
A Proof of Lemma 3

Using the notation v̂ = Yn−1v/‖Yn−1v‖ and An =
xnx

>
n , one can follow the analysis in Balsubramani et al.

(2013) to show that Φ
(v)
n ≤ Φ

(v)
n−1 + βn − Zn, with

• βn = 5γ2
n + 2γ3

n,

• Zn = 2γn(v̂>UU>Anv̂ − ‖U>v̂‖2v̂>Anv̂), and

• E [Zn|Fn−1] ≥ 2γn(λ− λ̂)Φ
(v)
n−1(1− Φ

(v)
n−1) ≥ 0.

We omit the proof here as the adaptation is straightforward.
It remains to show our better bound on |Zn|. For this, note
that

|Zn| ≤ 2γn
∥∥v̂>UU> − ‖U>v̂‖2v̂>∥∥ · ‖Anv̂‖,

where ‖Anv̂‖ ≤ 1 and∥∥v̂>UU> − ‖U>v̂‖2v̂>∥∥2

= ‖U>v̂‖2 − 2‖U>v̂‖4 + ‖U>v̂‖4

= ‖U>v̂‖2
(
1− ‖U>v̂‖2

)
.

As ‖U>v̂‖2 ≤ 1 and
(
1− ‖U>v̂‖2

)
= Φ

(v)
n−1, we have

|Zn| ≤ 2γn

√
Φ

(v)
n−1.

B Proof of Lemma 4

Assume that the event Γ0 holds and consider any n ∈
[n0, n1). We need the following, which we prove in Ap-
pendix B.1.

Proposition 1. For any n > m and any v ∈ Rk,

‖U>Ynv‖
‖Yn‖

≥
(m
n

)3c

· ‖U
>Ymv‖
‖Ym‖

.

From Proposition 1, we know that for any v ∈ S,

‖U>Ynv‖
‖Ynv‖

≥ ‖U
>Ynv‖
‖Yn‖

≥
(n0

n

)3c ‖U>Y0v‖
‖Y0‖

,

where (n0/n)3c ≥ (n0/n1)3c ≥ (1/c1)3c for the constant
c1 given in Remark 1. As Y0 = Q0 and ‖Q0‖ = 1 =
‖Q0v‖, we obtain

‖U>Ynv‖
‖Ynv‖

≥ ‖U
>Q0v‖

c3c1 ‖Q0v‖
≥
√

1− ρ0

c3c1
=

√
c̄

c6c1 kd
.

Therefore, assuming Γ0, we always have

Φn = max
v

(
1− ‖U

>Ynv‖2

‖Ynv‖2

)
≤ 1− c̄

c6c1 kd
= ρ1.

B.1 Proof of Proposition 1

Recall that for any n, Yn = Yn−1 + γnxnx
>
n Yn−1 and

‖xnx>n ‖ ≤ 1. Then for any v ∈ Rk,

‖U>Ynv‖
‖Yn‖

≥ ‖U
>Yn−1v‖ − γn‖U>Yn−1v‖
‖Yn−1‖+ γn‖Yn−1‖

,

which is

1− γn
1 + γn

· ‖U
>Yn−1v‖
‖Yn−1‖

≥ e−3γn
‖U>Yn−1v‖
‖Yn−1‖

,

using the fact that 1−x ≥ e−2x for x ≤ 1/2 and γn ≤ 1/2.
Then by induction, we have

‖U>Ynv‖
‖Yn‖

≥ e−3
∑n

t>m γi · ‖U
>Ymv‖
‖Ym‖

.

The Proposition follows as

e−3
∑n

t>m γi = e−3c
∑n

t>m
1
t ≥

(m
n

)3c

using the fact that
∑n
t>m

1
t ≤

∫ n
m

1
xdx = ln( nm ).

C Proof of Lemma 5

According to Lemma 3, our Φ
(v)
n ’s satisfy the same recur-

rence relation as the functions Ψn’s of Balsubramani et al.
(2013). We can therefore have the following, which we
prove in Appendix C.1.

Lemma 9. Let ρ̂i = ρi/de5/c0ec0(1−ρi). Then for any u ∈
S and αi ≥ 12c2/ni−1,

Pr

[
sup
n≥ni

Φ(u)
n ≥ ρ̂i + αi | Γi

]
≤ e−Ω((α2

i /(c
2ρi))ni−1).

Our goal is to bound Pr [¬Γi+1|Γi], which is

Pr

[
∃v ∈ S : sup

ni≤n<ni+1

Φ(v)
n ≥ ρi+1|Γi

]
.

As discussed before, we cannot directly apply a union
bound on the bound in Lemma 9 as there are infinitely
many v’s in S. Instead, we look for a small “ε-net” Di
of S, with the property that any v ∈ S has some u ∈ Di
with ‖v − u‖ ≤ ε. Such a Di with |Di| ≤ (1/ε)O(k) is
known to exist (see e.g. Milman and Schechtman (1986)).
Then what we need is that when v and u are close, Φ

(v)
n and

Φ
(u)
n are close as well. This is guaranteed by the following,

which we prove in Appendix C.2.

Lemma 10. Suppose Γi happens. Then for any n ∈
[ni, ni+1), any ε ≤

√
1− ρi/(2c6c1 ), and any u,v ∈ S

with ‖u− v‖ ≤ ε, we have∣∣∣Φ(v)
n − Φ(u)

n

∣∣∣ ≤ 16c6c1 ε/
√

1− ρi.



According to this, we can choose αi = (ρi+1 − ρ̂i)/2 and
ε = αi

√
1− ρi/(16c6c1 ) so that with ‖u−v‖ ≤ ε, we have

|Φ(v)
n − Φ

(u)
n | ≤ αi. This means that given any v ∈ S

with Φ
(v)
n ≥ ρi+1, there exists some u ∈ Di with Φ

(u)
n ≥

ρi+1−αi = ρ̂i+αi. As a result, we can now apply a union
bound over Di and have

Pr [¬Γi+1|Γi] ≤
∑
u∈Di

Pr

[
sup
n≥ni

Φ(u)
n ≥ ρ̂i + αi | Γi

]
.

(7)
To bound this further, consider the following two cases.

First, for the case of i < π1, we have ρi ≥ 3/4 and ηi =
1− ρi ≤ 1/4, so that

ρ̂i ≤ ρie−5(1−ρi) = (1− ηi)e−5ηi ≤ e−6ηi ≤ 1− 3ηi.

Then αi ≥ ((1− 2ηi)− (1− 3ηi)) /2 = ηi/2, which is
at least 12c2/ni−1, as ηi ≥ η1 ≥ c̄/(c6c1 kd) and ni−1 ≥
n0 = ĉck3d2 log d for a large enough constant ĉ. There-
fore, we can apply Lemma 9 and the bound in (7) becomes

(cc1/ηi)
O(k)

e−Ω((η2i /c
2)ni−1) ≤ δ0

2(i+ 1)2
.

Next, for the case of i ≥ π1, we have ρi ≤ 3/4 so that

ρ̂i ≤ ρi/de5/c0ec0/4 ≤ ρi/de5/c0e3,

as c0 ≥ 12 by assumption. Since ρi+1 ≥ ρi/de5/c0e2,
this gives us αi ≥ ρi(de5/c0e−2 − de5/c0e−3)/2, which is
at least 12c2/ni−1, as ρi, according to our choice, is about
c2(c3k log ni−1)/(ni−1+1) for a large enough constant c2.
Thus, we can apply Lemma 9 and the bound in (7) becomes

(cc1/ρi)
O(k)

e−Ω((ρi/c
2)ni−1) ≤ δ0

2(i+ 1)2
. (8)

This completes the proof of Lemma 5.

C.1 Proof of Lemma 9

By Lemma 3, the random variables Φ
(v)
n ’s satisfy the same

recurrence relation of Balsubramani et al. (2013) for their
random variables Φn’s. Thus, we can follow their analy-
sis1, but use our better bound on |Zn|, and have the follow-
ing.

First, when given Γi, we have |Zn| ≤ 2γn
√
ρi for ni−1 ≤

n < ni. Then one can easily modify the analysis in Bal-
subramani et al. (2013) to show that for any t ≥ 0,

E
[
etΦ

(v)
ni |Γi

]
≤ exp

(
tρ̂i + c2(6t+ 2t2ρi)

(
1

ni−1
− 1

ni

))
,

by noting that (ni + 1)/(ni−1 + 1) = de5/c0e and n ≥
n0 = ĉck3d2 log d according to our choice of parameters.

1In particular, their proofs for Lemma 2.9 and Lemma 2.10.

Next, following Balsubramani et al. (2013) and applying
Doob’s martingale inequality, we obtain

Pr

[
sup
n≥ni

Φ(v)
n ≥ ρ̂i + αi|Γi

]
≤ E

[
etΦ

(v)
ni |Γi

]
exp

(
−t(ρ̂i + αi) +

c2

ni
(6t+ 2t2ρi)

)
≤ exp

(
−tαi +

c2

ni−1
(6t+ 2t2ρi)

)
≤ exp

(
− tαi

2
+

2c2t2ρi
ni−1

)
,

as αi ≥ 12c2

ni−1
. Finally, by choosing t = αini−1

8c2ρi
, we have

the lemma.

C.2 Proof of Lemma 10

Assume without loss of generality that Φ
(v)
n ≤ Φ

(u)
n (oth-

erwise, we switch v and u), so that∣∣∣Φ(v)
n − Φ(u)

n

∣∣∣ =
‖U>Ynv‖2

‖Ynv‖2
− ‖U

>Ynu‖2

‖Ynu‖2
.

As ‖v − u‖ ≤ ε, we have

‖U>Ynv‖
‖Ynv‖

≤ ‖U
>Ynu‖+ ε‖U>Yn‖
‖Ynu‖ − ε‖Yn‖

. (9)

To relate this to ‖U>Ynu‖2
‖Ynu‖2 , we would like to express

‖U>Yn‖ in terms of ‖U>Ynu‖ and ‖Yn‖ in terms of
‖Ynu‖. For this, note that both ‖U>Ynu‖/‖U>Yn‖
and ‖Ynu‖/‖Yn‖ are at least ‖U>Ynu‖/‖Yn‖, which by
Proposition 1 is at least(ni−1

n

)3c ‖U>Yni−1u‖
‖Yni−1‖

≥ c−6c
1

‖U>Yni−1u‖
‖Yni−1‖

, (10)

using the fact that ni−1/n ≥ ni−1/ni+1 ≥ 1/c21. Then as
Yni−1 = Qni−1 and ‖Qni−1‖ = ‖Qni−1u‖, the righthand
side of (10) becomes

c−6c
1

‖U>Qni−1u‖
‖Qni−1u‖

= c−6c
1

√
1− Φ

(u)
ni−1 ≥ c−6c

1

√
1− ρi,

given Γi. What we have obtained so far is a lower bound
for both ‖U>Ynu‖/‖U>Yn‖ and ‖Ynu‖/‖Yn‖. Plugging
this into (9), with ε̂ = εc6c1 /

√
1− ρi, we get

‖U>Ynv‖
‖Ynv‖

≤ ‖U
>Ynu‖(1 + ε̂)

‖Ynu‖(1− ε̂)
.

As a result, we have∣∣∣Φ(v)
n − Φ(u)

n

∣∣∣ ≤ ‖U>Ynu‖2‖Ynu‖2

(
(1 + ε̂)2

(1− ε̂)2
− 1

)
≤ 16ε̂,

since (1+ε̂)2

(1−ε̂)2 − 1 ≤ 4ε̂
(1−ε̂)2 ≤ 16ε̂ for ε̂ ≤ 1/2.



D Proof of Lemma 7

As cos(U,Qi−1)2 = 1
1+tan(U,Qi−1)2 ≥

1
1+ε2i−1

≥ β2
i , we

have ‖Gi‖ ≤ 4βi ≤ 4 cos(U,Qi−1). Thus, we can apply
Lemma 6 and have

tan(U,AQi−1 +Gi) ≤ max(βi,max(βi, γ)εi−1),

which is at most max(βi, γεi−1) ≤ γεi−1 = εi. The
lemma follows as tan(U,Qi) = tan(U,AQi−1 +Gi).

E Proof of Lemma 8

Let ρ = 4βi and note that ‖Gi‖ ≤ ‖A− Fi‖, where Fi is
the average of |Ii| i.i.d. random matrices, each with mean
A. Recall that ‖A‖ ≤ 1 by Assumption 1. Then from a
matrix Chernoff bound, we have

Pr [‖Gi‖ > ρ] ≤ Pr [‖A− Fi‖ > ρ] ≤ de−Ω(ρ2|Ii|) ≤ δi,

for |Ii| given in (3).

F Proof of Lemma 9

Let L be the iteration number such that εL−1 > ε and εL ≤
ε. Note that with εL = ε0γ

L = ε0(1 − (λ − λ̄)/λ)L/4 ≤
ε0e
−L(λ−λ̄)/(4λ), we can have

L ≤ O
(

λ

λ− λ̄
log

ε0

ε

)
≤ O

(
λ

λ− λ̄
log

d

ε

)
.

As the number of samples in iteration i is

|Ii| = O
(

log(d/δi)

(λ− λ̄)2β2
i

)
≤ O

(
log(di)

(λ− λ̄)2β2
i

)
,

the total number of samples needed is

L∑
i=1

|Ii| ≤ O
(

log(dL)

(λ− λ̄)2

)
·
L∑
i=1

1

β2
i

.

With βi = min(γ/
√

1 + ε2
i−1, γεi−1), one sees that for

some i0 ≤ O(log d), βi = γ/
√

1 + ε2
i−1 when i ≤ i0 and

βi = γεi−1 = εi when i > i0. This implies that

L∑
i=1

1

β2
i

=

i0∑
i=1

1 + ε2
i−1

γ2
+

L∑
i=i0+1

1

ε2
i

, (11)

where the first sum in the righthand side of (11) is

i0
γ2

+

i0∑
i=1

ε2
0γ

2i−4 ≤ O(log d)

γ2
+

ε2
0

γ2(1− γ2)
,

while the second sum is
L∑

i=i0+1

γ2(L−i)

ε2
L

≤ 1

(1− γ2)ε2
L

≤ 1

γ2(1− γ2)ε2

using the fact that εL = γεL−1 ≥ γε. Since γ2 =(
1− λ−λ̄

λ

)1/2

≤ 1 − λ−λ̄
2λ , we have 1

1−γ2 ≤ 2λ
λ−λ̄ , and

since λ ≤ O(λ̄), we also have 1
γ2 ≤ O(1). Moreover, as

we assume that ε ≤ 1/
√
kd, we can conclude that the total

number of samples needed is at most

L∑
i=1

|Ii| ≤ O
(

log(dL)

(λ− λ̄)2

)
·O
(

λ

(λ− λ̄)ε2

)
≤ O

(
λ log(dL)

ε2(λ− λ̄)3

)
.
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