An Improved Convergence Analysis of CBCD-type Methods for Strongly Convex Minimization

A  Proof of Lemma 2

For simplicity, we assume that dy = ... = d, = m = d/p. For any s € Z*, we define the lower triangular matrix
D, € R%*5 ag
1 00 0 0
1 10 0 0
D, = 1 1 1 0 0
1 1 1 11

By the definition of L;, we have
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where (i) is from (11), (ii) is from Assumption 2, (iii) is from the optimality condition to the subproblem
associated with z;,

(V;L(x®) + L, (x§t+1) - xg»t)) + §j(-t+1),xj - zgtﬂ)) > 0 for any z; € R™,

and (iv) comes from the fact that
AT(D, ® I,,)A = (ATA - XTZ) ©Dy+ AT A,
where © denotes the Hadamard product and 1,, € R"*™ is a matrix with all entries as 1.
Let us define
B = (ATA—ZTZ) ODy+ATA-Pol,,

then we have

Fat) = F(a*) < (@D — 2O)T B(t+) _ g%y _ ng(tH) — 2", (28)
Maximizing R.H.S. of the above inequality over x*, we obtain

—p(z* — 2Dy = BT (2D — (M) — g,
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which implies
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Plugging (29) into (28), we obtain
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where (i) comes from (12), which indicates that Amax(ATA — P ® I,,) < 0, (iii) is true if d > 3, and (iv) comes
from d < p - dpnax and the fact that
Amax (ATA = ATA) < A (AT A) +

max (_ANTA) < )\max (ATA) < L.
Inequality (ii) follows from the result on the spectral norm of the triangular truncation operator in (Angelos
et al., 1992). More specifically, let us define

AeD
Ld:max{W:AERdXd,A#O}.

Then we have
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The final claim holds by the fact that d < p - dpax
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