# A Derivation of Dual Formulation (5)

Let C denote the feasible set in problem (2). We have  $d_i(x_i) = \max_{y_i} \{ \langle y_i, x_i \rangle - d_i^*(y_i) \}$ . We can rewrite problem (2) as

$$\min_{x \in C} \sum_{i=1}^{n} d_i(x_i) = \min_{x \in C} \left\{ \sum_{i=1}^{n} \max_{y_i} \{ y_i x_i - d_i^*(y_i) \} \right\}$$
$$= \min_{x \in C} \max_{y} \left\{ \sum_{i=1}^{n} (y_i x_i - d_i^*(x_i^*)) \right\}$$
$$= \max_{y} \min_{x \in C} \left\{ \sum_{i=1}^{n} (y_i x_i - d_i^*(y_i)) \right\}$$
$$= \max_{y} \left\{ \sum_{i=1}^{n} (-d_i^*(y_i)) + \min_{x \in C} \langle y, x \rangle \right\}$$

Let us focus on the  $\min_{x \in C} \langle y, x \rangle$  term. If we let  $Y_i = y_i - y_{i+1}$  for  $i \in [n-1]$  and  $Y_n = y_n$ , we have  $y_i = \sum_{l=i}^n Y_k$ . This gives us

$$\langle y, x \rangle = \langle y, c \rangle + \langle y, x - c \rangle$$
  
=  $\langle y, c \rangle + \sum_{i=1}^{n} y_i (x_i - c_i)$   
=  $\langle y, c \rangle + \sum_{i=1}^{n} \left( \sum_{k=i}^{n} Y_k \right) (x_i - c_i)$   
=  $\langle y, c \rangle + \sum_{k=1}^{n} \left( \sum_{i=1}^{k} (x_i - c_i) \right) Y_k.$ 

If any  $Y_k$  is larger than 0 for any  $k \in [n-1]$ , then  $\inf_x \langle y, x \rangle = -\infty$ ; we can set  $x_i = c_i$  for  $i \notin \{k, k+1\}$ ,  $x_k \to -\infty$  and  $x_{k+1} = c_k + c_{k+1} - x_k$ . This means that we require  $Y_k \leq 0$  for all k (i.e.  $y_{i+1} \geq y_i$ ). So  $\min_x \langle y, x \rangle = \langle y, c \rangle$ , obtained by setting  $x_i = c_i$  for all i.

## **B** Proofs Omitted From Main Paper

#### B.1 Section 3 Proofs

**Lemma 3.1.** (Suchiro et al., 2012) Let x' be the projection of z onto the permutahedron under a uniformly separable Bregman divergence  $\phi$ . Suppose  $z_1 \ge z_2 \ge \ldots \ge z_n$ . Then, we have  $x'_1 \ge x'_2 \ge \ldots \ge x^*_n$ .

*Proof.* Let x be a point in the permutahedron where  $z_i > z_j$  but  $x_i < x_j$ . The difference between the objective obtained by swapping the points  $x_i$  and  $x_j$  is given by:

$$\begin{aligned} &\Delta_{\phi}(x_i, z_i) + \Delta_{\phi}(x_j, z_j) - \Delta_{\phi}(x_i, z_j) - \Delta_{\phi}(x_j, z_i) \\ &= -\nabla\phi(z_i)(x_i - x_j) - \nabla\phi(z_j)(x_j - x_i) \\ &= -(\nabla\phi(z_i) - \nabla\phi(z_j))(x_i - x_j) > 0, \end{aligned}$$

so swapping the terms decreases the objective further and x is not the projection of z.

**Lemma 3.2.** Let x' be the projection of z onto the permutahedron under a uniformly separable Bregman divergence defined by a sign-invariant  $\phi$ . Then  $\operatorname{sgn}(x'_i) =$  $\operatorname{sgn}(z_i)$  for all i. Furthermore, if  $|z_1| \ge |z_2| \ge \ldots \ge$  $|z_n|$ , we have  $|x'_1| \ge |x'_2| \ge \ldots \ge |x'_n|$ .

*Proof.* We will show that if  $\operatorname{sgn}(x_i) \neq \operatorname{sgn}(z_i)$  we can improve the objective by setting  $x_i$  to 0, implying  $x_i$  is not optimal. By the sign-invariance of  $\phi$ , we have  $\nabla \phi(u) = -\nabla \phi(-u)$ , which means  $\nabla \phi(0) = 0$ . By the strict convexity of  $\phi$ , we know  $\operatorname{sgn}(\nabla \phi(z_i))$  is an increasing functions, so  $\operatorname{sgn}(\nabla \phi(z_i)) = \operatorname{sgn}(z_i)$ . The change in objective after swapping is

$$\begin{aligned} &\Delta_{\phi}(x_{i}, z_{i}) - \Delta_{\phi}(0, z_{i}) \\ &= \phi(x_{i}) - \phi(0) - \nabla\phi(z_{i})(x_{i} - 0) \\ &\geq \phi(x_{i}) - \phi(0) - \nabla\phi(0)(x_{i} - 0) > 0 \end{aligned}$$

where the last line follows from strict convexity of  $\phi$ .

The proof of the second part is similar to the proof of lemma 3.1.  $\hfill \Box$ 

**Theorem 3.3.** Let  $y^A \in \mathbb{R}^n$  be an optimal solution to problem (5). We get an optimal solution to problem (6) by truncating the positive values of  $y^A$  to zero.

Proof. We will first show that there is an optimal solution  $y^B$  to problem (6) such that if  $y_i^A > 0$ , then  $y_i^B = 0$ . Let  $y^C$  be any optimal solution to problem (6) and let S be the set of indices i where  $y_i^A > 0$  and  $y_i^C < 0$ . Suppose S is nonempty. By the monotonicity of the y vectors, we know that S is an interval of indices  $\{a, a+1, \ldots, b\}$ , and  $y_i^C = 0$  for i > b and  $y_i^A < 0$  for i < a. Let v denote the vector that is  $y_i^A - y_i^C$  for  $i \in S$  and 0 otherwise, and note that v is nonnegative. We will now compare  $\sum_{i \in S} f_i(y_i^A)$  and  $\sum_{i \in S} f_i(y_i^C)$ .

- If  $\sum_{i \in S} f_i(y_i^A) > \sum_{i \in S} f_i(y_i^C)$ , then we can pick some  $\epsilon > 0$  such that  $y^A \epsilon v$  is a valid solution for problem (5) that has a lower objective than  $y^A$ , a contradiction.
- If  $\sum_{i \in S} f_i(y_i^A) < \sum_{i \in S} f_i(y_i^C)$ , we get a similar contradiction to the optimality of  $y^C$ .

Hence, the two sums must be equal, and we can now pick  $\delta > 0$  such that  $y^C + \delta v$  has one less negative term. This reduces the size of set S by one, and we can repeat the process until we obtain a  $y^B$  where if  $y_i^A > 0$ , then  $y_i^B = 0$ .

We can now assume we have an optimal solution  $y^B$  to problem (6) such that if  $y_i^B < 0$ , then  $y^A \le 0$ . Let

k denote the largest index where  $y_k^B < 0$ . We can form two new vectors  $y^D$  and  $y^E - y^D$  is  $y^A$  with all values truncated to be less than or equal to zero, and  $y_i^E$  is  $y_i^B$  for  $i \le k$  and  $y_i^A$  for i > k.  $y^D$  and  $y^E$  are feasible for problem (6) and problem (5) respectively. If  $y^D$ is not optimal for problem (6) one can show that  $y^E$ has a lower objective value than  $y^A$ , contradicting the optimality of  $y^A$  for problem (5).  $\Box$ 

### **B.2** Section 4 Proofs

**Lemma 4.3.** PoolV<sub> $\phi,z$ </sub>(S) satisfies

$$\sum_{i \in S} \left( \nabla \phi \right)^{-1} \left( \gamma + \nabla \phi(z_i) \right) = \sum_{i \in S} c_i.$$
(9)

*Proof.* We will set the derivative of  $\sum_{i \in S} f_i(\gamma)$  to zero:

$$0 = \nabla_{\gamma} \left( \sum_{i \in S} d_i^*(\gamma) - \gamma \sum_{i \in S} c_i \right)$$
  

$$= \sum_{i \in S} \nabla_{\gamma} (d_i^*(\gamma)) - \sum_{i \in S} c_i$$
  

$$= \sum_{i \in S} \nabla_{\gamma} (\gamma x'_i - \phi(x'_i) + \nabla \phi(z_i) x'_i) - \sum_{i \in S} c_i$$
  

$$= \sum_{i \in S} (x'_i + \gamma \nabla_{\gamma}(x'_i) - \nabla \phi ((\nabla \phi)^{-1} (\gamma + \nabla \phi(z_i))) \nabla_{\gamma}(x_i) + \nabla \phi(z_i) \nabla_{\gamma}(x'_i)) - \sum_{i \in S} c_i$$
  

$$= \sum_{i \in S} x'_i - \sum_{i \in S} c_i$$
  

$$= \sum_{i \in S} (\nabla \phi)^{-1} (\gamma + \nabla \phi(z_i)) - \sum_{i \in S} c_i,$$

yielding the desired equality.

#### **B.3** Section 5 Proofs

**Lemma 5.3.** Consider adjacent intervals  $I_1, I_2$  and vector y where  $y_{I_1}$  and  $y_{I_2}$  are the optimal solution to dual problem (5) when restricted to only the indices in  $I_1$  and  $I_2$  respectively. The output of  $y_{I_1 \cup I_2}$ of  $\text{Merge}_f(I_1, I_2, y_{I_1 \cup I_2})$  gives the optimal solution to problem (5) when restricted to the indices in  $I_1 \cup I_2$ .

*Proof.* Suppose we have adjacent intervals  $I_1, I_2$ , and  $y_{I_1 \cup I_2}$  such that each of  $y_{I_1}, y_{I_2}$  is the optimal solution to problem (5) over just the  $I_1$  indices and just the  $I_2$  indices) respectively. We will show that the optimal solution to the problem (5) over the  $I_1 \cup I_2$  indices can be obtained from  $y_{I_1 \cup I_2}$  via at most a single pooling operation, and that  $\text{Merge}_{\{f_i\}}$  finds the right elements to pool. Note that throughout the proof, we will exploit the strict convexity of  $f_i$ , especially when we refer to Lemma 4.2.

If  $y_{I_1.end} \leq y_{I_2.start}$ , then for any  $\gamma_{test} < y_{I_1.end}$ ,  $S_{test}$ only contains indices *i* for  $y_i \geq \gamma_{test}$ . Since  $I_1.end \in$  $S_{test}$  and the value  $y_{I_1.end}$  satisfies  $\gamma_{test} < y_{I_1.end}$ , we have  $\text{PoolV}_f(S_{test}) > \gamma_{test}$  by Lemma 4.2. A similar fact holds for  $\gamma_{test} > y_{I_1.end}$ , and the Merge<sub>f</sub> algorithm terminates at  $\gamma_{test} = y_{I_1.end}$  or  $y_{I_2.start}$  and no elements are pooled together, as desired.

Now suppose  $y_{I_1.end} > y_{I_2.start}$ . We can prove the correctness of this algorithm by showing that the pooling choice the Merge<sub>f</sub> subroutine takes can be obtained by PAV applied to just  $I_1 \cup I_2$  given values  $y_{I_1 \cup I_2}$ . Let  $S_{PAV}$  denote the elements of  $I_1 \cup I_2$  pooled together by the PAV algorithm when applied to  $y_{I_1 \cup I_2}$ .  $S_{PAV}$  is an interval that is a subset of  $\{i \in I_1 \mid y_i \geq \text{PoolV}_f(S_{PAV})\} \cup \{i \in I_2 \mid y_i \leq \text{PoolV}_f(S_{PAV})\}$ . At each iteration of the main loop in Merge<sub>f</sub>, we will show that  $\text{PoolV}_f(S_{PAV})$  is contained in  $[\min(\mathcal{Y}), \max(\mathcal{Y})]$ . This holds initially since Lemma 4.2 means that  $\text{PoolV}_f(S_{PAV})$  must be between  $\min_{i \in I_1 \cup I_2} y_i$  and  $\max_{i \in I_1 \cup I_2} y_i$ .

Suppose we have chosen  $\gamma_{\text{test}} < \text{PoolV}_f(S_{PAV})$ . We want to show that  $\text{PoolV}_f(S_{\text{test}}) > \gamma_{\text{test}}$ , which will mean that we make the correct choice of which half of  $\mathcal{Y}$  to discard. If  $\text{PoolV}_f(S_{\text{test}}) \geq \text{PoolV}_f(S_{PAV})$ , we  $x'_i$  are done. Suppose  $\text{PoolV}_f(S_{\text{test}}) < \text{PoolV}_f(S_{PAV})$ , we intervals:  $S_1 = S_{\text{test}} \setminus S_{PAV}$ ,  $S_2 = S_{\text{test}} \cap S_{PAV}$ , and  $S_3 = S_{PAV} \setminus S_{\text{test}}$  such that  $S_{\text{test}} = S_1 \cup S_2$  and  $S_{PAV} = S_2 \cup S_3$ . Figure 4 illustrates these sets.



Figure 4: An example of  $S_1, S_2$ , and  $S_3$  when  $\gamma_{\text{test}} < \text{PoolV}_f(S_{PAV})$ .

Note that every element in  $y_{S_1}$  is larger than or equal to  $\gamma_{\text{test}}$ , so Lemma 4.2 implies

$$\operatorname{PoolV}_f(S_1) \ge \gamma_{\text{test}}.$$
 (10)

A similar argument shows that  $\operatorname{PoolV}_f(S_3) \leq \operatorname{PoolV}_f(S_{PAV})$ . As for  $\operatorname{PoolV}_f(S_2)$ , Lemma 4.2 implies that  $\operatorname{PoolV}_f(S_2) \geq \operatorname{PoolV}_f(S_{PAV})$  since  $S_{PAV} = S_2 \cup S_3$ . Hence, we have

$$\operatorname{PoolV}_f(S_2) \ge \operatorname{PoolV}_f(S_{PAV}) > \gamma_{\text{test}}.$$
 (11)

By combining inequalities (10) and (11) and applying the lemma again, we get  $\operatorname{PoolV}_f(S_{\text{test}}) > \gamma_{\text{test}}$ .

This shows that the correct half of elements are omitted from the search range in the next iteration of Merge. We can apply the same reasoning to  $\gamma_{\text{test}} >$  $\text{PoolV}_f(S_{PAV})$ . Eventually,  $\mathcal{Y}$  gets reduced until it has at most two elements, which leaves only three candidate sets of  $S_{\text{test}}$  to try out.  $\Box$ 

**Proposition 5.5.** The running time of MergeAndPool is  $O(n \log n)$  for uniformly separable Bregman divergences  $\phi$  with incremental PoolV<sub> $\phi,z</sub> cost.</sub>$ 

*Proof.* MergeAndPool pairs off and merges pairs of intervals in each round, and there are  $O(\log n)$  rounds in total. We will show that each call to  $\text{Merge}_{\phi,z}$  takes O(n) time.

We can find the  $\lceil |\mathcal{Y}|/2 \rceil$ th smallest value in two ordered sequences in O(n). At each iteration, we halve the range we are selecting over, so the selection takes linear time in total. For the interval  $S_{\text{test}}$ , we half the number of elements are are changing at the ends of  $S_{\text{test}}$ . Since  $\text{PoolV}_{\phi,z}$  can be computed incrementally, all the  $S_{\text{test}}$ -related work takes linear time in aggregate.

**Lemma 5.7.** We can sort the entries of vector z into d groups in  $O(n \log d)$  time such that the *i*th group has  $n_i$  elements and for each  $z_j$  in group i and  $z_k$  in group i+1, we have  $z_j \ge z_k$ .

*Proof.* We can apply a quicksort-like procedure where at each iteration we select the pivot that partitions the elements into two sets of roughly the same number of groups. There are  $O(\log d)$  iterations and each iteration takes O(n).

**Theorem 5.9.** We can compute the projection x' onto the permutahedron  $\mathcal{PH}(c)$  under any incremental uniformly separable Bregman divergence in time  $O(n \log d)$ .

**Proof.** We first show that running time of MergeAndPool when we provide a partition with d groups is  $O(n \log d)$ . There are  $O(\log d)$  iterations of the outer loop in MergeAndPool with one call to Merge<sub> $\phi,z$ </sub> for each pair of intervals in each iteration. We will show that each call to Merge<sub> $\phi,z$ </sub> takes  $O(|I_1| + |I_2|)$  time. Picking the  $[|\mathcal{Y}|/2]$ th smallest value of  $\mathcal{Y}$  can be done in linear time using the efficient selection algorithm. The construction of S, and computation of PoolV<sub> $\phi,z$ </sub> can be done in linear time. After each iteration of the loop in Merge<sub> $\phi,z$ </sub>, the search space halves, so the amount of work required halves.

The correctness of the output follows directly from the fact that the  $\text{Merge}_{\phi,z}$  subroutine will make the same choice of elements to pool together no matter how the vector  $y_{I_1 \cup I_2}$  is permuted. In particular, this returns the same results as in the case where the indices are fully sorted.

## B.4 Section 6 Proofs

The proof of Theorem 6.3 follows directly from the next lemma, which is the  $\epsilon$ -close analogue of Lemma 5.3.

**Lemma B.1.** Consider adjacent intervals  $I_1, I_2$ , and let y' denote the vector where  $y'_{I_1}$  and  $y'_{I_2}$  are the solutions to problem (5) when restricted to only the indices in  $I_1$  and  $I_2$ , respectively. The output of  $\operatorname{Merge}_f(I_1, I_2, \mathcal{L}(y'))$  is  $\mathcal{L}(y'')$ , where y'' is the solution to problem (5) when restricted to the indices in  $I_1 \cup I_2$ .

Proof. Firstly, we note that Lemma 5.3 does not depend on whether the sets used to form  $S_{\text{test}}$  are created using an inequality or strict inequality. Secondly, that lemma demonstrates that given any  $\gamma_{\text{test}}$ , we can correctly determine if  $\text{PoolV}_f(S_{PAV})$  is higher or lower using  $\text{PoolV}_f(S_{\text{test}})$ , and using the derivative in  $\epsilon$ -Merge<sub>f</sub> has the same effect. Finally, we note that the sets  $S_{\text{test}}$  formed in  $\epsilon$ -Merge<sub>f</sub> are the same regardless of whether we are given y' or  $\mathcal{L}(y')$  as the input. Together, by using Lemma 5.3, these imply that  $\epsilon$ -Merge<sub>f</sub> is able to correctly determine the two lattice points in  $\{\epsilon k \mid k \in \mathbb{Z}\}$  that  $\text{PoolV}_f(S_{PAV})$  is between. Once these two points are found, the algorithm rounds down  $\text{PoolV}(S_{PAV})$ , thereby obtaining  $\mathcal{L}(y'')$ .

# C Experiments on Scaling Effects of MergeAndPool

To show how MergeAndPool scales in practice and to demonstrate that the empirical performance of the algorithm aligns with the theory, we performed a set of simple experiments implemented in Julia 0.4.5. The results are shown in Figure 5.

# D An Efficient Implementation of PAV

We now describe a linked-list based implementation of the PAV algorithm for solving the dual problem (5). Algorithm 5 Pool Adjacent Violators Algorithm (PAV)

**Input:** strictly convex function  $\phi_i : \mathbb{R} \to \mathbb{R}$ , sorted  $z \in \mathbb{R}$ {Initialize Algorithm}  $S_{\text{prev}} \leftarrow \emptyset$ for  $i \leftarrow 1$  to n do  $S_{\text{curr}} \leftarrow \{i\}$  $S_{\text{curr}}$ . min  $\leftarrow \text{PoolV}_{\phi,z}(S_{\text{curr}})$ Update pointers for  $S_{\text{curr}}$  and  $S_{\text{prev}}$  $S_{\text{prev}} \leftarrow S_{\text{curr}}$ end for set after  $\{n\} \leftarrow \emptyset$ {Main Loop}  $S_{\text{prev}} = \emptyset, S_{\text{curr}} = \{1\}, S_{\text{next}} = \{2\}$ while  $S_{\text{next}} \neq \emptyset$  do if  $S_{\text{curr}}$ . min >  $S_{\text{next}}$ . min then  $S_{\text{curr}} \leftarrow (S_{\text{curr}} \cup S_{\text{next}})$  and update pointers  $S_{\text{curr}}$ . min  $\leftarrow \text{PoolV}_{\phi,z}(S_{\text{curr}})$  $S_{\text{next}} \leftarrow \text{set after } S_{\text{curr}}$ while  $S_{\text{prev}} \neq \emptyset$  and  $S_{\text{prev}} \cdot \min > S_{\text{curr}} \cdot \min$ do  $S_{\text{curr}} \leftarrow (S_{\text{prev}} \cup S_{\text{curr}})$  and update pointers  $S_{\text{curr}}$ . min  $\leftarrow \text{PoolV}_{\phi,z}(S_{\text{curr}})$  $S_{\text{prev}} \leftarrow \text{set before } S_{\text{curr}}$ end while end if  $S_{\text{prev}} \leftarrow S_{\text{curr}}, S_{\text{curr}} \leftarrow S_{\text{next}}, S_{\text{next}} \leftarrow \text{set after}$  $S_{\text{next}}$ end while {Output Solution} while  $S_{\text{curr}} \neq \emptyset$  do for  $i \in S_{curr}$  do  $y_i \leftarrow S_{\text{curr}}.\min$ end for  $S_{\text{curr}} \leftarrow \text{set before } S_{\text{curr}}$ 

end while

return y



Figure 5: Running times of MergeAndPool when varying n and initial number of intervals d. The first graph varies n along the x axis, while the second has d (logscale) along that axis. The complexity scales linearly with n and log d.