A Derivation of Dual Formulation (5)

Let C denote the feasible set in problem (2). We have $d_i(x_i) = \max_{y, c} \{ \langle y, x \rangle - d_i^*(y_i) \}$. We can rewrite problem (2) as

$$
\begin{aligned}
&\min_{x \in C} \sum_{i=1}^{n} d_i(x_i) = \min_{x \in C} \left(\sum_{i=1}^{n} \max_{y_i} \{ y_i x_i - d_i^*(y_i) \} \right) \\
= &\min \max_{x \in C} \sum_{i=1}^{n} (y_i x_i - d_i^*(x_i^*)) \\
= &\max \min_{x \in C} \sum_{i=1}^{n} (y_i x_i - d_i^*(y_i)) \\
= &\max \sum_{i=1}^{n} (-d_i^*(y_i)) + \min_{x \in C} \langle y, x \rangle.
\end{aligned}
$$

Let us focus on the $\min_{x \in C}(y, x)$ term. If we let $Y_i = y_i - y_{i+1}$ for $i \in [n-1]$ and $Y_n = y_n$, we have $y_i = \sum_{i=1}^{n} Y_i$. This gives us

$$
\langle y, x \rangle = \langle y, c \rangle + \langle y, x - c \rangle
= \langle y, c \rangle + \sum_{i=1}^{n} y_i (x_i - c_i)
= \langle y, c \rangle + \sum_{i=1}^{n} \left(\sum_{k=i}^{n} Y_k \right) (x_i - c_i)
= \langle y, c \rangle + \sum_{i=1}^{n} \left(\sum_{k=i}^{n} x_i - c_i \right) Y_k.
$$

If any Y_k is larger than 0 for any $k \in [n-1]$, then $\inf_{x}(y, x) = -\infty$; we can set $x_i = c_i$ for $i \notin \{k, k+1\}$, $x_k \to -\infty$ and $x_{k+1} = c_k + c_{k+1} - x_k$. This means that we require $Y_k \leq 0$ for all k (i.e. $y_{i+1} \geq y_i$). So $\min_x \langle y, x \rangle = (y, c)$, obtained by setting $x_i = c_i$ for all i.

B Proofs Omitted From Main Paper

B.1 Section 3 Proofs

Lemma 3.1. (Suchiro et al., 2012) Let x' be the projection of z onto the permutahedron under a uniformly separable Bregman divergence ϕ. Suppose $z_1 \geq z_2 \geq \ldots \geq z_n$. Then, we have $x'_1 \geq x'_2 \geq \ldots \geq x'_n$.

Proof. Let x be a point in the permutahedron where $z_i > z_j$ but $x_i < x_j$. The difference between the objective obtained by swapping the points x_i and x_j is given by:

$$
\Delta \phi(x_i, z_i) + \Delta \phi(x_j, z_j) - \Delta \phi(x_j, z_j) - \Delta \phi(x_i, z_i)
= -\nabla \phi(z_i)(x_i - x_j) - \nabla \phi(z_j)(x_j - x_i)
= -(\nabla \phi(z_i) - \nabla \phi(z_j))(x_i - x_j) > 0,
$$

so swapping the terms decreases the objective further and x is not the projection of z.

Lemma 3.2. Let x' be the projection of z onto the permutahedron under a uniformly separable Bregman divergence defined by a sign-invariant ϕ. Then $\text{sgn}(x'_i) = \text{sgn}(z_i)$ for all i. Furthermore, if $|z_1| \geq |z_2| \geq \ldots \geq |z_n|$, we have $|x'_1| \geq |x'_2| \geq \ldots \geq |x'_n|$.

Proof. We will show that if $\text{sgn}(x_i) \neq \text{sgn}(z_i)$ we can improve the objective by setting x_i to 0, implying x_i is not optimal. By the sign-invariance of ϕ, we have $\nabla \phi(u) = -\nabla \phi(-u)$, which means $\nabla \phi(0) = 0$. By the strict convexity of ϕ, we know $\text{sgn}(\nabla \phi(z_i))$ is an increasing function, so $\text{sgn}(\nabla \phi(z_i)) = \text{sgn}(z_i)$. The change in objective after swapping is

$$
\Delta \phi(x_i, z_i) - \Delta \phi(0, z_i)
= \phi(x_i) - \phi(0) - \nabla \phi(z_i)(x_i - 0)
\geq \phi(x_i) - \phi(0) - \nabla \phi(0)(x_i - 0) > 0,
$$

where the last line follows from strict convexity of ϕ.

The proof of the second part is similar to the proof of lemma 3.1.

Theorem 3.3. Let $y^A \in \mathbb{R}^n$ be an optimal solution to problem (5). We get an optimal solution to problem (6) by truncating the positive values of y^A to zero.

Proof. We will first show that there is an optimal solution y^B to problem (6) such that if $y^A_1 > 0$, then $y^B_1 = 0$. Let y^C be any optimal solution to problem (6) and let S be the set of indices i where $y^A_i > 0$ and $y^C_i < 0$. Suppose S is nonempty. By the monotonicity of the y vectors, we know that S is an interval of indices $\{a, a+1, \ldots, b\}$, and $y^C_i = 0$ for $i > b$ and $y^A_i < 0$ for $i < a$. Let v denote the vector that is $y^A_i - y^C_i$ for $i \in S$ and 0 otherwise, and note that v is nonnegative. We will now compare $\sum_{i \in S} f_i(y^A_i)$ and $\sum_{i \in S} f_i(y^C_i)$.

- If $\sum_{i \in S} f_i(y^A_i) > \sum_{i \in S} f_i(y^C_i)$, then we can pick some $\epsilon > 0$ such that $y^A_i - \epsilon v$ is a valid solution for problem (5) that has a lower objective than y^A, a contradiction.
- If $\sum_{i \in S} f_i(y^A_i) < \sum_{i \in S} f_i(y^C_i)$, we get a similar contradiction to the optimality of y^C.

Hence, the two sums must be equal, and we can now pick $\delta > 0$ such that $y^C_i + \delta v$ has one less negative term. This reduces the size of set S by one, and we can repeat the process until we obtain a y^B where if $y^B_i > 0$, then $y^B_i = 0$.

We can now assume we have an optimal solution y^B to problem (6) such that if $y^B_i < 0$, then $y^A_i \leq 0$. Let
k denote the largest index where \(y^B_k < 0 \). We can form two new vectors \(y^D \) and \(y^E - y^D \) is \(y^A \) with all values truncated to be less than or equal to zero, and \(y^E \) is \(y^E_i \) for \(i \leq k \) and \(y^D_i \) for \(i > k \). \(y^D \) and \(y^E \) are feasible for problem (6) and problem (5) respectively. If \(y^D \) is not optimal for problem (6) one can show that \(y^E \) has a lower objective value than \(y^A \), contradicting the optimality of \(y^A \) for problem (5).

B.2 Section 4 Proofs

Lemma 4.3. Pool\(V_{φ,zi}(S) \) satisfies

\[
\sum_{i \in S} (\nabla φ)^{-1} (γ + \nabla φ(zi)) = \sum_{i \in S} c_i. \tag{9}
\]

Proof. We will set the derivative of \(\sum_{i \in S} f_i(γ) \) to zero:

\[
\begin{align*}
0 &= \nabla_γ \left(\sum_{i \in S} d_i^*(γ) - γ \sum_{i \in S} c_i \right) \\
&= \sum_{i \in S} \nabla_γ \left(d_i^*(γ) \right) - \sum_{i \in S} c_i \\
&= \sum_{i \in S} \nabla_γ \left(γx_i + \phi(x_i) + \nabla φ(zi)\right) - \sum_{i \in S} c_i \\
&= \sum_{i \in S} \left(x_i + γ\nabla_γ(x_i) - \nabla_φ \left((\nabla φ)^{-1}(γ + \nabla φ(zi)) \right) \right) \nabla_γ(x_i) - \sum_{i \in S} c_i \\
&= \sum_{i \in S} x_i - \sum_{i \in S} c_i \\
&= \sum_{i \in S} (\nabla φ)^{-1}(γ + \nabla φ(zi)) - \sum_{i \in S} c_i,
\end{align*}
\]

yielding the desired equality.

B.3 Section 5 Proofs

Lemma 5.3. Consider adjacent intervals \(I_1, I_2 \) and vector \(y \) where \(y_{i_1} \) and \(y_{i_2} \) are the optimal solution to dual problem (5) when restricted to only the indices in \(I_1 \) and \(I_2 \) respectively. The output of \(y_{i_1∪I_2} \) of Merge\(f_1(I_1, I_2, y_{i_1∪I_2}) \) gives the optimal solution to problem (5) when restricted to the indices in \(I_1 ∪ I_2 \).

Proof. Suppose we have adjacent intervals \(I_1, I_2 \) and \(y_{i_1∪I_2} \) such that each of \(y_{i_1} \) and \(y_{i_2} \) is the optimal solution to problem (5) over just the \(I_1 \) indices and just the \(I_2 \) indices respectively. We will show that the optimal solution to the problem (5) over the \(I_1 ∪ I_2 \) indices can be obtained from \(y_{i_1∪I_2} \) via at most a single pooling operation, and that Merge\(f_1 \) finds the right elements to pool. Note that throughout the proof, we will exploit the strict convexity of \(f_i \), especially when we refer to Lemma 4.2.

If \(y_{i_1, end} ≤ y_{i_2, start} \), then for any \(γ_{test} < y_{i_1, end} \), \(S_{test} \) only contains indices \(i \) for \(y_i ≥ γ_{test} \). Since \(I_1, end \in S_{test} \) and the value \(y_{i_1, end} \) satisfies \(γ_{test} < y_{i_1, end} \), we have Pool\(V_f(S_{test}) > γ_{test} \) by Lemma 4.2. A similar fact holds for \(γ_{test} > y_{i_1, end} \), and the Merge\(f_1 \) algorithm terminates at \(γ_{test} = y_{i_1, end} \) or \(y_{i_2, start} \) and no elements are pooled together, as desired.

Now suppose \(y_{i_1, end} > y_{i_2, start} \). We can prove the correctness of this algorithm by showing that the pooling choice the Merge\(f_1 \) subroutine takes can be obtained by PAV applied to just \(I_1 ∪ I_2 \) given values \(y_{i_1∪I_2} \). Let \(S_{PAV} \) denote the elements of \(I_1 ∪ I_2 \) pooled together by the PAV algorithm when applied to \(y_{i_1∪I_2} \). \(S_{PAV} \) is an interval that is a subset of \(\{ i \in I_1 \mid y_i ≥ \text{Pool}_{V_f}(S_{PAV}) \} \cup \{ i \in I_2 \mid y_i ≤ \text{Pool}_{V_f}(S_{PAV}) \} \). At each iteration of the main loop in Merge\(f_1 \), we will show that Pool\(V_f(S_{PAV}) \) is contained in \([\min(Y), \max(Y)]\). This holds initially since \(\text{Lemma 4.2} \) means that \(\text{Pool}_{V_f}(S_{PAV}) \) must be between \(\min_{i ∈ I_1∪I_2} y_i \) and \(\max_{i ∈ I_1∪I_2} y_i \).

Suppose we have chosen \(γ_{test} < \text{Pool}_{V_f}(S_{PAV}) \). We want to show that \(\text{Pool}_{V_f}(S_{test}) > γ_{test} \), which will mean that we make the correct choice of which half of \(Y \) to discard. If \(\text{Pool}_{V_f}(S_{test}) ≥ \text{Pool}_{V_f}(S_{PAV}) \), we are done. Suppose \(\text{Pool}_{V_f}(S_{test}) < \text{Pool}_{V_f}(S_{PAV}) \). Then, we can define the following three consecutive intervals: \(S_1 = S_{test} \setminus S_{PAV}, S_2 = S_{test} \cap S_{PAV}, \) and \(S_3 = S_{PAV} \setminus S_{test} \) such that \(S_{test} = S_1 ∪ S_2 \) and \(S_{PAV} = S_2 ∪ S_3 \). Figure 4 illustrates these sets.

![Figure 4: An example of \(S_1, S_2, \) and \(S_3 \) when \(γ_{test} < \text{Pool}_{V_f}(S_{PAV}) \).](image)

Note that every element in \(y_{S_i} \) is larger than or equal to \(γ_{test} \), so \(\text{Lemma 4.2} \) implies

\[
\text{Pool}_{V_f}(S_1) ≥ γ_{test}. \tag{10}
\]

A similar argument shows that \(\text{Pool}_{V_f}(S_3) ≤ \text{Pool}_{V_f}(S_{PAV}) \). As for \(\text{Pool}_{V_f}(S_2) \), \(\text{Lemma 4.2} \) implies that \(\text{Pool}_{V_f}(S_2) ≥ \text{Pool}_{V_f}(S_{PAV}) \) since \(S_{PAV} = S_2 ∪ S_3 \). Hence, we have

\[
\text{Pool}_{V_f}(S_2) ≥ \text{Pool}_{V_f}(S_{PAV}) > γ_{test}. \tag{11}
\]
By combining inequalities (10) and (11) and applying the lemma again, we get $\text{PoolV}_f(S_{\text{test}}) > \gamma_{\text{test}}$.

This shows that the correct half of elements are omitted from the search range in the next iteration of Merge. We can apply the same reasoning to $\gamma_{\text{test}} > \text{PoolV}_f(S_{PAV})$. Eventually, \mathcal{Y} gets reduced until it has at most two elements, which leaves only three candidate sets of S_{test} to try out.

Proposition 5.5. The running time of MergeAndPool is $O(n \log n)$ for uniformly separable Bregman divergences ϕ with incremental $\text{PoolV}_{\phi,z}$ cost.

Proof. MergeAndPool pairs off and merges pairs of intervals in each round, and there are $O(\log n)$ rounds in total. We will show that each call to $\text{Merge}_{\phi,z}$ takes $O(n)$ time.

We can find the $\lceil |\mathcal{Y}|/2 \rceil$th smallest value in two ordered sequences in $O(n)$. At each iteration, we halve the range we are selecting over, so the selection takes linear time in total. For the interval S_{test}, we halve the number of elements are are changing at the ends of S_{test}. Since $\text{PoolV}_{\phi,z}$ can be computed incrementally, all the S_{test}-related work takes linear time in aggregate.\hfill \square

Lemma 5.7. We can sort the entries of vector z into d groups in $O(n \log d)$ time such that the ith group has n_i elements and for each z_j in group i and z_k in group $i+1$, we have $z_j \geq z_k$.

Proof. We can apply a quicksort-like procedure where at each iteration we select the pivot that partitions the elements into two sets of roughly the same number of groups. There are $O(\log d)$ iterations and each iteration takes $O(n)$.\hfill \square

Theorem 5.9. We can compute the projection x' onto the permutahedron $\mathcal{P}H(c)$ under any incremental uniformly separable Bregman divergence in time $O(n \log d)$.

Proof. We first show that running time of MergeAndPool when we provide a partition with d groups is $O(n \log d)$. There are $O(\log d)$ iterations of the outer loop in MergeAndPool with one call to $\text{Merge}_{\phi,z}$ for each pair of intervals in each iteration. We will show that each call to $\text{Merge}_{\phi,z}$ takes $O(|I_1| + |I_2|)$ time. Picking the $\lceil |\mathcal{Y}|/2 \rceil$th smallest value of \mathcal{Y} can be done in linear time using the efficient selection algorithm. The construction of S, and computation of $\text{PoolV}_{\phi,z}$ can be done in linear time. After each iteration of the loop in $\text{Merge}_{\phi,z}$, the search space halves, so the amount of work required halves.

The correctness of the output follows directly from the fact that the $\text{Merge}_{\phi,z}$ subroutine will make the same choice of elements to pool together no matter how the vector $y_{I_1 \cup I_2}$ is permuted. In particular, this returns the same results as in the case where the indices are fully sorted.\hfill \square

B.4 Section 6 Proofs

The proof of Theorem 6.3 follows directly from the next lemma, which is the ϵ-close analogue of Lemma 5.3.

Lemma B.1. Consider adjacent intervals I_1, I_2, and let y' denote the vector where y'_{I_1} and y'_{I_2} are the solutions to problem (5) when restricted to only the indices in I_1 and I_2, respectively. The output of $\text{Merge}_f(I_1, I_2, \mathcal{L}(y'))$ is $\mathcal{L}(y''$, where y'' is the solution to problem (5) when restricted to the indices in $I_1 \cup I_2$.

Proof. Firstly, we note that Lemma 5.3 does not depend on whether the sets used to form S_{test} are created using an inequality or strict inequality. Secondly, that lemma demonstrates that given any γ_{test}, we can correctly determine if $\text{PoolV}_f(S_{PAV})$ is higher or lower using $\text{PoolV}_f(S_{\text{test}})$, and using the derivative in ϵ-Merge_f has the same effect. Finally, we note that the sets S_{test} formed in ϵ-Merge_f are the same regardless of whether we are given y' or $\mathcal{L}(y')$ as the input. Together, by using Lemma 5.3, these imply that ϵ-Merge_f is able to correctly determine the two lattice points in $\{ \epsilon k | k \in \mathbb{Z} \}$ that $\text{PoolV}_f(S_{PAV})$ is between. Once these two points are found, the algorithm rounds down $\text{PoolV}(S_{PAV})$, thereby obtaining $\mathcal{L}(y'')$.\hfill \square

C Experiments on Scaling Effects of MergeAndPool

To show how MergeAndPool scales in practice and to demonstrate that the empirical performance of the algorithm aligns with the theory, we performed a set of simple experiments implemented in Julia 0.4.5. The results are shown in Figure 5.

D An Efficient Implementation of PAV

We now describe a linked-list based implementation of the PAV algorithm for solving the dual problem (5).
Algorithm 5 Pool Adjacent Violators Algorithm (PAV)

Input: strictly convex function $\phi_i : \mathbb{R} \to \mathbb{R}$, sorted $z \in \mathbb{R}$

{Initialize Algorithm}

$S_{prev} \leftarrow \emptyset$

for $i \leftarrow 1$ to n do

$S_{curr} \leftarrow \{i\}$

$S_{curr}.\min \leftarrow \text{PoolV}_{\phi,z}(S_{curr})$

Update pointers for S_{curr} and S_{prev}

$S_{prev} \leftarrow S_{curr}$

end for

set after $\{n\} \leftarrow \emptyset$

{Main Loop}

$S_{prev} = \emptyset$, $S_{curr} = \{1\}$, $S_{next} = \{2\}$

while $S_{next} \neq \emptyset$ do

if $S_{curr}.\min > S_{next}.\min$ then

$S_{curr} \leftarrow (S_{curr} \cup S_{next})$ and update pointers

$S_{curr}.\min \leftarrow \text{PoolV}_{\phi,z}(S_{curr})$

$S_{next} \leftarrow$ set after S_{curr}

while $S_{prev} \neq \emptyset$ and $S_{prev}.\min > S_{curr}.\min$ do

$S_{curr} \leftarrow (S_{prev} \cup S_{curr})$ and update pointers

$S_{curr}.\min \leftarrow \text{PoolV}_{\phi,z}(S_{curr})$

$S_{prev} \leftarrow$ set before S_{curr}

end while

end if

$S_{prev} \leftarrow S_{curr}$, $S_{curr} \leftarrow S_{next}$, $S_{next} \leftarrow$ set after S_{next}

end while

{Output Solution}

while $S_{curr} \neq \emptyset$ do

for $i \in S_{curr}$ do

$y_i \leftarrow S_{curr}.\min$

end for

$S_{curr} \leftarrow$ set before S_{curr}

end while

return y

Figure 5: Running times of MergeAndPool when varying n and initial number of intervals d. The first graph varies n along the x axis, while the second has d (log-scale) along that axis. The complexity scales linearly with n and $\log d$.