
Efficient Bregman Projections onto the Permutahedron and Related Polytopes

A Derivation of Dual Formulation (5)

Let C denote the feasible set in problem (2). We have
di(xi) = maxyi {〈yi, xi〉 − d∗i (yi)}. We can rewrite
problem (2) as

min
x∈C

n∑
i=1

di(xi) = min
x∈C

{
n∑
i=1

max
yi
{yixi − d∗i (yi)}

}

= min
x∈C

max
y

{
n∑
i=1

(yixi − d∗i (x∗i ))

}

= max
y

min
x∈C

{
n∑
i=1

(yixi − d∗i (yi))

}

= max
y

{
n∑
i=1

(−d∗i (yi)) + min
x∈C
〈y, x〉

}
.

Let us focus on the minx∈C〈y, x〉 term. If we let Yi =
yi − yi+1 for i ∈ [n − 1] and Yn = yn, we have yi =∑n
l=i Yk. This gives us

〈y, x〉 = 〈y, c〉+ 〈y, x− c〉

= 〈y, c〉+

n∑
i=1

yi(xi − ci)

= 〈y, c〉+

n∑
i=1

(
n∑
k=i

Yk

)
(xi − ci)

= 〈y, c〉+

n∑
k=1

(
k∑
i=1

(xi − ci)

)
Yk.

If any Yk is larger than 0 for any k ∈ [n − 1], then
infx〈y, x〉 = −∞; we can set xi = ci for i /∈ {k, k+ 1},
xk → −∞ and xk+1 = ck + ck+1 − xk. This means
that we require Yk ≤ 0 for all k (i.e. yi+1 ≥ yi). So
minx〈y, x〉 = 〈y, c〉, obtained by setting xi = ci for all
i.

B Proofs Omitted From Main Paper

B.1 Section 3 Proofs

Lemma 3.1. (Suehiro et al., 2012) Let x′ be the pro-
jection of z onto the permutahedron under a uniformly
separable Bregman divergence φ. Suppose z1 ≥ z2 ≥
. . . ≥ zn. Then, we have x′1 ≥ x′2 ≥ . . . ≥ x∗n.

Proof. Let x be a point in the permutahedron where
zi > zj but xi < xj . The difference between the ob-
jective obtained by swapping the points xi and xj is
given by:

∆φ(xi, zi) + ∆φ(xj , zj)−∆φ(xi, zj)−∆φ(xj , zi)

=−∇φ(zi)(xi − xj)−∇φ(zj)(xj − xi)
=− (∇φ(zi)−∇φ(zj))(xi − xj) > 0,

so swapping the terms decreases the objective further
and x is not the projection of z.

Lemma 3.2. Let x′ be the projection of z onto the per-
mutahedron under a uniformly separable Bregman di-
vergence defined by a sign-invariant φ. Then sgn(x′i) =
sgn(zi) for all i. Furthermore, if |z1| ≥ |z2| ≥ . . . ≥
|zn|, we have |x′1| ≥ |x′2| ≥ . . . ≥ |x∗n|.

Proof. We will show that if sgn(xi) 6= sgn(zi) we can
improve the objective by setting xi to 0, implying xi
is not optimal. By the sign-invariance of φ, we have
∇φ(u) = −∇φ(−u), which means ∇φ(0) = 0. By
the strict convexity of φ, we know sgn(∇φ(zi)) is an
increasing functions, so sgn(∇φ(zi)) = sgn(zi). The
change in objective after swapping is

∆φ(xi, zi)−∆φ(0, zi)

= φ(xi)− φ(0)−∇φ(zi)(xi − 0)

≥ φ(xi)− φ(0)−∇φ(0)(xi − 0) > 0,

where the last line follows from strict convexity of φ.

The proof of the second part is similar to the proof of
lemma 3.1.

Theorem 3.3. Let yA ∈ Rn be an optimal solution to
problem (5). We get an optimal solution to problem
(6) by truncating the positive values of yA to zero.

Proof. We will first show that there is an optimal so-
lution yB to problem (6) such that if yAi > 0, then
yBi = 0. Let yC be any optimal solution to problem
(6) and let S be the set of indices i where yAi > 0 and
yCi < 0. Suppose S is nonempty. By the monotonicity
of the y vectors, we know that S is an interval of in-
dices {a, a+1, . . . , b}, and yCi = 0 for i > b and yAi < 0
for i < a. Let v denote the vector that is yAi − yCi for
i ∈ S and 0 otherwise, and note that v is nonnegative.
We will now compare

∑
i∈S fi(y

A
i ) and

∑
i∈S fi(y

C
i ).

• If
∑
i∈S fi(y

A
i ) >

∑
i∈S fi(y

C
i ), then we can pick

some ε > 0 such that yA − εv is a valid solution
for problem (5) that has a lower objective than
yA, a contradiction.

• If
∑
i∈S fi(y

A
i ) <

∑
i∈S fi(y

C
i ), we get a similar

contradiction to the optimality of yC .

Hence, the two sums must be equal, and we can now
pick δ > 0 such that yC + δv has one less negative
term. This reduces the size of set S by one, and we
can repeat the process until we obtain a yB where if
yAi > 0, then yBi = 0.

We can now assume we have an optimal solution yB

to problem (6) such that if yBi < 0, then yA ≤ 0. Let



Cong Han Lim, Stephen J. Wright

k denote the largest index where yBk < 0. We can form
two new vectors yD and yE – yD is yA with all values
truncated to be less than or equal to zero, and yEi is
yBi for i ≤ k and yAi for i > k. yD and yE are feasible
for problem (6) and problem (5) respectively. If yD

is not optimal for problem (6) one can show that yE

has a lower objective value than yA, contradicting the
optimality of yA for problem (5).

B.2 Section 4 Proofs

Lemma 4.3. PoolVφ,z(S) satisfies∑
i∈S

(∇φ)
−1

(γ +∇φ(zi)) =
∑
i∈S

ci. (9)

Proof. We will set the derivative of
∑
i∈S fi(γ) to zero:

0 = ∇γ

(∑
i∈S

d∗i (γ)− γ
∑
i∈S

ci

)
=
∑
i∈S
∇γ (d∗i (γ))−

∑
i∈S

ci

=
∑
i∈S
∇γ (γx′i − φ(x′i) +∇φ(zi)x

′
i)−

∑
i∈S

ci

=
∑
i∈S

(
x′i + γ∇γ(x′i)−∇φ

(
(∇φ)−1(γ +∇φ(zi))

)
∇γ(x′i)

+ ∇φ(zi)∇γ(x′i))−
∑
i∈S

ci

=
∑
i∈S

x′i −
∑
i∈S

ci

=
∑
i∈S

(∇φ)
−1

(γ +∇φ(zi))−
∑
i∈S

ci,

yielding the desired equality.

B.3 Section 5 Proofs

Lemma 5.3. Consider adjacent intervals I1, I2 and
vector y where yI1 and yI2 are the optimal solution
to dual problem (5) when restricted to only the in-
dices in I1 and I2 respectively. The output of yI1∪I2
of Mergef (I1, I2, yI1∪I2) gives the optimal solution to
problem (5) when restricted to the indices in I1 ∪ I2.

Proof. Suppose we have adjacent intervals I1, I2, and
yI1∪I2 such that each of yI1 , yI2 is the optimal solution
to problem (5) over just the I1 indices and just the I2
indices) respectively. We will show that the optimal
solution to the problem (5) over the I1∪I2 indices can
be obtained from yI1∪I2 via at most a single pooling
operation, and that Merge{fi} finds the right elements
to pool. Note that throughout the proof, we will ex-
ploit the strict convexity of fi, especially when we refer
to Lemma 4.2.

If yI1.end ≤ yI2.start, then for any γtest < yI1.end, Stest

only contains indices i for yi ≥ γtest. Since I1.end ∈
Stest and the value yI1.end satisfies γtest < yI1.end, we
have PoolVf (Stest) > γtest by Lemma 4.2. A similar
fact holds for γtest > yI1.end, and the Mergef algo-
rithm terminates at γtest = yI1.end or yI2.start and no
elements are pooled together, as desired.

Now suppose yI1.end > yI2.start. We can prove the cor-
rectness of this algorithm by showing that the pool-
ing choice the Mergef subroutine takes can be ob-
tained by PAV applied to just I1 ∪ I2 given values
yI1∪I2 . Let SPAV denote the elements of I1 ∪ I2
pooled together by the PAV algorithm when applied
to yI1∪I2 . SPAV is an interval that is a subset of
{i ∈ I1 | yi ≥ PoolVf (SPAV )} ∪ {i ∈ I2 | yi ≤
PoolVf (SPAV )}. At each iteration of the main loop
in Mergef , we will show that PoolVf (SPAV ) is con-
tained in [min(Y),max(Y)]. This holds initially since
Lemma 4.2 means that PoolVf (SPAV ) must be be-
tween mini∈I1∪I2 yi and maxi∈I1∪I2 yi.

Suppose we have chosen γtest < PoolVf (SPAV ). We
want to show that PoolVf (Stest) > γtest, which will
mean that we make the correct choice of which half of
Y to discard. If PoolVf (Stest) ≥ PoolVf (SPAV ), we
are done. Suppose PoolVf (Stest) < PoolVf (SPAV ).
Then, we can define the following three consecutive
intervals: S1 = Stest \ SPAV , S2 = Stest ∩ SPAV ,
and S3 = SPAV \ Stest such that Stest = S1 ∪ S2 and
SPAV = S2 ∪ S3. Figure 4 illustrates these sets.

Figure 4: An example of S1, S2, and S3 when γtest <
PoolVf (SPAV ).

Note that every element in yS1
is larger than or equal

to γtest, so Lemma 4.2 implies

PoolVf (S1) ≥ γtest. (10)

A similar argument shows that PoolVf (S3) ≤
PoolVf (SPAV ). As for PoolVf (S2), Lemma 4.2 im-
plies that PoolVf (S2) ≥ PoolVf (SPAV ) since SPAV =
S2 ∪ S3. Hence, we have

PoolVf (S2) ≥ PoolVf (SPAV ) > γtest. (11)



Efficient Bregman Projections onto the Permutahedron and Related Polytopes

By combining inequalities (10) and (11) and applying
the lemma again, we get PoolVf (Stest) > γtest.

This shows that the correct half of elements are omit-
ted from the search range in the next iteration of
Merge. We can apply the same reasoning to γtest >
PoolVf (SPAV ). Eventually, Y gets reduced until it has
at most two elements, which leaves only three candi-
date sets of Stest to try out.

Proposition 5.5. The running time of MergeAndPool
is O(n log n) for uniformly separable Bregman diver-
gences φ with incremental PoolVφ,z cost.

Proof. MergeAndPool pairs off and merges pairs of in-
tervals in each round, and there are O(log n) rounds
in total. We will show that each call to Mergeφ,z takes
O(n) time.

We can find the d|Y|/2eth smallest value in two or-
dered sequences in O(n). At each iteration, we halve
the range we are selecting over, so the selection takes
linear time in total. For the interval Stest, we half the
number of elements are are changing at the ends of
Stest. Since PoolVφ,z can be computed incrementally,
all the Stest-related work takes linear time in aggre-
gate.

Lemma 5.7. We can sort the entries of vector z into
d groups in O(n log d) time such that the ith group has
ni elements and for each zj in group i and zk in group
i+ 1, we have zj ≥ zk.

Proof. We can apply a quicksort-like procedure where
at each iteration we select the pivot that partitions
the elements into two sets of roughly the same num-
ber of groups. There are O(log d) iterations and each
iteration takes O(n).

Theorem 5.9. We can compute the projection x′

onto the permutahedron PH(c) under any incremen-
tal uniformly separable Bregman divergence in time
O(n log d).

Proof. We first show that running time of
MergeAndPool when we provide a partition with
d groups is O(n log d). There are O(log d) iterations
of the outer loop in MergeAndPool with one call
to Mergeφ,z for each pair of intervals in each itera-
tion. We will show that each call to Mergeφ,z takes
O(|I1| + |I2|) time. Picking the d|Y|/2eth smallest
value of Y can be done in linear time using the
efficient selection algorithm. The construction of S,
and computation of PoolVφ,z can be done in linear
time. After each iteration of the loop in Mergeφ,z, the
search space halves, so the amount of work required
halves.

The correctness of the output follows directly from the
fact that the Mergeφ,z subroutine will make the same
choice of elements to pool together no matter how the
vector yI1∪I2 is permuted. In particular, this returns
the same results as in the case where the indices are
fully sorted.

B.4 Section 6 Proofs

The proof of Theorem 6.3 follows directly from the
next lemma, which is the ε-close analogue of Lemma
5.3.

Lemma B.1. Consider adjacent intervals I1, I2, and
let y′ denote the vector where y′I1 and y′I2 are the
solutions to problem (5) when restricted to only the
indices in I1 and I2, respectively. The output of
Mergef (I1, I2,L(y′)) is L(y′′), where y′′ is the solu-
tion to problem (5) when restricted to the indices in
I1 ∪ I2.

Proof. Firstly, we note that Lemma 5.3 does not de-
pend on whether the sets used to form Stest are created
using an inequality or strict inequality. Secondly, that
lemma demonstrates that given any γtest, we can cor-
rectly determine if PoolVf (SPAV ) is higher or lower us-
ing PoolVf (Stest), and using the derivative in ε-Mergef
has the same effect. Finally, we note that the sets
Stest formed in ε-Mergef are the same regardless of
whether we are given y′ or L(y′) as the input. To-
gether, by using Lemma 5.3, these imply that ε-Mergef
is able to correctly determine the two lattice points
in {εk | k ∈ Z} that PoolVf (SPAV ) is between. Once
these two points are found, the algorithm rounds down
PoolV(SPAV ), thereby obtaining L(y′′).

C Experiments on Scaling Effects of
MergeAndPool

To show how MergeAndPool scales in practice and to
demonstrate that the empirical performance of the al-
gorithm aligns with the theory, we performed a set of
simple experiments implemented in Julia 0.4.5. The
results are shown in Figure 5.

D An Efficient Implementation of PAV

We now describe a linked-list based implementation of
the PAV algorithm for solving the dual problem (5).



Cong Han Lim, Stephen J. Wright

Algorithm 5 Pool Adjacent Violators Algorithm
(PAV)

Input: strictly convex function φi : R→ R, sorted
z ∈ R
{Initialize Algorithm}
Sprev ← ∅
for i← 1 to n do
Scurr ← {i}
Scurr.min← PoolVφ,z(Scurr)
Update pointers for Scurr and Sprev

Sprev ← Scurr

end for
set after {n} ← ∅

{Main Loop}
Sprev = ∅, Scurr = {1}, Snext = {2}
while Snext 6= ∅ do

if Scurr.min > Snext.min then
Scurr ← (Scurr ∪ Snext) and update pointers
Scurr.min← PoolVφ,z(Scurr)
Snext ← set after Scurr

while Sprev 6= ∅ and Sprev.min > Scurr.min
do
Scurr ← (Sprev ∪ Scurr) and update pointers
Scurr.min← PoolVφ,z(Scurr)
Sprev ← set before Scurr

end while
end if
Sprev ← Scurr, Scurr ← Snext, Snext ← set after
Snext

end while

{Output Solution}
while Scurr 6= ∅ do

for i ∈ Scurr do
yi ← Scurr.min

end for
Scurr ← set before Scurr

end while
return y

Figure 5: Running times of MergeAndPool when vary-
ing n and initial number of intervals d. The first graph
varies n along the x axis, while the second has d (log-
scale) along that axis. The complexity scales linearly
with n and log d.


