
A Experiments

Here we report the results of REMBO (Wang et al., 2013)
and SMAC (Hutter et al., 2011) on the synthetic data in
Section 5.

A.1 Other Algorithms

For REMBO, the best parameter we try is to assume the
number of underlying lower dimensions as D/4. The sim-
ple regret we get is 76.6 and 93.4 forD = 50 andD = 100,
respectively. When we increase the number of lower di-
mensions, however, the performance degrades. For in-
stance, when we use 25 dimensions for D = 50, the regret
is 424. We address this result to imperfect optimization of
acquisition function. Moreover, it is not surprising that the
regret increases when we increase D. If the low dimen-
sional embedding does not exist, we lose more information
for larger D.

We also study the random-forests-based algorithm
(SMAC) (Hutter et al., 2011) by using the code provided
by the authors 1. Hutter et al. (2011) demonstrate SMAC
has good performance on solving combinatorial problem
with 76 dimensions. However, in our synthetic data,
the average regret after 1000 iterations for D = 50 and
D = 100 are 130.5 and 460.1 respectively, which is
generally worse than than GP-based methods. Although
more iterations will result in better performance, it worths
further studying to improve this method.

B Technical Proofs

In the following, we use superscript to indicate the index of
the vector, matrix and tensor.

B.1 Proof of Theorem 2

Theorem 1. Kandasamy et al. (2015) Suppose f is con-
structed by sampling f (j) ∼ GP(0, κ(j)) for j = 1, . . . ,M
and then adding them. Let all kernels κ(j) satisfy cer-
tain smooth and bounded conditions Kandasamy et al.
(2015). If we maximize the acquisition function ϕ̃t to
within Õ(t−1/2) accuracy at time step t and choose βt =
Õ (d log t), Add-GP-UCB attains simple regret ST ∈
Õ
(√

DγT log T/T
)

with high probability.

Since f is projected-additive function on x, g is additive
on the projected data z = W>x. Then we could apply
Theorem 1 directly to completes the proof.

1http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

B.2 Proof of Proposition 4

By mean value theorem, there exists 0 � z′ � z such that
f̃(z) = f̃(0) +∇f̃(0)>z + 1

2z>H(z′)z, where H(z′) =

∇2f(z′). We construct g by g(z) =
∑D
d=1

1
Df(0) +

(∇f(z))(d)z(d) + 1
2 (H(z′)

(d,d)
(z(i))2). Since each el-

ement in H(z′) is bounded by Assumption 3, |f̃(z) −
g(z)| = O(‖z‖2).

B.3 Proof of Proposition 4

By mean value theorem, there exists 0 � z′ � z such that
f̃(z) = f̃(0)+∇f̃(0)>z+ 1

2z>H(0)z+ 1
6T (z

′)×1 z×2

z×3 z, where T (z′) is the tensor of the third derivatives of
f̃(z′). Let denote the SVD of H(0) as H(0) = UΣU>,
where UU> = I and Σ is diagonal. Then

f̃(z) = f̃(0) +∇f̃(0)>UU>z + 1
2z>UΣU>z+

1
6T (z

′)×1 (UU>z)×2 (UU>z)×3 (UU>z)

= f̃(0) + g>z̃ + z̃>Σz̃
2 + T̃ (z′)×1z̃×2z̃×3z̃

6 ,

where g = U>∇f̃(0), and T̃ (z′) = T (z′) ×1 U ×2

U×3 U. Then we construct h as h(z) =
∑D
d=1

1
D f̃(0) +

g(d)z̃(d) + 1
2Σ(d,d)(z̃(i))2 + 1

6 T̃ (z̃
′)(d,d,d)(z̃(i))3. Since T

is bounded by Assumption 3, and ‖U‖ = 1, so T̃ is still
bounded. Therefore, |f̃(z)− h(z)| = O(‖z‖3).

B.4 Proof of Corollary 8

Using the same proof of Proposition 4 by replacing 0 with
z∗ and using the decomposition −QQ> completes the
proof.

B.5 Proof of Theorem 6

The proof is based on the following lemmas from Srinivas
et al. (2010). Here we use µ̃t(x) to denote the mean func-
tion based on the biased ỹ, and µt(x) to denote the mean
function based on y.
Lemma 2. Srinivas et al. (2010) Set βt = Õ(d log t).
Then |g(xt) − µt−1(xt)| ≤ β

1/2
t σt−1(xt) and g(x∗) ≤

µt−1(xt) + β
1/2
t σt−1(xt) +

1
t2 with high probability.

Lemma 3. Set βt = Õ(d log t). Then |g(xt) −
µ̃t−1(xt)| ≤ β1/2

t σt−1(xt)+Cε and g(x∗) ≤ µ̃t−1(xt)+
β
1/2
t σt−1(xt) + Cε+ 1

t2 with high probability.

Proof. Applying Lemma 3 and |f(x) − g(x)| ≤ ε com-
pletes the proof.

Lemma 4. Set βt = Õ(d log t). With high probability, the
regret is bounded as follows: rt ≤ 2β

1/2
t σt−1(xt)+2Cε+

1
t2 .
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Proof. By Lemma 3, we have g(x∗) ≤ µ̃t−1(xt) +

β
1/2
t σt−1(xt) + Cε+ 1

t2 . Therefore,

rt = g(x∗)− g(xt)
≤ µ̃t−1(xt) + β

1/2
t σt−1(xt) + Cε+ 1/t2 − g(xt)

≤ 2β
1/2
t σt−1(xt) + 2Cε+ 1/t2,

which completes the proof.

Lemma 5. Srinivas et al. (2010) Set βt = Õ(d log t), with
high probability,

∑T
t=1 2β

1/2
t σt−1(xt) ≤

√
C1TβT γT ,

where C1 is a constant.

Then by Lemma 4 and Lemma 5, the simple regret is
bounded by

1
T

∑T
t=1 rt ≤

√
C1βT γT

T + 2Cε+
∑T
t=1

1
t2

= Õ(
√

dγT
T + ε)

B.6 Proof of Corollary 7

Let u∗ = argmaxx f(x) and v∗ = argmaxx g(x). Since
|f(x)− g(x)| ≤ ε, we f(u∗)− g(v∗) ≤ f(u∗)− g(u∗) ≤
ε. Combining with Theorem 6, the simple regret on f is
bounded by

1
T

∑T
t=1 f(u∗)− f(xt) ≤ 1

T

∑T
t=1 g(v∗) + Cε− g(xt) + Cε

= 2Cε+ 1
T

∑T
t=1 g(v∗)− g(xt)

= Õ(
√

dγT
T + ε),

with high probability.
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