A Proof of Lemma 3

Using the notation $\hat{\mathbf{v}}=Y_{n-1} \mathbf{v} /\left\|Y_{n-1} \mathbf{v}\right\|$ and $A_{n}=$ $\mathbf{x}_{n} \mathbf{x}_{n}^{\top}$, one can follow the analysis in Balsubramani et al. (2013) to show that $\Phi_{n}^{(\mathbf{v})} \leq \Phi_{n-1}^{(\mathbf{v})}+\beta_{n}-Z_{n}$, with

- $\beta_{n}=5 \gamma_{n}^{2}+2 \gamma_{n}^{3}$,
- $Z_{n}=2 \gamma_{n}\left(\hat{\mathbf{v}}^{\top} U U^{\top} A_{n} \hat{\mathbf{v}}-\left\|U^{\top} \hat{\mathbf{v}}\right\|^{2} \hat{\mathbf{v}}^{\top} A_{n} \hat{\mathbf{v}}\right)$, and
- $\mathbb{E}\left[Z_{n} \mid \mathcal{F}_{n-1}\right] \geq 2 \gamma_{n}(\lambda-\hat{\lambda}) \Phi_{n-1}^{(\mathbf{v})}\left(1-\Phi_{n-1}^{(\mathbf{v})}\right) \geq 0$.

We omit the proof here as the adaptation is straightforward. It remains to show our better bound on $\left|Z_{n}\right|$. For this, note that

$$
\left|Z_{n}\right| \leq 2 \gamma_{n}\left\|\hat{\mathbf{v}}^{\top} U U^{\top}-\right\| U^{\top} \hat{\mathbf{v}}\left\|^{2} \hat{\mathbf{v}}^{\top}\right\| \cdot\left\|A_{n} \hat{\mathbf{v}}\right\|
$$

where $\left\|A_{n} \hat{\mathbf{v}}\right\| \leq 1$ and

$$
\begin{aligned}
& \left\|\hat{\mathbf{v}}^{\top} U U^{\top}-\right\| U^{\top} \hat{\mathbf{v}}\left\|^{2} \hat{\mathbf{v}}^{\top}\right\|^{2} \\
& \quad=\left\|U^{\top} \hat{\mathbf{v}}\right\|^{2}-2\left\|U^{\top} \hat{\mathbf{v}}\right\|^{4}+\left\|U^{\top} \hat{\mathbf{v}}\right\|^{4} \\
& =\left\|U^{\top} \hat{\mathbf{v}}\right\|^{2}\left(1-\left\|U^{\top} \hat{\mathbf{v}}\right\|^{2}\right) .
\end{aligned}
$$

As $\left\|U^{\top} \hat{\mathbf{v}}\right\|^{2} \leq 1$ and $\left(1-\left\|U^{\top} \hat{\mathbf{v}}\right\|^{2}\right)=\Phi_{n-1}^{(\mathbf{v})}$, we have

$$
\left|Z_{n}\right| \leq 2 \gamma_{n} \sqrt{\Phi_{n-1}^{(\mathbf{v})}} .
$$

B Proof of Lemma 4

Assume that the event Γ_{0} holds and consider any $n \in$ $\left[n_{0}, n_{1}\right)$. We need the following, which we prove in Appendix B. 1
Proposition 1. For any $n>m$ and any $\mathbf{v} \in \mathbb{R}^{k}$,

$$
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n}\right\|} \geq\left(\frac{m}{n}\right)^{3 c} \cdot \frac{\left\|U^{\top} Y_{m} \mathbf{v}\right\|}{\left\|Y_{m}\right\|}
$$

From Proposition 1 , we know that for any $\mathbf{v} \in \mathcal{S}$,

$$
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n} \mathbf{v}\right\|} \geq \frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n}\right\|} \geq\left(\frac{n_{0}}{n}\right)^{3 c} \frac{\left\|U^{\top} Y_{0} \mathbf{v}\right\|}{\left\|Y_{0}\right\|}
$$

where $\left(n_{0} / n\right)^{3 c} \geq\left(n_{0} / n_{1}\right)^{3 c} \geq\left(1 / c_{1}\right)^{3 c}$ for the constant c_{1} given in Remark 1 As $Y_{0}=Q_{0}$ and $\left\|Q_{0}\right\|=1=$ $\left\|Q_{0} \mathbf{v}\right\|$, we obtain

$$
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n} \mathbf{v}\right\|} \geq \frac{\left\|U^{\top} Q_{0} \mathbf{v}\right\|}{c_{1}^{3 c}\left\|Q_{0} \mathbf{v}\right\|} \geq \frac{\sqrt{1-\rho_{0}}}{c_{1}^{3 c}}=\sqrt{\frac{\bar{c}}{c_{1}^{6 c} k d}} .
$$

Therefore, assuming Γ_{0}, we always have

$$
\Phi_{n}=\max _{\mathbf{v}}\left(1-\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|^{2}}{\left\|Y_{n} \mathbf{v}\right\|^{2}}\right) \leq 1-\frac{\bar{c}}{c_{1}^{6 c} k d}=\rho_{1} .
$$

B. 1 Proof of Proposition 1

Recall that for any $n, Y_{n}=Y_{n-1}+\gamma_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} Y_{n-1}$ and $\left\|\mathbf{x}_{n} \mathbf{x}_{n}^{\top}\right\| \leq 1$. Then for any $\mathbf{v} \in \mathbb{R}^{k}$,

$$
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n}\right\|} \geq \frac{\left\|U^{\top} Y_{n-1} \mathbf{v}\right\|-\gamma_{n}\left\|U^{\top} Y_{n-1} \mathbf{v}\right\|}{\left\|Y_{n-1}\right\|+\gamma_{n}\left\|Y_{n-1}\right\|}
$$

which is

$$
\frac{1-\gamma_{n}}{1+\gamma_{n}} \cdot \frac{\left\|U^{\top} Y_{n-1} \mathbf{v}\right\|}{\left\|Y_{n-1}\right\|} \geq e^{-3 \gamma_{n}} \frac{\left\|U^{\top} Y_{n-1} \mathbf{v}\right\|}{\left\|Y_{n-1}\right\|}
$$

using the fact that $1-x \geq e^{-2 x}$ for $x \leq 1 / 2$ and $\gamma_{n} \leq 1 / 2$. Then by induction, we have

$$
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n}\right\|} \geq e^{-3 \sum_{t>m}^{n} \gamma_{i}} \cdot \frac{\left\|U^{\top} Y_{m} \mathbf{v}\right\|}{\left\|Y_{m}\right\|}
$$

The Proposition follows as

$$
e^{-3 \sum_{t>m}^{n} \gamma_{i}}=e^{-3 c \sum_{t>m}^{n} \frac{1}{t}} \geq\left(\frac{m}{n}\right)^{3 c}
$$

using the fact that $\sum_{t>m}^{n} \frac{1}{t} \leq \int_{m}^{n} \frac{1}{x} d x=\ln \left(\frac{n}{m}\right)$.

C Proof of Lemma 5

According to Lemma 3, our $\Phi_{n}^{(\mathrm{v})}$, s satisfy the same recurrence relation as the functions Ψ_{n} 's of Balsubramani et al. (2013). We can therefore have the following, which we prove in Appendix C. 1 .
Lemma 9. Let $\left.\hat{\rho}_{i}=\rho_{i} / \int e^{5 / c_{0}}\right]^{c_{0}\left(1-\rho_{i}\right)}$. Then for any $\mathbf{u} \in$ \mathcal{S} and $\alpha_{i} \geq 12 c^{2} / n_{i-1}$,

$$
\operatorname{Pr}\left[\sup _{n \geq n_{i}} \Phi_{n}^{(\mathbf{u})} \geq \hat{\rho}_{i}+\alpha_{i} \mid \Gamma_{i}\right] \leq e^{-\Omega\left(\left(\alpha_{i}^{2} /\left(c^{2} \rho_{i}\right)\right) n_{i-1}\right)}
$$

Our goal is to bound $\operatorname{Pr}\left[\neg \Gamma_{i+1} \mid \Gamma_{i}\right]$, which is

$$
\operatorname{Pr}\left[\exists \mathbf{v} \in \mathcal{S}: \sup _{n_{i} \leq n<n_{i+1}} \Phi_{n}^{(\mathbf{v})} \geq \rho_{i+1} \mid \Gamma_{i}\right] .
$$

As discussed before, we cannot directly apply a union bound on the bound in Lemma 9 as there are infinitely many \mathbf{v} 's in \mathcal{S}. Instead, we look for a small " ϵ-net" \mathcal{D}_{i} of \mathcal{S}, with the property that any $\mathbf{v} \in \mathcal{S}$ has some $\mathbf{u} \in \mathcal{D}_{i}$ with $\|\mathbf{v}-\mathbf{u}\| \leq \epsilon$. Such a \mathcal{D}_{i} with $\left|\mathcal{D}_{i}\right| \leq(1 / \epsilon)^{\mathcal{O}(k)}$ is known to exist (see e.g. Milman and Schechtman (1986)). Then what we need is that when \mathbf{v} and \mathbf{u} are close, $\Phi_{n}^{(\mathbf{v})}$ and $\Phi_{n}^{(\mathbf{u})}$ are close as well. This is guaranteed by the following, which we prove in Appendix C. 2
Lemma 10. Suppose Γ_{i} happens. Then for any $n \in$ $\left[n_{i}, n_{i+1}\right)$, any $\epsilon \leq \sqrt{1-\rho_{i}} /\left(2 c_{1}^{6 c}\right)$, and any $\mathbf{u}, \mathbf{v} \in \mathcal{S}$ with $\|\mathbf{u}-\mathbf{v}\| \leq \epsilon$, we have

$$
\left|\Phi_{n}^{(\mathbf{v})}-\Phi_{n}^{(\mathbf{u})}\right| \leq 16 c_{1}^{6 c} \epsilon / \sqrt{1-\rho_{i}} .
$$

According to this, we can choose $\alpha_{i}=\left(\rho_{i+1}-\hat{\rho}_{i}\right) / 2$ and $\epsilon=\alpha_{i} \sqrt{1-\rho_{i}} /\left(16 c_{1}^{6 c}\right)$ so that with $\|\mathbf{u}-\mathbf{v}\| \leq \epsilon$, we have $\left|\Phi_{n}^{(\mathbf{v})}-\Phi_{n}^{(\mathbf{u})}\right| \leq \alpha_{i}$. This means that given any $\mathbf{v} \in \mathcal{S}$ with $\Phi_{n}^{(\mathbf{v})} \geq \rho_{i+1}$, there exists some $\mathbf{u} \in \mathcal{D}_{i}$ with $\Phi_{n}^{(\mathbf{u})} \geq$ $\rho_{i+1}-\alpha_{i}=\hat{\rho}_{i}+\alpha_{i}$. As a result, we can now apply a union bound over \mathcal{D}_{i} and have

$$
\begin{equation*}
\operatorname{Pr}\left[\neg \Gamma_{i+1} \mid \Gamma_{i}\right] \leq \sum_{\mathbf{u} \in \mathcal{D}_{i}} \operatorname{Pr}\left[\sup _{n \geq n_{i}} \Phi_{n}^{(\mathbf{u})} \geq \hat{\rho}_{i}+\alpha_{i} \mid \Gamma_{i}\right] \tag{7}
\end{equation*}
$$

To bound this further, consider the following two cases.
First, for the case of $i<\pi_{1}$, we have $\rho_{i} \geq 3 / 4$ and $\eta_{i}=$ $1-\rho_{i} \leq 1 / 4$, so that

$$
\hat{\rho}_{i} \leq \rho_{i} e^{-5\left(1-\rho_{i}\right)}=\left(1-\eta_{i}\right) e^{-5 \eta_{i}} \leq e^{-6 \eta_{i}} \leq 1-3 \eta_{i}
$$

Then $\alpha_{i} \geq\left(\left(1-2 \eta_{i}\right)-\left(1-3 \eta_{i}\right)\right) / 2=\eta_{i} / 2$, which is at least $12 c^{2} / n_{i-1}$, as $\eta_{i} \geq \eta_{1} \geq \bar{c} /\left(c_{1}^{6 c} k d\right)$ and $n_{i-1} \geq$ $n_{0}=\hat{c}^{c} k^{3} d^{2} \log d$ for a large enough constant \hat{c}. Therefore, we can apply Lemma 9 and the bound in (7) becomes

$$
\left(c_{1}^{c} / \eta_{i}\right)^{\mathcal{O}(k)} e^{-\Omega\left(\left(\eta_{i}^{2} / c^{2}\right) n_{i-1}\right)} \leq \frac{\delta_{0}}{2(i+1)^{2}}
$$

Next, for the case of $i \geq \pi_{1}$, we have $\rho_{i} \leq 3 / 4$ so that

$$
\hat{\rho}_{i} \leq \rho_{i} /\left\lceil e^{5 / c_{0}}\right\rceil^{c_{0} / 4} \leq \rho_{i} /\left\lceil e^{5 / c_{0}}\right\rceil^{3}
$$

as $c_{0} \geq 12$ by assumption. Since $\rho_{i+1} \geq \rho_{i} /\left\lceil e^{5 / c_{0}}\right\rceil^{2}$, this gives us $\alpha_{i} \geq \rho_{i}\left(\left\lceil e^{5 / c_{0}}\right\rceil^{-2}-\left\lceil e^{5 / c_{0}}\right\rceil^{-3}\right) / 2$, which is at least $12 c^{2} / n_{i-1}$, as ρ_{i}, according to our choice, is about $c_{2}\left(c^{3} k \log n_{i-1}\right) /\left(n_{i-1}+1\right)$ for a large enough constant c_{2}. Thus, we can apply Lemma 9 and the bound in (7) becomes

$$
\begin{equation*}
\left(c_{1}^{c} / \rho_{i}\right)^{\mathcal{O}(k)} e^{-\Omega\left(\left(\rho_{i} / c^{2}\right) n_{i-1}\right)} \leq \frac{\delta_{0}}{2(i+1)^{2}} \tag{8}
\end{equation*}
$$

This completes the proof of Lemma 5 .

C. 1 Proof of Lemma 9

By Lemma 3, the random variables $\Phi_{n}^{(\mathbf{v})}$, s satisfy the same recurrence relation of Balsubramani et al. (2013) for their random variables Φ_{n} 's. Thus, we can follow their analysis ${ }^{1}$, but use our better bound on $\left|Z_{n}\right|$, and have the following.

First, when given Γ_{i}, we have $\left|Z_{n}\right| \leq 2 \gamma_{n} \sqrt{\rho_{i}}$ for $n_{i-1} \leq$ $n<n_{i}$. Then one can easily modify the analysis in Balsubramani et al. (2013) to show that for any $t \geq 0$, $\mathbb{E}\left[e^{t \Phi_{n_{i}}^{(\mathbf{v})}} \mid \Gamma_{i}\right] \leq \exp \left(t \hat{\rho}_{i}+c^{2}\left(6 t+2 t^{2} \rho_{i}\right)\left(\frac{1}{n_{i-1}}-\frac{1}{n_{i}}\right)\right)$, by noting that $\left(n_{i}+1\right) /\left(n_{i-1}+1\right)=\left\lceil e^{5 / c_{0}}\right\rceil$ and $n \geq$ $n_{0}=\hat{c}^{c} k^{3} d^{2} \log d$ according to our choice of parameters.

[^0]Next, following Balsubramani et al. (2013) and applying Doob's martingale inequality, we obtain

$$
\begin{aligned}
& \operatorname{Pr}\left[\sup _{n \geq n_{i}} \Phi_{n}^{(\mathbf{v})} \geq \hat{\rho}_{i}+\alpha_{i} \mid \Gamma_{i}\right] \\
& \quad \leq \mathbb{E}\left[e^{t \Phi_{n_{i}}^{(\mathbf{v})}} \mid \Gamma_{i}\right] \exp \left(-t\left(\hat{\rho}_{i}+\alpha_{i}\right)+\frac{c^{2}}{n_{i}}\left(6 t+2 t^{2} \rho_{i}\right)\right) \\
& \quad \leq \exp \left(-t \alpha_{i}+\frac{c^{2}}{n_{i-1}}\left(6 t+2 t^{2} \rho_{i}\right)\right) \\
& \quad \leq \exp \left(-\frac{t \alpha_{i}}{2}+\frac{2 c^{2} t^{2} \rho_{i}}{n_{i-1}}\right)
\end{aligned}
$$

as $\alpha_{i} \geq \frac{12 c^{2}}{n_{i-1}}$. Finally, by choosing $t=\frac{\alpha_{i} n_{i-1}}{8 c^{2} \rho_{i}}$, we have the lemma.

C. 2 Proof of Lemma 10

Assume without loss of generality that $\Phi_{n}^{(\mathbf{v})} \leq \Phi_{n}^{(\mathbf{u})}$ (otherwise, we switch \mathbf{v} and \mathbf{u}), so that

$$
\left|\Phi_{n}^{(\mathbf{v})}-\Phi_{n}^{(\mathbf{u})}\right|=\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|^{2}}{\left\|Y_{n} \mathbf{v}\right\|^{2}}-\frac{\left\|U^{\top} Y_{n} \mathbf{u}\right\|^{2}}{\left\|Y_{n} \mathbf{u}\right\|^{2}}
$$

As $\|\mathbf{v}-\mathbf{u}\| \leq \epsilon$, we have

$$
\begin{equation*}
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n} \mathbf{v}\right\|} \leq \frac{\left\|U^{\top} Y_{n} \mathbf{u}\right\|+\epsilon\left\|U^{\top} Y_{n}\right\|}{\left\|Y_{n} \mathbf{u}\right\|-\epsilon\left\|Y_{n}\right\|} \tag{9}
\end{equation*}
$$

To relate this to $\frac{\left\|U^{\top} Y_{n} \mathbf{u}\right\|^{2}}{\left\|Y_{n} \mathbf{u}\right\|^{2}}$, we would like to express $\left\|U^{\top} Y_{n}\right\|$ in terms of $\left\|U^{\top} Y_{n} \mathbf{u}\right\|$ and $\left\|Y_{n}\right\|$ in terms of $\left\|Y_{n} \mathbf{u}\right\|$. For this, note that both $\left\|U^{\top} Y_{n} \mathbf{u}\right\| /\left\|U^{\top} Y_{n}\right\|$ and $\left\|Y_{n} \mathbf{u}\right\| /\left\|Y_{n}\right\|$ are at least $\left\|U^{\top} Y_{n} \mathbf{u}\right\| /\left\|Y_{n}\right\|$, which by Proposition 1 is at least

$$
\begin{equation*}
\left(\frac{n_{i-1}}{n}\right)^{3 c} \frac{\left\|U^{\top} Y_{n_{i-1}} \mathbf{u}\right\|}{\left\|Y_{n_{i-1}}\right\|} \geq c_{1}^{-6 c} \frac{\left\|U^{\top} Y_{n_{i-1}} \mathbf{u}\right\|}{\left\|Y_{n_{i-1}}\right\|} \tag{10}
\end{equation*}
$$

using the fact that $n_{i-1} / n \geq n_{i-1} / n_{i+1} \geq 1 / c_{1}^{2}$. Then as $Y_{n_{i-1}}=Q_{n_{i-1}}$ and $\left\|Q_{n_{i-1}}\right\|=\left\|Q_{n_{i-1}} \mathbf{u}\right\|$, the righthand side of 10 becomes
$c_{1}^{-6 c} \frac{\left\|U^{\top} Q_{n_{i-1}} \mathbf{u}\right\|}{\left\|Q_{n_{i-1}} \mathbf{u}\right\|}=c_{1}^{-6 c} \sqrt{1-\Phi_{n_{i-1}}^{(\mathbf{u})}} \geq c_{1}^{-6 c} \sqrt{1-\rho_{i}}$,
given Γ_{i}. What we have obtained so far is a lower bound for both $\left\|U^{\top} Y_{n} \mathbf{u}\right\| /\left\|U^{\top} Y_{n}\right\|$ and $\left\|Y_{n} \mathbf{u}\right\| /\left\|Y_{n}\right\|$. Plugging this into (9), with $\hat{\epsilon}=\epsilon c_{1}^{6 c} / \sqrt{1-\rho_{i}}$, we get

$$
\frac{\left\|U^{\top} Y_{n} \mathbf{v}\right\|}{\left\|Y_{n} \mathbf{v}\right\|} \leq \frac{\left\|U^{\top} Y_{n} \mathbf{u}\right\|(1+\hat{\epsilon})}{\left\|Y_{n} \mathbf{u}\right\|(1-\hat{\epsilon})}
$$

As a result, we have

$$
\left|\Phi_{n}^{(\mathbf{v})}-\Phi_{n}^{(\mathbf{u})}\right| \leq \frac{\left\|U^{\top} Y_{n} \mathbf{u}\right\|^{2}}{\left\|Y_{n} \mathbf{u}\right\|^{2}}\left(\frac{(1+\hat{\epsilon})^{2}}{(1-\hat{\epsilon})^{2}}-1\right) \leq 16 \hat{\epsilon}
$$

since $\frac{(1+\hat{\epsilon})^{2}}{(1-\hat{\epsilon})^{2}}-1 \leq \frac{4 \hat{\epsilon}}{(1-\hat{\epsilon})^{2}} \leq 16 \hat{\epsilon}$ for $\hat{\epsilon} \leq 1 / 2$.

D Proof of Lemma 7

As $\cos \left(U, Q_{i-1}\right)^{2}=\frac{1}{1+\tan \left(U, Q_{i-1}\right)^{2}} \geq \frac{1}{1+\varepsilon_{i-1}^{2}} \geq \beta_{i}^{2}$, we have $\left\|G_{i}\right\| \leq \triangle \beta_{i} \leq \triangle \cos \left(U, Q_{i-1}\right)$. Thus, we can apply Lemma6 and have

$$
\tan \left(U, A Q_{i-1}+G_{i}\right) \leq \max \left(\beta_{i}, \max \left(\beta_{i}, \gamma\right) \varepsilon_{i-1}\right)
$$

which is at most $\max \left(\beta_{i}, \gamma \varepsilon_{i-1}\right) \leq \gamma \varepsilon_{i-1}=\varepsilon_{i}$. The lemma follows as $\tan \left(U, Q_{i}\right)=\tan \left(U, A Q_{i-1}+G_{i}\right)$.

E Proof of Lemma 8

Let $\rho=\triangle \beta_{i}$ and note that $\left\|G_{i}\right\| \leq\left\|A-F_{i}\right\|$, where F_{i} is the average of $\left|I_{i}\right|$ i.i.d. random matrices, each with mean A. Recall that $\|A\| \leq 1$ by Assumption 1 . Then from a matrix Chernoff bound, we have
$\operatorname{Pr}\left[\left\|G_{i}\right\|>\rho\right] \leq \operatorname{Pr}\left[\left\|A-F_{i}\right\|>\rho\right] \leq d e^{-\Omega\left(\rho^{2}\left|I_{i}\right|\right)} \leq \delta_{i}$, for $\left|I_{i}\right|$ given in (3).

F Proof of Lemma 9

Let L be the iteration number such that $\varepsilon_{L-1}>\varepsilon$ and $\varepsilon_{L} \leq$ ε. Note that with $\varepsilon_{L}=\varepsilon_{0} \gamma^{L}=\varepsilon_{0}(1-(\lambda-\bar{\lambda}) / \lambda)^{L / 4} \leq$ $\varepsilon_{0} e^{-L(\lambda-\bar{\lambda}) /(4 \lambda)}$, we can have

$$
L \leq \mathcal{O}\left(\frac{\lambda}{\lambda-\bar{\lambda}} \log \frac{\varepsilon_{0}}{\varepsilon}\right) \leq \mathcal{O}\left(\frac{\lambda}{\lambda-\bar{\lambda}} \log \frac{d}{\varepsilon}\right)
$$

As the number of samples in iteration i is

$$
\left|I_{i}\right|=\mathcal{O}\left(\frac{\log \left(d / \delta_{i}\right)}{(\lambda-\bar{\lambda})^{2} \beta_{i}^{2}}\right) \leq \mathcal{O}\left(\frac{\log (d i)}{(\lambda-\bar{\lambda})^{2} \beta_{i}^{2}}\right)
$$

the total number of samples needed is

$$
\sum_{i=1}^{L}\left|I_{i}\right| \leq \mathcal{O}\left(\frac{\log (d L)}{(\lambda-\bar{\lambda})^{2}}\right) \cdot \sum_{i=1}^{L} \frac{1}{\beta_{i}^{2}}
$$

With $\beta_{i}=\min \left(\gamma / \sqrt{1+\varepsilon_{i-1}^{2}}, \gamma \varepsilon_{i-1}\right)$, one sees that for some $i_{0} \leq \mathcal{O}(\log d), \beta_{i}=\gamma / \sqrt{1+\varepsilon_{i-1}^{2}}$ when $i \leq i_{0}$ and $\beta_{i}=\gamma \varepsilon_{i-1}=\varepsilon_{i}$ when $i>i_{0}$. This implies that

$$
\begin{equation*}
\sum_{i=1}^{L} \frac{1}{\beta_{i}^{2}}=\sum_{i=1}^{i_{0}} \frac{1+\varepsilon_{i-1}^{2}}{\gamma^{2}}+\sum_{i=i_{0}+1}^{L} \frac{1}{\varepsilon_{i}^{2}} \tag{11}
\end{equation*}
$$

where the first sum in the righthand side of (11) is

$$
\frac{i_{0}}{\gamma^{2}}+\sum_{i=1}^{i_{0}} \varepsilon_{0}^{2} \gamma^{2 i-4} \leq \frac{\mathcal{O}(\log d)}{\gamma^{2}}+\frac{\varepsilon_{0}^{2}}{\gamma^{2}\left(1-\gamma^{2}\right)}
$$

while the second sum is

$$
\sum_{i=i_{0}+1}^{L} \frac{\gamma^{2(L-i)}}{\varepsilon_{L}^{2}} \leq \frac{1}{\left(1-\gamma^{2}\right) \varepsilon_{L}^{2}} \leq \frac{1}{\gamma^{2}\left(1-\gamma^{2}\right) \varepsilon^{2}}
$$

using the fact that $\varepsilon_{L}=\gamma \varepsilon_{L-1} \geq \gamma \varepsilon$. Since $\gamma^{2}=$ $\left(1-\frac{\lambda-\bar{\lambda}}{\lambda}\right)^{1 / 2} \leq 1-\frac{\lambda-\bar{\lambda}}{2 \lambda}$, we have $\frac{1}{1-\gamma^{2}} \leq \frac{2 \lambda}{\lambda-\lambda}$, and since $\lambda \leq \mathcal{O}(\bar{\lambda})$, we also have $\frac{1}{\gamma^{2}} \leq \mathcal{O}(1)$. Moreover, as we assume that $\varepsilon \leq 1 / \sqrt{k d}$, we can conclude that the total number of samples needed is at most
$\sum_{i=1}^{L}\left|I_{i}\right| \leq \mathcal{O}\left(\frac{\log (d L)}{(\lambda-\bar{\lambda})^{2}}\right) \cdot \mathcal{O}\left(\frac{\lambda}{(\lambda-\bar{\lambda}) \varepsilon^{2}}\right) \leq \mathcal{O}\left(\frac{\lambda \log (d L)}{\varepsilon^{2}(\lambda-\bar{\lambda})^{3}}\right)$.

References

Balsubramani, A., Dasgupta, S., and Freund, Y. (2013). The fast convergence of incremental pca. In Advances in Neural Information Processing Systems.
Milman, V. D. and Schechtman, G. (1986). Asymptotic theory of finite-dimensional normed spaces. Lecture Notes in Mathematics. Springer.

[^0]: ${ }^{1}$ In particular, their proofs for Lemma 2.9 and Lemma 2.10.

