursive
Lasso approach (Garrigues and El Ghaoui, 2008) to
update the Lasso estimates. Then we directly use
these estimates to update the Bayesian model, not only
learning the values of the linear coe�cients, but also
the probabilities of whether each feature is in or not.
In a nutshell, our work is a novel and unique hybrid of
Bayesian R&S with the frequentist learning approach.

Our contributions are the following:

• We provide an algorithm, called SpKG that mixes
Lasso and KG. We prove that the mean of the pos-
terior coe�cient estimate converges to the truth
at the minimax optimal

p
s log p/n rate (Raskutti

et al., 2011). This also guarantees global conver-
gence to the optimal design.

• We show how SpKG can be used for automatic
experimental design by applying it to an impor-
tant application to discover the structure of an
RNA molecule, which is a high-dimensional learn-
ing problem. Empirically, SpKG performs sig-
nificantly better than several other policies, es-
pecially when the measurement budget is much

smaller than either the number of alternatives to
be tested, as well as being much smaller than the
number of parameters in the model.

There is another line of research on multi-armed ban-
dits where the objective is to maximize the cumulative
rewards (online learning), whereas our work addresses
o✏ine learning that occurs in a laboratory setting. For
sparse linear bandits, Carpentier and Munos (2012)
combine compressed sensing with the UCB (Upper
Confidence Bound) policy to attack problems with a
high degree of sparsity. Djolonga et al. (2013) pro-
pose an algorithm, leveraging low-rank matrix recov-
ery techniques to learn the underlying low-dimensional
space and applying UCB to optimize the function.
For o✏ine learning, Chen et al. (2012) propose a two
stage strategy for high-dimensional Gaussian Process
(GP). In the first stage, a hierarchical diagonal sam-
pling (HDS) approach based on likelihood ratio tests is
used to select relevant dimensions. Then the GP-UCB
policy (Srinivas et al., 2010) is applied to optimize over
the variables deemed relevant. Wang et al. (2013) as-
sume noise-free function evaluations and uses random
embeddings in Bayesian optimization to optimize high
dimensional sparse functions. However, both the UCB
based policies and the random embeddings ideas re-
quire hundreds or even thousands of measurements to
achieve satisfactory convergence results, thus they may
not be realistic in our settings where we are usually
given dozens of measurement budgets.

2 BACKGROUND

We start with the following notation: Let M = [Mij ] 2
Ra⇥d and v = [v1, . . . . , vd]

T 2 Rd. We let vI be the
subvector of v whose entries are indexed by I. We
also denote MIJ to be the submatrix of M whose rows
are indexed by I and columns are indexed by J . For
I = J , we simply denote it by MI or MJ . Let MI⇤
and M⇤J be the submatrix of M with rows indexed by
I, and the submatrix of M with columns indexed by
J . For 0 < q < 1, we define the `0, `q vector norms

as kvk0 := card(supp(v)) and kvkq := (
Pd

i=1 |vi|q)1/q.

2.1 Bayesian Ranking and Selection

We are maximizing an unknown performance metric
µx : x 2 X 7! R, where X is a finite set with M
alternatives (which may be quite large). We have to
learn µx using a relatively small budget of N mea-
surements. We assume we have a Bayesian prior
µ ⇠ N (✓,⌃). Now we need to choose a measure-
ment policy (x0, x1, . . . , xN�1) to learn about these al-
ternatives, where xi 2 X . At time n, if we measure
alternative x, we observe yn+1

x = µx + ✏n+1
x , where
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✏n+1
x ⇠ N (0, �2

✏ ), and �✏ is known.

For a lookup table belief model (Frazier et al., 2009),
let N (✓n,⌃n) be the prior distribution on µ at
time n. When the measurement budget of N is
exhausted, our goal is to find the optimal alterna-
tive xN = argmaxx2X ✓N

x . We define ⇧ to be the
set of all admissible policies. Let E⇡ indicate the
expectation over both the noisy outcomes and the
truth µ while the sampling policy is fixed to ⇡ 2 ⇧.
Our goal is to choose a measurement policy maxi-
mizing the expected reward, which can be written as
sup⇡2⇧ E⇡

⇥
maxx2X ✓N

x

⇤
. In the Bayesian setting, we

can sequentially update the mean and covariance es-
timates of the alternatives by the following Bayesian
updating equations (Gelman et al., 2003):

✓n+1 = ✓n +
yn+1

x � ✓n
x

�2
✏ + ⌃n

xx

⌃nex, (1)

⌃n+1 = ⌃n � ⌃nexeT
x⌃

n

�2
✏ + ⌃n

xx

, (2)

where ex is the standard basis vector with one indexed
by x and zeros elsewhere.

For the linear belief model (Negoescu et al., 2011),
we assume µ can be represented as a linear combina-
tion of a set of parameters, that is, µ = X↵, where
µ 2 RM and ↵ = [↵1, . . . , ↵p]

T 2 Rp are random vari-
ables. Recall that X 2 RM⇥p is the design matrix,
where each row is a feature vector corresponding to
an alternative. Now we assume ↵ ⇠ N (#,⌃#). It
induces a normal distribution on µ via linear transfor-
mation, that is µ ⇠ N (X#,X⌃#XT ). Then the belief
on ↵ can also be recursively updated via recursive least
squares (see Powell and Ryzhov, 2012, p. 187). Linear
belief is a more compact representation since we only
need to maintain beliefs on the parameter space.

2.2 Knowledge Gradient Policy

The knowledge gradient policy is a myopic one-step
lookahead policy (Frazier et al., 2008). It chooses the
alternative that can maximize the expected incremen-
tal value. If we represent the state of knowledge at
time n as: Sn := (✓n,⌃n), then the KG value of x is
defined as:

vKG,n
x = E(max

x02X
✓n+1

x0 |Sn, xn = x) � max
x02X

✓n
x0 . (3)

At each time, the KG policy chooses the one with the
maximum KG value. The computation of the expec-
tation in (3) can be computed using the methods de-
scribed in Frazier et al. (2009). First notice that equa-
tion (1) can be rearranged as the time n conditional
distribution of ✓n+1, namely, ✓n+1 = ✓n+e�(⌃n, xn)Z,
where e�(⌃n, x) is a vector-valued function defined as

e�(⌃n, x) := ⌃nex/
p

�2
✏ + ⌃n

xx, and Z follows stan-
dard normal distribution.

Then we substitute this equation into the KG formula
and get that

vKG,n
x = E(max

x02X
✓n

x0 + e�x0(⌃n, xn)Z|Sn, xn = x)

�max
x02X

✓n
x0 =: h(✓n, e�(⌃n, x)).

Here h(a, b) = E[maxi ai + biZ] � maxi ai is a generic
function of any vectors a and b of the same dimension.
In light of this, the expectation in the KG formula can
be computed as the point-wise maximum of the a�ne
functions ai + biZ. Frazier et al. (2009) provide an al-
gorithm to compute the value of function h with com-
plexity of O(M2log(M)). Notice that for the linear
belief, we can replace (✓n,⌃n) with (X#,X⌃#XT ).

3 LASSO-BASED SPARSE
KNOWLEDGE GRADIENT

In this section we propose an adaptation of the knowl-
edge gradient (SpKG) to handle sparse additive be-
lief models. We respectively cover the searching and
learning components as described in the introduc-
tion, specifically, the computation of SpKG and the
Bayesian updating rules. We begin by presenting the
Bayesian belief model to handle sparsity.

As before, let us assume µ = X↵, where X 2 RM⇥p

is the design matrix, and ↵ 2 Rp, µ 2 RM are ran-
dom variables. Our problem setting is that p can be-
come relatively large and ↵ is sparse in the sense that
only a few components are nonzero. However, unlike
the sparsity assumption in classical frequentist statis-
tics, we assume the sparsity structure is random in
the Bayesian setting; that is, the indicator variable of
which dimension is selected or not is a random vector.
Specifically, let ⇣ = [⇣1, . . . , ⇣p]

T 2 Rp be the indicator
random variable of ↵. That is, let ⇣j = 1 for ↵j 6= 0,
and ⇣j = 0 for ↵j = 0. Additionally, we assume that
↵|⇣ ⇠ N (#,⌃#). (We leave the dependence of # and
⌃# on ⇣ implicit to simplify notation.) Without loss
of generality, conditioning on ⇣, we can permute the
elements of ↵ to create the partition ↵T = [(↵S)T ,0],
where ↵S ⇠ N (#S ,⌃#

S), and S = {j : ⇣j = 1}. The
mean and covariance of ↵ have zeros indicated by ⇣.
Here we make a critical assumption on the distribution
of ↵. Let us assume that conditioning on ⇣ = 1, ↵
has the following distribution: ↵|⇣ = 1 ⇠ N (#,⌃#).
Then for any other ⇣0 and S 0 = {j : ⇣ 0j = 1}, the condi-
tional distribution of ↵ on ⇣0 is normal with mean #S0

and covariance ⌃#
S0 . This means that we can write all

the conditional distributions of ↵ through an index set
S characterized by ⇣. Through all the updatings, we
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just need to maintain the mean and covariance matrix
on the coe�cients where ⇣ = 1.

One may think of ⇣ and ↵ as fixed and of ⇣n and #n
S

as converging toward ⇣ and ↵, while some norm of the
precision matrix (⌃#,n

S )�1 goes to infinity under some
appropriate sampling strategy. It is also appropriate,
however, to fix ⇣n and #n

S and think of ⇣ and ↵ as un-
known quantities. Furthermore, from this perspective,
the randomness of ⇣ and ↵ does not imply that they
must be chosen from Bernoulli and mixture normal
distribution respectively, but instead it only quanti-
fies our uncertain knowledge of ⇣ and ↵ adopted when
they were first chosen.

3.1 Knowledge Gradient Policy for Sparse
Linear Model

We begin by describing the Bayesian model at time n.
We can maintain Beta-Bernoulli conjugate priors on
each component of ⇣. At time n, we have the following
Bayesian model, for j, j0 = 1, . . . , p,

↵|⇣n = 1 ⇠ N (#n,⌃#,n), (4)

⇣n
j |pn

j ⇠ Bernoulli(pn
j ), (5)

⇣n
j ? ⇣n

j0 , for j 6= j0, (6)

pn
j |⇠n

j , ⌘n
j ⇠ Beta(⇠n

j , ⌘n
j ), (7)

where pj is the probability of the jth feature be-
ing in the model, and (⇠j , ⌘j) are the shape param-
eters for the corresponding Beta distribution. At time
n, the prior ⇣n is a discrete random variable. Let
⇣n,1, . . . , ⇣n,N⇣ be all the possible realizations of ⇣n,
and P(⇣n = ⇣n,k) = pn,k, k = 1, . . . , N⇣ . For the fol-
lowing computation of the expectation in SpKG, we
need to make two approximations. First, we need to
approximate the distribution of (⇣n+1, pn+1) by that
of (⇣n, pn). This is because the change of the sparsity
belief depends on the next observation and the Lasso
algorithm, and thus can be very complicated to model.
Therefore, by the Law of Total Expectation, the SpKG
value can be computed by:

vKG,n
x (8)

= E↵,✏,⇣n+1,pn+1(max
x02X

✓n+1
x0 |Sn, xn = x, ⇣n, pn) � max

x02X
✓n

x0

⇡ EpnE⇣n|pnE↵,✏|⇣n,pn(max
x02X

✓n+1
x0 |Sn, xn = x, ⇣n, pn)

� max
x02X

✓n
x0

=

N⇣X

k=1

Epn(pn,k)h(an,k, bn,k)

=

N⇣X

k=1

Y

{j:⇣n,k
j =1}

⇠n
j

⇠n
j + ⌘n

j

Y

{j:⇣n,k
j =0}

⌘n
j

⇠n
j + ⌘n

j

h(an,k, bn,k),

where h is the function defined in Section 2.2 and
thus can be computed, an,k = Xn

⇣n,k#
n
⇣n,k , and bn,k =

e�(Xn
⇣n,k⌃

n,#
⇣n,k(Xn

⇣n,k)T , x).

The second approximation is required to assist with
computing the expectation over ⇣. Note that condi-
tioning on each sample realization of ⇣n, the SpKG
calculation is identical with KG. Therefore we have
shown that the SpKG value is a weighted summation
over all the possible sample realizations of ⇣n. The
weights Epn(pn,k) are computed by the independent
Beta distributions on all the pn

j ’s. Besides, if N⇣ takes
its largest possible value, that is N⇣ = 2p, we can re-
sort the weights and approximate the knowledge gradi-
ent value by only computing the ones with the highest
probabilities. Figure 4 in Section 5 shows that we do
not lose much by making these approximations. The
SpKG value still serves as a reasonable sampling cri-
terion based on value of information.

3.2 Bayesian Update

At time n we have the Bayesian model described in
(4)-(7). Parallel with that, we use Lasso as a “solver”
to generate estimates of linear coe�cients as well as
the sparsity pattern. The Lasso estimator after n ob-
servations is given by:

b#n = argmin
�2Rp

1

2

nX

i=1

⇥
(xi�1)T� � yi

⇤2
+ �nk�k1, (9)

where (yi, xi�1) 2 R ⇥ Rp, i = 1, . . . , n are the n
observations, and �n is the regularization parameter.
Here we recursively solve the Lasso problem based on
the homotopy algorithm proposed by Garrigues and
El Ghaoui (2008). The algorithm is an exact update
of the Lasso solution when one additional observation
is achieved. It satisfies the sequential setting here and
could reduce the computational complexity from O(p3)
to O(p log(p)) compared to the direct solution of (9).

Next we need to sample a covariance matrix b⌃#,n

corresponding to the Lasso estimate. Let (Xn)T :=
[x0, x1, · · · , xn], Yn+1 := [y1, . . . , yn+1]T , and z 2
@kb#k1. By the KKT conditions, we know that b#n+1

S =
[(Xn

⇤S)T Xn
⇤S ]�1[(Xn

⇤S)T Yn+1 � �n+1zn+1
S ]. We let

Mn
S := [(Xn

⇤S)T Xn
⇤S ]�1. Since Cov(Yn+1) = �2

✏ I, we
have

b⌃#,n+1
S = Mn

S�
2
✏ + (�n+1)2Mn

SCov(zS)n+1Mn
S . (10)

Note that we cannot directly compute b⌃#,n+1
S from

the right hand side of (10), since zS is also a random

variable dependent on b#n+1
S . But assuming that b#n+1

S
should not be far from #n

S , one can sample a set of

random variables from the distribution N (#n
S ,⌃#,n

S )
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and then sample the subgradients to get dCov(zS)(n+1).
Additionally, to make this estimator stable in the-
ory (see Appendix B for detailed proof), we need to

make sure that all the eigenvalues of dCov(zS)(n+1) are
bounded away from 0 and infinity. Empirically we can
use a surrogate projection procedure that computes
a singular value decomposition of dCov(zS)(n+1) and
truncates all the eigenvalues to be within the interval
[Cmin, Cmax].

Once we have the updated Lasso estimates of b#n+1
S

and b⌃#,n+1
S , we can use the following heuristic updat-

ing scheme for a Beta-Bernoulli model and a Gaussian-
Gaussian model. Let Pn := {j : b#n

j 6= 0}. The updat-
ing equations are given by:

⌃#,n+1
S =

h
(⌃#,n

S )�1 + (b⌃#,n+1
S )�1

i�1

, (11)

#n+1
S = ⌃#,n+1

S

h
(⌃#,n

S )�1#n
S + (b⌃#,n+1

S )�1 b#n+1
S

i
,

(12)

⇠n+1
j = ⇠n

j + 1, ⌘n+1
j = ⌘n

j , for j 2 Pn+1, (13)

⇠n+1
j = ⇠n

j , ⌘n+1
j = ⌘n

j + 1, for j /2 Pn+1. (14)

Here (11)(12) are the updating equations for a
Gaussian-Gaussian model, and (13)(14) are the up-
dating equations for a Beta-Bernoulli model. The fre-
quencies of “in” and “out” are essentially denoted by
(⇠j , ⌘j) and updated recursively via Lasso estimates.
In order to better clarify this Bayesian model and the
updating scheme, we illustrate the updating (11)-(14)
in Figure 1. An outline for the SpKG algorithm is
listed below in Algorithm 1.

1

2

3

4

5

⇠n
1 ⌘n

1 ⌘n
2 ⌘n

3⇠n
3⇠n

2

Prior Lasso estimate Posterior

1

2

3

4

5

⇠n+1
1 ⇠n+1

2 ⇠n+1
3 ⌘n+1

3⌘n+1
2⌘n+1

1

#̂n+1
2

#̂n+1
1

#̂n+1
3

Figure 1: Illustration of the Bayesian model and the
heuristic updating scheme for a Beta-Bernoulli model
and a Gaussian-Gaussian model. Let ↵ be a three-
element coe�cient vector. The prior at time n includes
the frequencies estimates (⇠n

j , ⌘n
j ) of “in” and “out.”

Combining with the Lasso estimate b#n+1 results in the
posterior. On active sets {1, 3}, ⇠n

j are incremented by
one. On inactive sets {2}, ⌘n

j are incremented by one.

4 THEORETICAL PROPERTIES

In this section we show the asymptotic convergence
result of the Bayesian posterior mean estimate #n

Algorithm 1 Sparse knowledge gradient algorithm

Require: #0,⌃#,0, {⇠0
j , ⌘0

j }p
j=1,X, N, �✏, {�i}N

i=0.
1: for n = 0 to N � 1 do
2: Compute SpKG by (8) xn = argmax vKG,n

x ;
3: Lasso homotopy update:1

b#n, (xn, yn+1) 2 Rp ⇥ R, �n, �n+1 ! b#n+1;

4: Approximately simulate b⌃#,n+1
S by (10);

5: Bayesian update to {⇠n+1
j , ⌘n+1

j }p
j=1, #n+1,

⌃#,n+1 by (11)-(14).
6: end for
7: return #N ,⌃#,N , {⇠N

j , ⌘N
j }p

j=1.

in Algorithm 1. Since the knowledge gradient pol-
icy is myopically optimal by construction, this lends
a strong guarantee that the algorithm will work well
for finite budgets, as long as appropriate corrections
are taken when the value of information is noncon-
cave. The proof is based on the assumption that we
begin with some historical observations, and the ini-
tial design matrix satisfies the sparse Riesz condition
(SRC), which is a form of Restricted Eigenvalue (RE)
condition. (Zhang and Huang, 2008, provide the suf-
ficient conditions for SRC to be satisfied.) If we have
such a “warm” start, we can show that: (1) Algorithm
1 selects a model whose dimension is comparable with
the underlying true model with probability converging
to 1; (2) The Bayesian posterior mean converges to the
truth with the same rate as that of Lasso (Zhang and
Huang, 2008), which is the minimax optimal rate.

In addition to the aforementioned notations, let ✏n =
[✏1, . . . , ✏n]T be the measurement noise vector, so we

have Yn := Xn�1# + ✏n. Then, let Sn = {j : b#n
j 6=

0} be the estimated support from the current Lasso
estimator. Let S⇤ be the true support, that is S⇤ =
{j : #j 6= 0}. Also, let s⇤ = |S⇤| be the cardinality of
S⇤. Our presentation needs the following assumptions.

Assumption 4.1. For any n, the random noise errors

✏1, . . . , ✏n
i.i.d.⇠ N (0, �2

✏ ).

Assumption 4.2. The design matrix Xn�1 satisfies
the sparse Riesz condition (SRC) with rank s and the
spectrum bounds 0 < c⇤ < c⇤ < 1, if c⇤k⌫k2

2 
kXn�1

⇤S ⌫k2
2/n  c⇤k⌫k2

2, 8S with s = |S| and ⌫ 2 Rs.
We refer to this condition as SRC (s, c⇤, c⇤).

Assumption 4.3. For any n, there exists some con-
stant B > 0 such that kxnk2

2  B.

Define bc = c⇤/c⇤. Consider the Lasso path for
�(n, p) ⌘ 2�✏

p
2(1 + c0)c⇤n log(p _ an) with c0 � 0

and an � 0 satisfying p/(p _ an)1+c0 ⇡ 0. For large

1In practice, we often begin with some historical obser-
vations. Thus in the first iteration the Lasso estimator can
be obtained from the historical dataset.
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p, this means that �(n, p) ⇠ O(
p

n log p) with an = 0.
Then we have the following theorem of the `2 estima-
tion error bound. The detailed proof can be found in
Appendix B.

Theorem 4.1. Assume that Assumptions 4.1 and 4.3
are satisfied. Suppose we begin with N 0 historical ob-
servations and the fixed design matrix XN 0�1 satis-
fies SRC (C1s

⇤, c⇤, c⇤), where C1 is a positive constant
defined below. Let c⇤, c⇤, c0, �✏, s

⇤, and B be fixed,
p ! 1, and S̄ :=

Tn
n0=N 0 Sn0

. If we solve the Lasso
given in (9) with �n = �(n, p), then for some large
enough n with cN 0  n  c̄N 0 and 1 < c  c̄ be-
ing fixed constants, the following properties hold with
probability converging to 1 as n ! 1:

(1) |S̄|  C1|S⇤| for some finite positive constant
C1 := 2 + 4c̄B/c⇤;

(2) Any posterior estimate #n from Algorithm 1 sat-
isfies:

k#n
S̄ � #S̄k2

2  C2�
2
✏ s

⇤ log p

n
,

for some positive constant C2 depending only on
c⇤, c⇤, c0, c, c̄, B, and [Cmin, Cmax] .

Theorem 4.1 proves the selection and estimation con-
sistency, where the major assumption is that we have a
“warm” start of N 0 historical observations. We believe
that this assumption is valid in some applications we
have seen. Based on this, we can prove that the poste-
rior mean estimate converges to the truth at the same
rate as that of Lasso. This result is satisfied for some
large n in the interval [cN 0, c̄N 0] with 1 < c  c̄ being
fixed constants, and with high probability. Here the
probability converges to 1 as n ! 1.

5 EXPERIMENTS

In this section we investigate the empirical perfor-
mance of the SpKG algorithm proposed in this paper
on both synthetic and the RNA data for identifying
the accessibility region of an RNA molecule. We com-
pare SpKG against the following baseline policies:

• Pure exploration, where an alternative is chosen
randomly at each time and the updating scheme
is the same as SpKG in Section 3.2;

• KGLin (Negoescu et al., 2011), which allows all
the coe�cients to be nonzero;

• Hierarchical diagonal Gaussian process optimiza-
tion (HDGPO) (Chen et al., 2012), where the first
step uses hierarchical diagonal sampling (HDS) to

Measurement
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Figure 2: Average OC% comparing pure exploration,
KGLin, HDGPO, and SpKG for sparse and non-sparse
linear belief models.

conduct variable selection and the second step ap-
plies GP-UCB (Srinivas et al., 2010) to optimize
the function over the identified relevant dimen-
sions.

5.1 Simulation Study

In these experiments, we repeatedly sample the truth
↵ from some normal distribution and compare dif-
ferent policies to see how well we are discovering the
truth. Throughout all the simulations, we assume that
we do not have any prior information on the sparsity
structures. That is, ⇠0

j = ⌘0
j = 1, for j = 1, . . . , p.

In the first experiment, we compare SpKG with other
policies by generating a linear model with p = 200
predictors and 40 relevant variables, using a rela-
tively large measurement budget N = 100. Here
µ =

Pp
j=1 ↵jxj + ✏ with ✏ ⇠ N (0, �2

✏ ). Specifically,
for j = 1, . . . , 40, let ↵j be independently drawn from
N (#j ,⌃

#
jj), where #j = j + 10 and ⌃#

jj = (0.3#j)
2.

For j = 41, . . . , 200, let ↵j = 0. The prior is indepen-

dently sampled with #0
j = 30 and ⌃#,0

jj = 92. Then we
uniformly sample M = 200 alternatives from [0, 1]p.
To quantitatively measure the performance of di↵er-
ent policies, we consider the percentage opportunity
cost (OC) with respect to the optimal value, defined
as OC%(n) = µx?�µxn,?

µx?
, where x? is the true optimal

alternative and xn,? is the estimated optimal alterna-
tive at time n. This normalization better illustrates
how far in percentage we are from the optimal. Fig-
ure 2(a) shows the log of the averaged OC% over 300
replications using well chosen tuning parameters with
�✏ being 30% of the expected range of µ.

From Figure 2(a) we can see that during the first sev-
eral iterations, SpKG behaves comparable with pure
exploration, because Lasso takes several iterations to
identify the key features. However, after 10 to 20 mea-
surements when the true sparsity pattern becomes de-
tectable, SpKG far outperforms KGLin, HDGPO, and
pure exploration. This is because Lasso gives a rather
precise estimate of the sparse linear coe�cients given
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enough samples. So the algorithm mainly updates the
beliefs on the key features based on these Lasso estima-
tors, leading to more precise estimates of the model.
For this experiment, the default setting of HDGPO
requires about 100 samples to find the relevant di-
mensions with high probability in its first step con-
ducting HDS. To visualize its performance within the
constraints of small experimental budgets, we use the
initial 50 samples at the first step (exploration) and
the other 50 samples to run GP-UCB algorithm at the
second step (exploitation). We can see that during the
first step, HDGPO performs slightly better than pure
exploration and it behaves worse than SpKG in the
second step. One of the reasons is that at every iter-
ation, SpKG finds a low-dimensional model that can
approximate the true model and this model is updated
as new information is achieved. However, HDGPO is
tailored towards exploration-exploitation tradeo↵s by
first aiming to find the relevant dimension and then
identify the best alternative. To the best of our knowl-
edge, SpKG is the first work on sparse linear belief
models which is well-suited to applications with small
measurement budgets.

Next, we compare SpKG with KGLin, pure explo-
ration, and HDGPO on data which is not sparse. Here
we consider a similar model as used in Figure 2(a). In
the non-sparse setting, we only take the nonzero di-
mension of the function. For SpKG, the tuning pa-
rameter �n is chosen to be a relatively small number
10�2 and remains fixed as n becomes large. As be-
fore, figure 2(b) shows the log of the averaged OC%
over 300 replications with the same level of measure-
ment noise. As one can see, in the non-sparse setting,
SpKG does not make erroneous conclusions of sparsity
with a relatively small value of � and performs com-
petitively with KGLin. We can conclude that there
is almost no loss even if we make approximations in
the KG computation as well as the Bayesian update
described in Section 3.2.

To further compare SpKG, KGLin, and HDGPO for a
relatively small budget, we take several standard low
dimensional test functions and hide them in a p = 200
dimensional space. These functions were designed to
be minimized, so both policies are applied to the neg-
ative of the functions. We uniformly sample M = 400
alternatives from the feasible regions. Table 1 shows
the quantitative results on the di↵erent functions with
N = 50 over 500 replications. (Refer to Appendix A
for detailed configurations and illustrations.)

5.2 Application to RNA Data

An important step in health research requires learn-
ing the structure of RNA molecules to improve our
understanding of how di↵erent drugs might behave

Table 1: Quantitative comparison for SpKG, KGLin,
and HDGPO on standard test functions over 500 runs.
(Each function is scaled to have a range of 100.)

Function �✏ SpKG KGLin HDGPO

Matyas 1 0.0064 ± 0.0022 0.0217 ± 0.0019 0.0167 ± 0.0025

10 0.0526 ± 0.0243 0.1168 ± 0.0258 0.0914 ± 0.0392

20 0.3581 ± 0.0578 0.8519 ± 0.0283 0.6390 ± 0.0464

Six-hump 1 0.0011 ± 0.0031 0.0065 ± 0.0027 0.0043 ± 0.0036

Camel 10 0.0258 ± 0.1279 0.0835 ± 0.1886 0.0607 ± 0.1643

20 0.2260 ± 0.2644 0.3803 ± 0.2568 0.3304 ± 0.2165

Trid 1 1.0273 ± 0.0105 1.8367 ± 0.0089 1.6428 ± 0.0127

10 4.8564 ± 0.1639 6.5181 ± 0.1565 5.9654 ± 0.1696

20 8.4058 ± 0.3850 12.8532 ± 0.2964 10.9535 ± 0.4267

in humans. This application addresses the problem
of determining the accessibility patterns of an RNA
molecule known as the Tetrahymena Group I intron
which has been widely used as an RNA folding model
(Cech et al., 1981). Accessibility describes the abil-
ity of other molecules to attach to di↵erent segments
of the RNA, which are a↵ected by the folding of the
molecule (portions may be simply inaccessible because
they are buried within the folds, or because there are
no sites for other compounds to attach to). Scientists
can infer accessibility by using a probe which lights
up when the probe successfully attaches to a region.
These probes have to be designed for specific segments
of the RNA, so a failure to attach indicates that the
region for which the probe is designed is not acces-
sible. Inaccessible regions are captured in our model
with zero-valued coe�cients; accessible regions have
nonzero coe�cients that capture the degree of accessi-
bility. Our challenge is to identify the most accessible
region while learning which coe�cients are zero, and
the values of the nonzero coe�cients.

The molecular we are using for testing has p = 414
sites. Prior accessibility coe�cients are drawn from ex-
periments in Russell et al. (2006). We randomly gener-
ate a truth, which we have to discover using SpKG, by
both vertically perturbing the prior and horizontally
shifting the prior. Specifically, we vertically adjust the
magnitude of the nonzero coe�cients by adding a noise
term with standard deviation of 20% and horizontally
shift the prior by 20 to 50 sites.

First, we illustrate how SpKG policy works under a
measurement noise of 30%. We take a subsequence of
the molecule (from site 95 to 251) with p = 157 to bet-
ter visualize the results. Alternatives (testing probe
sequences) with a number of M = 91 are selected by
the domain experts. For one experiment, we depict the
SpKG value initially, after one and two measurements,
respectively in Figure 3. For these figures, we only in-
clude those probes with SpKG values above the mean
to better visualize the SpKG scores. As indicated by
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Figure 3: SpKG values after 0, 1, and 2 measurements with noise ratio of 30%. (A subsequence of the RNA
molecule is selected from site 95 to 251. Each bar is a potential range of probe.)
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Figure 4: Accessibility profile estimate by SpKG after 20, 30, 40, and 50 measurements with noise ratio of 30%.

the arrows, for probes with the largest SpKG scores,
the SpKG scores drop after they have been measured.
As we only plot those with SpKG scores above average,
some probes with high KG scores in Figure 3(a) have
the scores dropped below average after being measured
and are therefore not shown in Figure 3(b). This ob-
servation is consistent with our intuition of SpKG as a
measure of value of information, and thus we can use
this policy as a guideline to pick the next experiments.
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Figure 5: Average OC%
comparing pure explo-
ration, KGLin, HDGPO,
and SpKG with the whole
target molecule.

Next, for one simu-
lated truth, we also
plot the estimates of
the accessibility pro-
files (coe�cients) af-
ter 20, 30, 40, and 50
measurements with a
noise ratio of 30% in
Figure 4. As one can
see, after 20 measure-
ments, the estimate is
still closer to the prior
than truth. After
30 measurements, we
have discovered many
of the accessible re-
gions. After 40 mea-
surements, we have not only discovered the location of
the accessible regions, but obtained good estimates for
the actual accessibility value. After 50 measurements,

our estimate closely matches the truth.

Furthermore, we take the whole target molecule with
p = 393. (Due to the nature of this problem, we are
not able to identify the 21 nucleotides at one end of
the molecule sequence.) The alternative probes are of
length 10 with 3 overlaps for the adjacent ones. Fig-
ure 5 plots the average OC% over 100 runs for three
di↵erent policies with a measurement noise of 30%.

6 Conclusion

We extend the KG policy to optimize high-dimensional
sparse linear functions. The hybrid of Bayesian R&S
with Lasso is novel. Our work is motivated by an im-
portant, high-impact application to discover the struc-
ture of an RNA molecule, which is a high-dimensional
learning problem guided by a team of domain experts
who participated in the research. Empirically, the
SpKG algorithm allows us to quickly identify the best
alternatives in experimental settings where measure-
ment costs are quite high. We note at the same time
that SpKG requires considerably more work compu-
tationally than its competitors, so it is best used in
the setting where experiments are time-consuming and
expensive. We feel this paper opens an entirely new
line of research in high-dimensional active learning by
combining the power of Bayesian priors with model
structure.

424



Yan Li, Han Liu, Warren B. Powell

References

Brochu, E., Brochu, T., and de Freitas, N. (2010a).
A Bayesian interactive optimization approach to
procedural animation design. In Proceedings of
the 2010 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 103–112. Eu-
rographics Association.

Brochu, E., Cora, V. M., and De Freitas, N. (2010b).
A tutorial on Bayesian optimization of expensive
cost functions, with application to active user mod-
eling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599.

Carpentier, A. and Munos, R. (2012). Bandit theory
meets compressed sensing for high dimensional lin-
ear bandit. International Conference on Artificial
Intelligence and Statistics, pages 190–198.

Cech, T. R., Zaug, A. J., and Grabowski, P. J. (1981).
In vitro splicing of the ribosomal RNA precursor of
tetrahymena: involvement of a guanosine nucleotide
in the excision of the intervening sequence. Cell,
27(3):487–496.

Chen, B., Castro, R., and Krause, A. M. (2012).
Joint optimization and variable selection of high-
dimensional Gaussian processes. In Proceedings
of the 29th International Conference on Maching
Learning (ICML-12), pages 1423–1430.

Djolonga, J., Krause, A., and Cevher, V. (2013). High-
dimensional Gaussian process bandits. In Advances
in Neural Information Processing Systems, pages
1025–1033.

Frazier, P. I., Powell, W. B., and Dayanik, S. (2008).
A knowledge-gradient policy for sequential informa-
tion collection. SIAM Journal on Control and Op-
timization, 47(5):2410–2439.

Frazier, P. I., Powell, W. B., and Dayanik, S. (2009).
The knowledge-gradient policy for correlated nor-
mal beliefs. INFORMS journal on Computing,
21(4):599–613.

Garrigues, P. and El Ghaoui, L. (2008). An homo-
topy algorithm for the Lasso with online observa-
tions. In Advances in Neural Information Processing
Systems, pages 489–496.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin,
D. B. (2003). Bayesian data analysis. CRC press.

Martinez-Cantin, R., de Freitas, N., Brochu, E.,
Castellanos, J., and Doucet, A. (2009). A Bayesian
exploration-exploitation approach for optimal online
sensing and planning with a visually guided mobile
robot. Autonomous Robots, 27(2):93–103.

Negoescu, D. M., Frazier, P. I., and Powell, W. B.
(2011). The knowledge-gradient algorithm for se-

quencing experiments in drug discovery. INFORMS
Journal on Computing, 23(3):346–363.

Powell, W. B. and Ryzhov, I. O. (2012). Optimal learn-
ing. John Wiley and Sons, Hoboken, NJ.

Raskutti, G., Wainwright, M. J., and Yu, B. (2011).
Minimax rates of estimation for high-dimensional
linear regression over-balls. Information Theory,
IEEE Transactions on, 57(10):6976–6994.

Robbins, H. (1985). Some aspects of the sequential
design of experiments. In Herbert Robbins Selected
Papers, pages 169–177. Springer.

Russell, R., Das, R., Suh, H., Travers, K. J., Laed-
erach, A., Engelhardt, M. A., and Herschlag, D.
(2006). The paradoxical behavior of a highly struc-
tured misfolded intermediate in RNA folding. Jour-
nal of molecular biology, 363(2):531–544.

Snoek, J., Larochelle, H., and Adams, R. P. (2012).
Practical Bayesian optimization of machine learn-
ing algorithms. In Advances in Neural Information
Processing Systems, pages 2951–2959.

Sowa, S. W., Vazquez-Anderson, J., Clark, C. A.,
De La Peña, R., Dunn, K., Fung, E. K., Khoury,
M. J., and Contreras, L. M. (2014). Exploiting post-
transcriptional regulation to probe RNA structures
in vivo via fluorescence. Nucleic acids research, page
gku1191.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,
M. (2010). Gaussian process optimization in the
bandit setting: No regret and experimental design.
In Proceedings of the 27th International Conference
on Maching Learning (ICML-10), pages 1015–1022.

Vazquez-Anderson, J. and Contreras, L. M. (2013).
Regulatory RNAs: charming gene management
styles for synthetic biology applications. RNA bi-
ology, 10(12):1778–1797.

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and
De Freitas, N. (2013). Bayesian optimization in high
dimensions via random embeddings. In Proceedings
of the Twenty-Third international joint conference
on Artificial Intelligence, pages 1778–1784. AAAI
Press.

Zhang, C. H. and Huang, J. (2008). The sparsity and
bias of the Lasso selection in high-dimensional linear
regression. The Annals of Statistics, pages 1567–
1594.

425


