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Abstract

We propose a stochastic gradient Markov
chain Monte Carlo (SG-MCMC) algorithm
for scalable inference in mixed-membership
stochastic blockmodels (MMSB). Our algo-
rithm is based on the stochastic gradient Rie-
mannian Langevin sampler and achieves both
faster speed and higher accuracy at every it-
eration than the current state-of-the-art al-
gorithm based on stochastic variational infer-
ence. In addition we develop an approxima-
tion that can handle models that entertain
a very large number of communities. The
experimental results show that SG-MCMC
strictly dominates competing algorithms in
all cases.

1 Introduction

Probabilistic graphical models represent a convenient
paradigm for modeling complex relationships between
a potentially very large number of random variables.
Bayesian graphical models [13], where we define priors
and infer posteriors over parameters also allow us to
quantify model uncertainty and facilitate model selec-
tion and averaging. But an increasingly urgent ques-
tion is whether these models and their inference pro-
cedures will be up to the challenge of handling very
large “big data” problems.

A large subclass of Bayesian graphical models is rep-
resented by so called “topic models” such as latent
Dirichlet allocation [4]. For these types of mod-
els very efficient inference algorithms have recently
been developed, either based on stochastic varia-
tional Bayesian inference (SVB) [7,12] or on stochas-
tic gradient Markov chain Monte Carlo (SG-MCMC)
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[2,3,5,6,19]. Both methods have the important prop-
erty that they only require a small subset of the data-
items for every iteration. In other words, they can be
applied to (infinite) streaming data.

An important class of “big data” problems are given
by networks. Large networks such as social networks
easily run into billions of edges and tens of millions
of nodes. An interesting problem in this area is the
discovery of communities: densely connected groups
of nodes that are only sparsely connected to the rest
of the network. Large networks may contain millions
of such communities. To model overlapping commu-
nities the mixed membership stochastic blockmodel
(MMSB) was introduced in [8]. Very recently, an ef-
ficient stochastic variational inference algorithm was
developed for a special case, the assortative MMSB
(a-MMSB) [1], greatly extending the reach of Bayesian
posterior inference to realistic large scale problem set-
tings. Inspired by this work, and earlier comparisons
between SVB and SG-MCMC on LDA [2] we devel-
oped a scalable SG-MCMC algorithm for a-MMSB and
compared it against SVB on the community detection
problem.

Our conclusion is consistent with the findings of [2],
namely that SG-MCMC is also both faster and more
accurate than SVB algorithms in this domain. While
one should expect SG-MCMC to be more accurate
than SVB asymptotically (SVB is asymptotically bi-
ased while SG-MCMC is not), it is interesting to ob-
serve that SG-MCMC dominates SVB across all iter-
ations, despite the fact that SG-MCMC should have a
larger variance contribution to the error.

2 Assortative Mixed-Membership
Stochastic Blockmodels

Assortative mixed-membership stochastic blockmodel
(a-MMSB) [1] is a special case of MMSB [8] that mod-
els the group-structure in a network of N nodes. In
particular, each node a in the node set V∗ has a K-
dimension probability distribution πa of participating
in the K members of the community set K. For every
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possible peer b in the network, each node a randomly
draws a community zab. If a pair of nodes (a, b) in the
edge set E∗ are in the same community: zab = zba = k,
then they have a significant probability βk to connect,
i.e., yab = 1. Otherwise this probability is small. Each
community has its connection strength βk ∈ (0, 1)
which explains how likely its members are linked to
each other.

The generative process of a-MMSB is then given by,

1. For each community k, draw community strength
βk ∼ Beta(η)

2. For each node a, draw community memberships
πa ∼ Dirichlet(α)

3. For each pair of nodes a and b,

(a) Draw interaction indicator zab ∼ πa
(b) Draw interaction indicator zba ∼ πb
(c) Draw link yab ∼ Bernoulli(r), where r = βk

if zab = zba = k, and r = δ otherwise.

Unlike the a-MMSB, the original MMSB maintains
pair-wise community strength βk,k′ for all pairs of the
communities. Note that it is trivial to extend the re-
sults that we obtain in this paper to the general MMSB
model. The joint probability of the above process can
be written as:

p(y, z, π, β|α, η) =
N∏

a=1

N∏

b>a

p(yab|zab, zba, β)p(zab|πa)

p(zba|πb)
N∏

a=1

p(πa|α)
K∏

k=1

p(βk|η). (1)

Both variational inference [1,4,16] and collapsed Gibbs
sampling algorithms [11] have been used successfully
for small to medium scale problems. However, the
O(N2) computational complexity per update prevents
it from being applied to large scale networks. A
stochastic variational algorithm was developed in [1]
to address this issue, where each update only depends
on a small mini-batch of the nodes in the network.

3 Stochastic Gradient MCMC
Algorithms

Our algorithm will be based on the stochastic gradient
Langevin dynamics (SGLD) [3]. To sample from a pos-
terior distribution p(θ|X ) ∝ p(X|θ)p(θ) given N i.i.d.
data points X = {xi}Ni=1, SGLD applies the following
update rule:

θ∗ ← θ +
εt
2

(∇θ log p(θt) +Nḡ(θ;Dn)) + ξ, (2)

where ξ ∼ N (0, εt) with εt the step size, Dn a mini-
batch of size n sampled from X , and ḡ(θ;Dn) =

1
|Dn|

∑
x∈Dn

∇θ log p(x|θ). As the step size goes to zero

by a schedule satisfying
∑∞
t=1 εt = ∞ and

∑∞
t=1 ε

2
t <

∞, SGLD samples from the true posterior distribution.
In SGLD, the Metropolis-Hastings (MH) accept-reject
tests are ignored since the rejection probability goes
to zero as the step size collapses to zero. While for
a finite step size this results in some bias, the overall
error is reduced by the reduction of variance due to
the ability to draw many more samples per unit time.

SGLD originated from the Langevin Monte Carlo
(LMC) [15] where, unlike SGLD, the gradient is
computed exactly using all data points and then a
Metropolis-Hastings accept-reject test is applied. Be-
cause at each iteration SGLD requires to process only a
mini-batch Dn and ignores the MH test, the computa-
tion complexity per iteration is only O(n) as opposed
to O(N) of LMC. Any mini-batch sampling algorithm
in the form of Eqn. (2) is called valid SGLD as long
as it guarantees the gradient estimator to be unbiased,
i.e., EDn [Nḡ(θ;Dn)] = ∇θ log p(X|θ) and the variance
to be finite [5].

The stochastic gradient Riemannian Langevin dynam-
ics (SGRLD) [2] is a subclass of SGLD which is devel-
oped to sample from the probability simplex. By ap-
plying Riemannian geometry [15] and using the mini-
batch estimator in Eqn. 2, it achieved the state-of-the-
art performance for latent Dirichlet allocation (LDA).
In particular, for a K-dimensional probability sim-
plex π, it uses the expanded-mean re-parameterization
trick, where the probability of a category k is given
by πk = θk/

∑K
j=1 θj with θk ∼ Gamma(α, 1) and α

a hyperparameter of the Dirichlet distribution p(π|α).
Then, the update rule becomes

θ∗k ←
∣∣∣∣∣θk +

ε

2

(
α− θk +

N

|Dn|
∑

d∈Dn

gd(θk)

)
+ (θk)

1
2 ξ

∣∣∣∣∣ . (3)

here gd(θk) is the gradient of the log posterior w.r.t.
θk on a data point d ∈ Dn.

4 Scalable MCMC for a-MMSB

Our algorithm iterates updating local parameters π
and a global parameter β. Because both parameters lie
on the probability simplex, we start from the SGRLD
and modify it to be more efficient. Also, we introduce
parameters φ and θ to re-parameterize π and β respec-
tively. Then, we alternatively sample in the φ and θ
spaces, and obtain π and β by normalizing φ and θ.
From Eqn. 1, summing over the latent variable z, we
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obtain the following joint probability,

p(y, π, β|α, η) =
∏
a p(πa|α)

∏
k p(βk|η)×∏

a

∏
b>a

∑
zab,zba

p(yab, zab, zba|β, πa, πb). (4)

4.1 Sampling the global parameter

By the re-parameterization, we have βk = θk1/(θk0 +
θk1), where θki ∼ Gamma(η) ∝ θη−1ki e−θki . Because
p(y, π, β|α, η) decomposes into p(y, β|π, η)p(π|α), re-
placing β by θ, we compute the derivative of the log-
arithm of Eqn. 4 w.r.t. θki for i = {0, 1} as follows:

∂ ln p(y, θ|π, η)

∂θki
=

∂

∂θki
ln p(θki|η) +

∑

a

∑

b>a

gab(θki), (5)

where gab(θki) = ∂
∂θki

ln
∑
zab,zba

p(yab, zab, zba|θ, πa, πb)
which, similar to SGRLD for LDA [2], we can rewrite
as

gab(θki) = E
[
I[zab = zba = k]

( |1− i− yab|
θki

− 1

θk

)]
. (6)

where θk =
∑
i θki and I[S] is equal to 1 if a condition

S is TRUE and 0 otherwise. The expectation is w.r.t.
the posterior distribution of latent variables zab and
zba,

p(zab = k, zba = l|yab, πa, πb, β) (7)

∝ f (y)ab (k, l) =

{
βyk(1− βk)(1−y)πakπbk, if k = l

δy(1− δ)(1−y)πakπbl, if k 6= l

here we used simple notation y instead of yab. Unlike
the SGRLD for LDA [2], we compute the expectation
in Eqn. (6) analytically by computing the normaliza-

tion constant Z
(y)
ab =

∑K
k=1

∑K
l=1 f

(y)
ab (k, l) which can

be reduced to O(K) computation as follows

Z
(y)
ab = δy(1− δ)(1−y)

+
K∑

k=1

(
βyk(1− βk)(1−y) − δy(1− δ)(1−y)

)
πakπbk (8)

Then Eqn. (6) becomes

gab(θki) =
f
(y)
ab (k, k)

Z
(y)
ab

( |1− i− y|
θki

− 1

θk

)
. (9)

Plugging this into Eqn. 3, we obtain the update rule
for the global parameter,

θ∗ki ←

∣∣∣∣∣∣
θki +

ε

2



η − θki + h(Ent

)
∑

(a,b)∈Ent

gab(θki)





+(θki)
1
2 ξki

∣∣∣ , (10)

here Ent is a mini-batch of nt node pairs sampled from
E∗ for which we use the following strategy.

Stratified sampling: considering that the number
of links is much smaller than that of non-links, we
can reduce the variance of the gradient using stratified
sampling, similar to the method used in [1]. For this,
at every iteration we first randomly select a node a and
then toss a coin with probability 0.5 to decide whether
to sample link edges or non-link edges for node a. If it
is a link, we assign all of the link edges of node a to Ent .
Otherwise, i.e. if it is non-link, we uniformly sample a
mini-batch of N/m non-link edges from the entire set
of non-link edges and assign it to Ent

. Here, the m is a
hyper-parameter. Note that the size of |Ent | will thus
be much smaller than the total number of N(N −1)/2
edges whenm is reasonably large. Then, to ensure that
the gradient is unbiased, a scaling parameter h(Ent

) is
multiplied. Specifically, h(Ent

) is set to N when Ent
is

a set of link edges and to mN otherwise.

Because the global parameters {βk} does not change
very fast compared to the local parameters {πak}, in
practice we update only a random subset of the {βk}
at each iteration.

4.2 Sampling the local parameters

Similar to the global parameter, we re-parameterize
the local parameter πa such that πak = φak/

∑K
j=1 φaj ,

with φak ∼ Gamma(α) ∝ φα−1ak e−φak . Then, taking
the derivative of the log of Eqn. 4 w.r.t. φak, we
obtain

∂ ln p(y, φ|β, α)

∂φak
=

∂

∂φak
ln p(φak|α) +

∑

b

gab(φak) (11)

where gab(φak) = ∂
∂φak

ln
∑
zab,zba

p(yab, zab, zba|β, φa, φb)
which can be written as

gab(φak) = E
[
I[zab = k]

φak
− 1

φa·

]
. (12)

Here the expectation is w.r.t. the distribution in Eqn.
(8). To compute the expectation analytically, we first
integrate out zba from Eqn. (8) because the expec-
tation depends only on zab, and obtain the following
probability up to a normalization constant

f
(y)
ab (k) =

K∑

l=1

f
(y)
ab (k, l)

=πak

{
βyk(1− βk)(1−y)πbk + δy(1− δ)(1−y)(1− πbk)

}
.

(13)

Then we obtain the normalization term by Z
(y)
ab =∑K

k=1 f
(y)
ab (k). Integrating out the expectation in Eqn.
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(12), we obtain

gab(φak) =
f
(y)
ab (k)

Z
(y)
ab φak

− 1

φa
. (14)

Plugging this to Eqn. 3, we obtain the SGRLD update
rule for the local parameter φak

φ∗ak ←
∣∣∣∣∣φak +

ε

2

(
α− φak +

N

|Vn|
∑

b∈Vn
gab(φak)

)

+(φak)
1
2 ξak

∣∣∣ . (15)

Here, the Vn is a random mini-batch of n nodes sam-
pled from V∗. Note that |Vn|� |V∗|= N .

4.3 Scalable local updates for a large number
of communities

In some applications, the number of communities can
be very large [18] so that the local update becomes
very inefficient due to its O(K|Vn|) computation per
node in Ent

and also O(KN) space complexity. In this
section, we extend the above algorithm further with a
novel approximation in order to make the algorithm
scalable in terms of both speed and memory usage even
for a very large number of communities which the SVI
[1] approach cannot achieve.

Community split: for each node a ∈ V∗, we first
split the community set K into three mutually exclu-
sive subsets: the active set A(a), the candidate set
C(a), and the bulk set B(a) such that A(a) ∪ C(a) ∪
B(a) = K. Then, sorting the πa w.r.t. k in de-
scending order, we obtain a new order of communities
k1, . . . , kK . The active set A(a) contains communi-
ties whose cumulative distribution F (ki) is less than a
threshold τ ∈ (0, 1], i.e. A(a) = {ki ∈ K|F (ki) < τ}.
The candidate set C(a) includes communities which are
in the active set of at least one of the neighbors of node
a, i.e. C(a) = {k ∈ K \A(a)|∃b ∈ N (a) s.t. k ∈ A(b)}.
The bulk set B(a) contains all the remainder, i.e.
B(a) = K\(A(a)∪C(a)). Here, we use N (a) to denote
the neighbors of node a.

The rationale behind this split scheme is two fold.
First, due to sparsity, at each node only a small num-
ber of communities will have meaningful probability
while a large number of communities will have very
low probability πak. We want the communities of low
probability to belong to the bulk set, to share a single
probability πaκ, and thus to be updated by one-shot
for all k ∈ B(a). We use κ to represent the represen-
tative community of a bulk set. Second, due to the
locality, neighboring nodes are likely to have a simi-
lar distribution over communities (after all, the model
only assigns high probability to links when the associ-
ated nodes have high probability of sampling the same

community). That is, when a neighbor of node a has
a community k in its active set, this community may
be a good candidate to become active for node a as
well. By maintaining a candidate set we allow com-
munities to spread efficiently to neighboring nodes and
thus through the network.

One-shot update: for communities k ∈ B(a), we
apply the following approximation of the unnormalized
probability in Eqn. (13)

f
(y)
ab (k ∈ B(a)) ≈ f̃ (y)ab (κ)

=πaκ

{
β̄ya(1− β̄a)(1−y)π̄b + δy(1− δ)(1−y)(1− π̄b)

}
.

(16)

That is, we replace πbk and βk in Eqn. (13) by
π̄b = 1

m

∑
k∈Bm(a) πbk and β̄a = 1

m

∑
k∈Bm(a) βk re-

spectively using a random mini-batch Bm(a) of size m
sampled from B(a). As a result, all k ∈ B(a) share

a single value f̃
(y)
ab (κ). Therefore, we can efficiently

approximate the normalization constant by

Z
(y)
ab =

∑

k∈K
f
(y)
ab (k) ≈ Z̃(y)

ab

=|B(a)|f̃ (y)ab (κ) +
∑

k/∈B(a)
f
(y)
ab (k). (17)

Note that we only sum over |A(a) ∪ C(a)|+1 terms
which will be a much smaller size than |B(a)|. Now, to
compute the gradient efficiently, we apply the stratified
sampling1 for Vn by sampling n1 nodes V1 from the
neighbors N (a) and n0 nodes V0 from non-neighbors
V∗ \ N (a) such that Vn = V1 ∪ V0. Then, the sum of
gradients for Vn in Eqn. (15) is obtained by

N

|Vn|
∑

b∈Vn
gab(φak)

≈c1
∑

b∈V1

(
f̃
(1)
ab (k)

Z̃
(1)
ab φak

− 1

φa

)
+ c0

∑

b′∈V0

(
f̃
(0)
ab′ (k)

Z̃
(0)
ab′φak

− 1

φa

)
.

(18)

Here, we set c1 = |N (a)|/n1 and c0 = (N−|N (a)|)/n0
to ensure the unbiasedness of the gradient under strat-
ified sampling. Again, it is important to note that all
states in B(a) share a single current value φaκ and
also the same update equation of Eqn. (18). Thus for
B(a) we compute Eqn. (18) only once and update all
of them in one-shot. The computation cost becomes
O(|A(a) ∪ C(a)||Vn|) per node in Ent

which we expect
to be efficient because |A(a) ∪ C(a)|� K due to spar-

sity. For k /∈ B(a), we simply replace f̃
(y)
ab (k) in Eqn.

(18) by f
(y)
ab (k) in Eqn. (13), and update individually.

1Note that, to be more efficient under the approxima-
tion, we use a sampling method which is different to the
method used in the global update.
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Algorithm 1 Pseudo-code for each sampling iteration
t

1: Sample a mini-batch E of nt node pairs from E∗
2: for each node a in E do
3: Sample a mini-batch of nodes Vn(a) = V1(a) ∪

V0(a) from V∗
4: Update φak for all k ∈ A(a) ∪ C(a) using Eqn.

(18) and Eqn. (15)
5: Update φaκ only for the representative bulk

state κ using Eqn. (18) and Eqn. (15)
6: Sort and normalize to obtain {πak} and the cdf

F (ki) for all |A(a) ∪ C(a)|+1 states
7: Promote or demote some states using the up-

dated cdf, threshold τ , and neighbor informa-
tion

8: end for
9: for k in a random subset of K do

10: Update θk{0,1} by Eqn. (10) using E and obtain
βk from θk{0,1}

11: end for

Promotion and demotion: after updating all
|A(a) ∪ C(a)|+1 states (communities), we need to up-
date the community split by promoting (e.g. to active
or candidate set) or demoting (e.g. to candidate or
bulk set) some of the states. To do this, we sort and
normalize {φak}, and obtain the updated cdf F (ki).
Then, we update A(a), C(a), and B(a) based on the
threshold τ and based on the communities that are ac-
tive in the neighboring nodes. In particular, if the cdf
of the bulk state F (κ) is less than the threshold, we
promote some states in the bulk set by a random sam-
pling. In this case, the number of states to promote
is equal to int((τ − F (κ−1))/πaκ). Here κ−1 denotes
a state just left to the κ in the sorted community se-
quence. We sample a state from the pool of states that
are yet not represented anywhere in the graph. The
reason is that we wish to avoid creating disconnected
communities of nodes, which we believe represent sub-
optimal local modes in the posterior distribution. Fi-
nally, we check which states in B(a) can be promoted
to C(a) by checking the neighboring nodes. We pro-
vide the pseudo code of the above algorithm in the
Algorithm 1.

5 Experiments

We evaluate the efficiency and accuracy of our algo-
rithm on five datasets [18]: Synthetic [1], US-AIR,
NETSCIENCE, RELATIVITY, and HEP-PH, sum-
marized in Table 1. (The last column is the percent-
age of link edges among all possible edges.) We com-
pare four algorithms. As exact batch-mode MCMC
methods, we use collapsed Gibbs sampling (CGS) and

Table 1: Datasets

Name # of nodes %

Synthetic 75 30
US-AIR 1.1k 1.2
NETSCIENCE 1.6K 0.3
RELATIVITY 5.2K 0.05
HEP˙PH 12k 0.16

Langevin Monte Carlo (LMC). We also compare to
SVI [1] as a state-of-the-art method in variational
Bayes. Finally, two of our algorithms are tested, one
with and the other without the approximation for large
communities. We call these SGMC and SGMC-M, re-
spectively.

We used α = 1/K and η = 1 for all of the models and
for all experiments unless otherwise stated. For the
stepsize annealing schedule we used εt = (τ0 + t)−κ

with κ = 0.5 and τ0 = 1024 [2]. For the stratified
sampling of the global update in SVI and SGMCs, we
used m such that the size of non-link edges N/m to be
30 < N/m < 100. And for the mini-batch size of the
stratified sampling of the local update in SGMCs, we
used 20 samples with 10 from neighbors and 10 from
non-neighboring nodes. For SGMC-M, we used the
threshold τ = 0.9 by default unless otherwise stated.
Also, for the held-out test set, we used 1% of the total
links and non-links.

As the performance metric, we use perplexity which
is defined as exponential of the negative average log-
likelihood of the data. Given a collection of T samples
of the model parameters {βt} and {πt}, the averaged
perplexity on the held-out test set Eh is

perpavg(Eh|{βt}, {πt})

= exp

(
−
∑

(a,b)∈Eh log{(1/T )
∑T
t=1 p(yab|βt, πt)}

|Eh|

)

(19)

5.1 Results

Comparison to exact batch MCMC: We first
show the accuracy of our algorithm in comparison
to exact batch-mode MCMC algorithms (CGS and
LMC). For this, we use two relatively small datasets,
Synthetic and US-AIR, due to the slow speed of the
batch algorithms. The results are shown in Fig. 1a
and Fig. 1b.

As expected, for the smaller dataset (Synthetic) in Fig.
1a, we see that CGS converges very fast. However,
it is interesting to observe that our stochastic gradi-
ent sampler (SGMC) using fixed step-size converges to
the same level of accuracy in comparable time, whereas
LMC converges much slower than both the collapsed
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Figure 1: Convergence of perplexity on (a) Synthetic and (b) US-AIR datasets
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Figure 2: (a) Wall-clock time per iteration over increasing community sizes, on (a) HEP-PH, (b) NETSCIENCE
and (c) RELATIVITY datasets

Gibbs sampler and our algorithm due to its full gradi-
ent computation and the Metropolis-Hastings accept-
reject step. As we move to a larger network (US-AIR)
in Fig. 1b, we begin to see that our stochastic gradi-
ent sampler outperforms in speed the collapsed Gibbs
sampler as well as the Langevin Monte Carlo. It is
interesting to see that the approximation error of our
algorithm due to the finite step size and the absence of
accept-reject tests is negligible compared to the per-
plexity of the exact MCMC.

Effect of our approximation for large commu-
nities: In Fig. 2a and Fig. 2b, Fig.2c on three
large datasets, HEP-PH, NETSCIENCE and RELA-
TIVITY, we show the speed-up effect of our approx-
imate method (SGMC-M) compared to the SGMC
without the approximation. Here we measure the
time per iteration for various community size K =
[30, 50, 100, 200, 300, 500, 1000] and set the threshold
to τ = 0.9. As shown, we can see that the ap-
proximate method SGMC-M only slightly increases
the wall-clock time per iteration even if the commu-
nity size increases. However, without the approxima-
tion (SGMC), the time per iteration increases linearly
w.r.t. the community size. In fact, we can obtain more
time savings as the community size increases further

because the level of sparsity, i.e. the number of com-
munities for which each node has non-negligible prob-
ability of participation, does not change much when
we increase K.

Furthermore, it is interesting to see in Fig. 3a, Fig.
3b and Fig. 3c that we do not lose much accuracy de-
spite the approximation. In particular, for Fig. 3b, the
SGMC-M performs as good as the SGMC. Although
for Fig. 3c the SGMC-M performs worse than the
SGMC, it still outperforms the SVI. Note that the re-
sults are based on converged perplexity which SGMC-
M will reach much faster. The figures also reveal some
interesting facts. First, the predictive accuracy is dom-
inated by SGMC for all choices of K. Second, the
curve of SVI has a V-shape indicating that the opti-
mal value for K is in between the minimum and max-
imum value of K we tested. However, for SGMC the
accuracy remains relatively stable as we increase K,
making it less sensitive to the choice of this hyperpa-
rameter.

In Fig. 4, we show the convergence of perplexity
over wall-clock time on several datasets using SGMC,
SGMC-M and SVI. Note that we do not include the
SVI method in Fig. c and Fig. 4d where we use a
large community size, since the perplexity tends to
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Figure 3: Converged perplexity for various community sizes on (a) Synthetic , (b) US-AIR and (c) NETSCIENCE
datasets
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Figure 4: The change of perplexity over time on (a) US-AIR (K=50), (b) RELATIVITY (K=50), (c) US-AIR
(K=300) and (d) NETSCIENCE (K=100) datasets. For (a) and (b), we compare the performance among three
methods: SGMC, SGMC-M and SVI. However, for (c) and (d) we don’t include the results for SVI because the
perplexity for SVI is hard to compare to our methods.

become very large and thus makes it incomparable to
our methods. In general, we have two main observa-
tions. First, the approximate method SGMC-M dom-
inates other methods during early stages, but eventu-
ally SGMC reaches lower perplexity than SGMC-M.
Second, in Fig. 4b and Fig. 4b, both SGMC and
SGMC-M reach much lower perplexity than SVI.

In Fig. 5a, we show the efficiency of SGMC-M in
terms of memory usage. In this experiment, we set the
threshold τ = 0.9 for all datasets. As shown, the mem-
ory usage (i.e. |A(a)∪C(a)|/K) of SGMC-M decreases
as the number of communities increases. This is be-
cause the sparsity does not change even if we increase
the community size K. Note that the memory usages
of SVI and SGMC are always 100%. This is a sig-
nificant feature for large scale networks because with-
out the approximation the space complexity is O(KN)
where both K and N can be very large [18]. It is also
interesting to see that at every node 90% of the total
density is allocated to only about 10% ∼ 20% of the
communities (e.g., for K = 500, 1000).

Lastly, we investigate the effect of the threshold τ and
the results are shown in Fig. 5b and Fig. 5c using Syn-
thetic and US-AIR datasets. As shown, with τ = 0.9
and τ = 1, we obtain the best result. It is interest-

ing because the memory usage of SGMC-M is only a
half of SGMC without the approximation (τ = 1). As
expected, as we decrease the threshold, smaller com-
munities are represented in the active and candidate
set and thus we lose some accuracy while gaining some
speed-up.

Effect of step sizes: SG-MCMC converges in the-
ory as the step size goes to zero. Although we have
used decreasing step sizes in the above experiments, it
will be interesting to see how fixed step sizes affect the
algorithm, because in practice we cannot decrease the
step size to zero. One of the result is shown in Fig. 6a.
The figure clearly reveals the trade-off between a large
step size (leading to a large bias) and a small step size
(leading to slow mixing). For the US-AIR dataset a
step size 0.01 seems to work best.

Mini-batch size and computational efficiency:
Depending on the number of edges/nodes sampled in
a mini-batch, there is a clear trade-off between the
computational cost per update and the variance of an
update (i.e. for stochastic gradients). Our SG-MCMC
includes two sampling steps for each iteration, one for
edges and the other for nodes (line 1 and 3 in Al-
gorithm 1). Since we are using a “stratified random

729



0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

the number of communites

ra
te

 o
f 
m

e
m

o
ry

 u
s
a
g
e

rate of memory usage when converged 

 

 
hep−ph

netscience

us−air

(a)

0 200 400 600
1

2

3

4

5

6

7

time (seconds)

p
e

rp
le

x
it
y

Synthetic (K=30)

 

 

τ=0.3

τ=0.5

τ=0.7

τ=0.9

τ=1

(b)

0 1000 2000 3000
3

4

5

6

7

8

9

time (seconds)

p
e

rp
le

x
it
y

US−AIR (K=50)

 

 

τ=0.3

τ=0.5

τ=0.7

τ=0.9

τ=1

(c)

Figure 5: (a) Memory usage over different community sizes and datasets. The memory usage is defined as the
ratio (|A|+|C|+1)/K. (b) and (c) Convergence of perplexity for various threshold values τ on Synthetic and
US-AIR datasets.
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Figure 6: (a) Effects of step size. (b) and (c) Effects of mini-batch size. We fix the step size and mini-batch size
during the entire training.

node sampling” strategy, it is important to choose a
proper m in order to obtain both fast convergence and
low variance. We tested the effects of the parameter
m. The results are shown in Fig. 6b and Fig. 6c.
As we can see, setting m to 5 achieves the best perfor-
mance for the synthetic dataset while m = 20 performs
best for the US-AIR data set.2 In practice, setting m
in such a way that the corresponding mini-batch size
becomes between 30 and 100 results in good perfor-
mance, i.e. if we have 10K nodes in total, we could set
m to a value between 100-350.3. Overall, SG-MCMC
takes O(n2K) computational time4 for each iteration,
where n = N/m and N is the total number of the
nodes.

2Note that setting m equals to 5 for the synthetic data
set is roughly equivalent to setting the mini-batch size to
75/m = 15.

3For the experiments with SVB we choose m = 100 to
make the comparison fair.

4This complexity is computed by assuming that (i) we
use the “stratified node sampling” and (ii) the average
number of links per node is bounded below by n = N/m.

6 Conclusion and Future Work

In this paper we have developed a new scalable MCMC
algorithm based on stochastic gradient computations
for assortive mixed membership stochatic blockmodels
(a-MMSB). The algorithm represents a natural exten-
sion of stochastic gradient Riemannian Langevin dy-
namics (SGRLD) [2] to a-MMSBs. In line with the
results reported in [2] for LDA, SGRLD also signifi-
cantly outperforms its stochastic variational Bayesian
counterpart. As was shown in [18], SGRLD algorithms
are particularly suited for distributed implementation.
We are currently working towards a distributed imple-
mentation of our algorithm on a HPC infrastructure
allowing us to perform full Bayesian inference on the
very large “Friendster” network with almost two bil-
lion edges. Initial results show that we achieve good
perplexity and sample to convergence on the full net-
work.
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