A Proof of Lemma[3

Using the notation v = Y,,_1v/||Y,_1v|| and A4, =
xnx;';, one can follow the analysis in |[Balsubramani et al.
(2013) to show that &%) < &), + 8, — Z,, with

o 7, =2v,(YTUUTA, v — |UT¥|?*vT A,¥), and

o E[Zy|Fur1] > 27 (A = V)2 (1 -2l ) > 0.
We omit the proof here as the adaptation is straightforward.
It remains to show our better bound on |Z,,|. For this, note
that

| Z,| < 27, |[WTUUT —

IO Anvll,

where || A, V| <1 and

WU — U
= UTVI* = 2)U TVt + U
T (1 =TT )
As[UT¥|? < land (1 — [UT¥]?) = @)}, we have

|Zn‘ <27, \/ ¢1(‘Lv—)1'
B Proof of Lemmal4|

Assume that the event I'y holds and consider any n €
[ng,n1). We need the following, which we prove in Ap-

pendix [B.1]

Proposition 1. For any n > m and any v € RF,
U Yov]| ( )30 [UTYonv]|
Yol — \n Yo
From Proposition [I} we know that for any v € S,

|UTY,v||
YoV

Yol (o) [T Yovl

1Yl n Yol

where (ng/n)3¢ > (ng/n1)3¢ > (1/c1)3¢ for the constant

c1 given in Remark [I] As Yy = Qo and [|Qo| = 1 =
|Qov||, we obtain
IUTYovll U7 Qovll _ vT=po _\/ c
Wl = Flowl = o~ \

Therefore, assuming I'g, we always have

UTY,v|? ¢
@n:max(l—”VH>< __¢
v

Vv &okd P

B.1 Proof of Proposition ]|

Recall that for any n, Y, o1 + YnXnX, Y, 1 and
|l xnx, || < 1. Then for any v € R¥,

WYyl U7 Y av]| = 3allUT Yooy
HYn” - ”Ynfl“ + ’YnHYnflu ’
which is
Lo U Yarv] o gy, U Yacrv]]
Lt Yol = Yacall

using the fact that 1 —x > e=2% forz < 1/2and v, < 1/2.
Then by induction, we have
T vl
Yol —

U T Yo v

€_3Zt> i,
1Yo

The Proposition follows as

n 3c
6_3 Zt>7n Vi — e 3CZt>m T > < )
n
using the fact that >, 4+ < [ Ldy =1In(2).

C Proof of Lemma [5]

According to Lemma our <I>£Lv) ’s satisfy the same recur-
rence relation as the functions ¥,,’s of |Balsubramani et al.
(2013). We can therefore have the following, which we

prove in Appendix [C.T}
Lemma 9. Let p; = p;/[e%/ 0] (=r) Then for any u €
S and o > 12¢% /n;_y,

o [Sup o > pi 4+« | Fi] < e~ M@/ (FpPnin),

nzn;

Our goal is to bound Pr [-T;41|T;], which is

Pr|i3dveS: sup

n; <N<n;41

o) > Pi+1|Fi‘| .

As discussed before, we cannot directly apply a union
bound on the bound in Lemma [9] as there are infinitely
many v’s in S. Instead, we look for a small “e-net” D;
of S, with the property that any v € S has some u € D;
with ||v — u| < e. Such a D; with |D;| < (1/€)°®) is
known to exist (see e.g. Milman and Schechtman| (1986)).
Then what we need is that when v and u are close, (ID%V) and
<I>$L") are close as well. This is guaranteed by the following,
which we prove in Appendix [C.2]

Lemma 10. Suppose T'; happens. Then for any n €

[ni,niv1), any € < /T— p;i/(2¢5¢), and any u,v € S
with ||u — v|| < ¢, we have

’<1>§LV> _gln

1_/01



According to this, we can choose a;; = (p;+1 — p;)/2 and
€ = a;v/T— p;/(16¢5¢) so that with ||[u—v|| < ¢, we have
|<I>£LV) - <I>£L“)| < «;. This means that given any v € S
with @) > pit1, there exists some u € D; with oW >
pPi+1—; = p; + ;. As aresult, we can now apply a union
bound over D; and have

Pr [_‘Fi+1‘1—‘i] S Z Pr {sup (I)Slu) Z ﬁz —+ o | ].—‘,L:| .

ueD; n>mn;
(N

To bound this further, consider the following two cases.

First, for the case of ¢ < 71, we have p; > 3/4 and 7; =
1 —p; <1/4,so that

pi < pie_5(1_Pi) =(1- 771')6_51% < e 6m
Then a; > ((1—27n;) — (1 —3m;)) /2 = n;/2, which is
at least 12¢?/n;_1, as n; > m > ¢/(c$¢kd) and n;_1 >
ng = ¢°k3d?logd for a large enough constant ¢. There-
fore, we can apply Lemma[9]and the bound in (7)) becomes

<1-3n.

(k) =2 /e*nizr) « 00
(01/77) eIk

Next, for the case of ¢ > 71, we have p; < 3/4 so that

i < i [0V < [/,

as co > 12 by assumption. Since p; 11 > p;/[e®/ ]2,
this gives us a; > p;([e%/¢0] =2 — [¢5/¢0]~3) /2, which is
at least 12¢2 /mi_1, as p;, according to our choice, is about
ca(c3klogn;_1)/(n;_1+1) for alarge enough constant cy.
Thus, we can apply Lemma[J]and the bound in (7)) becomes

(i /s d
(c8/p;) O e=pi/Pmin) < 0

P ESIE ®)

This completes the proof of Lemmal[3}

C.1 Proof of Lemmal9l

By Lemma the random variables (1)7(1\:) ’s satisfy the same
recurrence relation of [Balsubramani et al.| (2013)) for their
random variables ®,,’s. Thus, we can follow their analy-
sisﬂ but use our better bound on |Z,, |, and have the follow-

ing.

First, when given I';, we have |Z,,| < 27,,\/p; for n;_; <
n < n;. Then one can easily modify the analysis in Bal-
subramani et al.| (2013)) to show that for any ¢ > 0,

)
E [et{)"i

by noting that (n; + 1)/(n;_1 + 1) = [€%/¢] and n >
ng = ¢°k3d? log d according to our choice of parameters.

'In particular, their proofs for Lemma 2.9 and Lemma 2.10.

1 1
i:| < exp (t,ﬁi + (6t + 2t*p;) (n - n))
i1 i

Next, following Balsubramani et al.| (2013) and applying
Doob’s martingale inequality, we obtain

Pr [SUP ) > p; + ai|ri:|
n>n;

2

Fz} exp (—t(ﬁi + ;) + -
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< E [e“b%vi) (6t 4 2t2 pi)>
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exp (—tai + - (6t + 2t2pi)>

to; 22,
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12c
as o > 8o,

the lemma

. Finally, by choosing ¢ = , we have

C.2 Proof of Lemma/[10]

Assume without loss of generality that @) < & (oth-

erwise, we switch v and u), so that

[UTY,v[* U Y,ul?
1Yv|? [Youll?

‘@5;) —o| =

As ||v — u]| < ¢, we have

IUTY,v
<
1Yo v

|UTYoul| + €| UTYa||

©))
[Youl| — €l Ya||

T 2
To relate this to %, we would like to express

|UTY,| in terms of ||[UTY,u| and |Y,| in terms of
|[Y,u|. For this, note that both ||UTY,ul|/||UTY,||
and || Y, ul|/||Yy| are at least ||[U T Y, ul|/||Yx||, which by
Proposition|[T]is at least

—6¢ ||U

i1 Ul
—~ 7 {10
HY’VVM*1”

(774;1 )3(: ||UTYni71uH

= C
n HYTL1171 || !

using the fact that n;_1/n > n;_1/n;11 > 1/c3. Then as

Ynifl = Qni—l and HQ’””L*IH = ||Qni—1uH’ the righthand
side of (I0) becomes
— c”UTQ?% 1 —6¢ u
016H6277 VAl — o > 7% /T—p;,
ni—1

given I';. What we have obtained so far is a lower bound
for both |[UTY,ul||/||U Y, and ||Y,ul|/||Y,|. Plugging
this into (9, with € = ec§//T — p;, we get

IUTYov|| _ [UTYoul (1 +€)
||YnVH HYnuH(l _é)

As a result, we have

_ UTYu? (( +é)°
— o Yaul? (1 -€)?

’@(V) oW

- 1> < 16¢,

(1+)?

since FEOE —-1<

( 77 < 16¢ foré <1/2.



D Proof of Lemmal(7l

As COS(U’ Qi_l)z = 1+tan(1}:Qi—1)2 = 1+5112—1 2 622’ we
have ||G;|| < AB; < Acos(U, Q;—1). Thus, we can apply

Lemmal6land have

ta'n(U7 AQifl + Gz) S max(ﬁi, max(ﬂ% ’7)52’71)’

which is at most max(8;,v¢;—1) < vg,-1 = ¢;. The
lemma follows as tan(U, Q;) = tan(U, AQ,;—1 + G;).

E Proof of Lemma

Let p = AS; and note that ||G;|| < ||A — F;||, where F; is
the average of |I;| i.i.d. random matrices, each with mean
A. Recall that ||A|| < 1 by Assumption I} Then from a

matrix Chernoff bound, we have
Pr[|G;]| > p] < Pr{|A — Fi|| > p] < de” 11D <6,

for |I;] given in (3).

F Proof of Lemma

Let L be the iteration number suchthate;, 1 > candep,
e. Note that with 7, = gg7” = go(1 — (A — X)/\)E/4
goe~LOA=N/(4N)  we can have
d
log ) .
€

)\)\1 €>§O<)\i/\
=0 (3250) <0 (0 e

As the number of samples in iteration 7 is
the total number of samples needed is

INIA

ro(s

L

log( dL
S <o (B0) 3
i=1 Bi
With 8; = min(y/4/1+¢? ,,7€i—1), one sees that for

some ig < O(logd), B; = v/
Bi = yei—1 = €; when ¢ > i(. This implies that

1+¢e? | wheni < igand

L i 2 L
z; 93 oy Py 5
where the first sum in the righthand side of is
O(logd €2
7+Z€ S 72g )+72(1372)’
while the second sum is
Z ’y2<L 1 - 1
(1=92)ed = 7?1 =72

i=ip+1

using the fact that e = ~ep_; > ~ve. Since 7?2 =

a2
11—~ l—ﬁ,wehave SAA,and

since A < O()), we also have = < O(1 ) Moreover, as

we assume that £ < 1/v/kd, we can conclude that the total
number of samples needed is at most

Z il < <1§g(df)) ) 0 <(>\ AX)&) =0 <m> '
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