
Efficient Bregman Projections onto the Permutahedron and Related
Polytopes

Cong Han Lim Stephen J. Wright
Department of Computer Sciences,
University of Wisconsin-Madison

Department of Computer Sciences,
University of Wisconsin-Madison

Abstract

The problem of projecting onto the permuta-
hedron PH(c)—the convex hull of all permu-
tations of a fixed vector c—under a uniformly
separable Bregman divergence is shown to be
reducible to the Isotonic Optimization prob-
lem. This allows us to employ known fast
algorithms to improve on several recent re-
sults on Bregman projections onto permuta-
hedra. In addition, we present a new algo-
rithm MergeAndPool that have better com-
plexity when the number of distinct entries
d in the vector c is small, the simplex being
one such example, with c = (1, 0, 0, . . . , 0)T

and d = 2. MergeAndPool runs in O(n log d)
for certain popular Bregman divergence mea-
sures and requires O((n log d) log U

ε) to find
ε-close solutions for general uniformly separa-
ble Bregman divergences, where U is a bound
on the width of the interval containing the
dual solution components. These estimates
matches or improves best known bounds for
all Bregman projection problems onto var-
ious permutahedra, including recent results
for projection onto the simplex. The same
complexity bounds apply to signed permu-
tahedra, a class that includes the `1-ball as
a special case. In summary, this work de-
scribes a fast unified approach to this well-
known class of problems.

1 Introduction

The permutahedron induced by vector c ∈ Rn is the
convex hull of the set of all permutations of c. When

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

c = (n, n − 1, . . . , 1), we obtain the convex hull of all
ranking vectors, and when c = (1, 0, . . . , 0), we obtain
the probability simplex. A related set is the signed per-
mutahedron, obtained by taking the convex hull of all
combinations of permutations and sign-flips of a vector
c (for c = (1, 0, . . . , 0), we get the `1-ball). In recent
years, there has been significant work on algorithms
for projecting onto such sets under the Euclidean norm
and other Bregman divergences, which includes works
on regularization for sparse optimization (Duchi et al.,
2008; Zeng and Figueiredo, 2014; Negrinho and Mar-
tins, 2014) and online learning (Suehiro et al., 2012;
Ailon et al., 2014).

Given a vector z ∈ Rn, uniformly separable Bregman
divergence ∆Φ =

∑
∆φ, and permutahedron PH(c),

the problem we address in this paper is:

arg min
x∈PH(c)

n∑

i=1

∆φ(xi, zi).

This problem can be reduced to the Isotonic Optimiza-
tion problem by sorting the entries of the vector z, and
taking the dual of a simplified problem, to obtain

min
y∈Rn

n∑

i=1

fi(yi)

such that y1 ≤ y2 ≤ . . . ≤ yn,

Best et al. (2000) demonstrate that the canonical PAV
algorithm for Isotonic Regression (Barlow, 1972) solves
this problem and requires up to n solves of a cer-
tain pooling subproblem (referred to below as PoolV),
which involves unconstrained minimization over a par-
tial sum of the n terms in the full summation above.
The cost of obtaining this minimizer depends on the
choice of Bregman divergence. For certain Bregman
divergences, like Euclidean distance, unnormalized rel-
ative entropy (Suehiro et al., 2012), or KL-divergence
(Krichene et al., 2015), PoolV can be computed in an
“incremental” fashion that allows re-use of the work
from previous computations, leading to an overall cost
of just O(n) to compute all minimizers necessary for

1205

Efficient Bregman Projections onto the Permutahedron and Related Polytopes

Type Incremental PoolV
General Uniformly Separable

Bregman Divergences

Previously Reported:
Permutahedron

`2: O(n logn) (Negrinho and Martins, 2014)
Unnormalized Relative Entropy: O(n2)

(Suehiro et al., 2012)
O(n3 log U

ε
) (Ailon et al., 2014)

Previously Reported:
Simplex (d = 2)

((d = 3) for capped)

`2: O(n) (Brucker, 1984) KL-divergence:
O(n) (Krichene et al., 2015)

`2, Capped: O(n logn)(Wang and Lu, 2015)
O(n log U

ε
) (Krichene et al., 2015)

Known Isotonic
Optimization
Algorithms

PAV: O(n logn) (Best et al., 2000)
PAV: O(n2 log nU

ε
)

ScalingPAV: O(n log nU
ε

)
(Ahuja and Orlin, 2001)

This Work 1 MergeAndPool: O(n log d) MergeAndPool: O((n log d) log U
ε

)

Table 1: Reported running time results for Bregman projections onto permutahedra and other related polytopes
vs. results from using known PAV-type algorithms vs. our work. The running times stated for the algorithms
factor in the time needed for the initial sort. For general Bregman divergences, U denotes the gap between an
upper and lower bound for the solution to the dual problem, and solution obtained is ε-close in `∞-norm.

the algorithm. For other uniformly-separable Breg-
man divergences, an ε-close solution (in the `∞-norm)
to Isotonic Optimization can be solved in O(n log U

ε)
time using ScalingPAV (Ahuja and Orlin, 2001), where
U denotes the gap between an upper and lower bound
on all values of the dual solution. After factoring in
the cost of the initial sorting step, the total cost of
this approach is either O(n log n) for Bregman diver-
gences with incremental PoolV steps and O(n log nU

ε)
for other uniformly separable Bregman divergences.

For the simplex, it has been noted that we can avoid
the initial sorting step and compute the projection in
just O(n) time (Brucker, 1984; Krichene et al., 2015)
for incremental PoolV and O(n log U

ε) for other uni-
formly separable Bregman divergences. We identify
the key feature that allows the projection onto the sim-
plex to be significantly easier than projection onto the
permutahedron: the number d of distinct entries in the
vector c. The permutahedron has d = n, whereas the
simplex has only d = 2.

A key contribution of this paper is the introduction
of an algorithm MergeAndPool that is able to adapt
smoothly to the number of distinct entries in the base
vector c. MergeAndPool achieves O(n log d) for in-
cremental PoolV and O((n log d) log U

ε) for other uni-
formly separable Bregman divergences respectively.
See Table 1 for details.

We begin by covering the preliminaries and notation
in Section 2. We then describe the reduction of the
projection problem to the Isotonic Optimization prob-
lem and show the relation between the projection

1In the full version of this paper, we introduce a variant
of the ScalingPAV algorithm that achieves O(n log dU

ε
) for

general uniformly separable Bregman divergences.

problem for permutahedra and signed permutahedra
in Section 3. Section 4 introduces the PoolV oper-
ation and describes when Bregman divergences have
the incremental PoolV property. Finally, we cover the
algorithms in Sections 5 (incremental PoolV) and 6
(general uniformly separable Bregman divergences).
In the supplementary material, we include omitted
proofs and experiments illustrating scaling effects as
predicted by the theory.

Prior Work. Several works have tackled related
problems, but we study it with an explicit focus on the
projection onto permutahedron step. Bregman projec-
tions onto permutahedra to our knowledge was first
explicitly tackled in the online learning literature by
Yasutake et al. (2011), who demonstrate a O(n2) algo-
rithm for Euclidean projection. The same framework
was used to show a O(n2) algorithm for unnormalized
relative entropy (Suehiro et al., 2012) and a O(n2τ(n))
algorithm for the binary relative entropy (Ailon et al.,
2014), where τ(n) is the cost of computing the mini-
mizer of a pooling subproblem associated with binary
relative entropy. (Using a binary search process, τ(n)
is O(n log U

ε) for an ε-close solutions).

Efficient algorithms for the general Isotonic Optimiza-
tion problem were introduced by Best et al. (2000) and
Ahuja and Orlin (2001). Special cases such as Isotonic
Regression (where fi are Euclidean distance functions
(Barlow, 1972; Brucker, 1984)) have been studied for
some time. The reduction of Euclidean projection onto
the permutahedron to the Isotonic Regression problem
has been explicitly pointed out by Zeng and Figueiredo
(2014); Negrinho and Martins (2014).

Projection onto the simplex and related polytopes has

1206

Cong Han Lim, Stephen J. Wright

been studied independently of the work on the permu-
tahedron. A linear-time algorithm for Euclidean pro-
jection onto the simplex was first provided by Brucker
(1984), and efficient algorithms for general uniformly
separable Bregman divergences were recently studied
by Krichene et al. (2015). The latter have complexi-
ties O(n) for KL-divergences and O(n log U

ε) for gen-
eral uniformly separably Bregman divergences. Wang
and Lu (2015) demonstrate a O(n log n) algorithm for
the capped simplex (which add an `∞ bound to the
standard simplex).

The relationship between projecting onto the permu-
tahedron and signed permutahedron has been known
in the submodularity research community (e.g. Bach
(2013)), and more recently has been noted for Eu-
clidean projections by Zeng and Figueiredo (2014);
Negrinho and Martins (2014), and for the Euclidean
projection between the simplex and `1-ball by Duchi
et al. (2008).

Consequences for online learning over ranking
polytopes. For the online learning problems stud-
ied by Suehiro et al. (2012); Ailon et al. (2014), the
authors propose online learning algorithms based on
the Follow-The-Regularized-Leader (FTRL) approach
(see Hazan (2012) for example). In these algorithms
the projection step has been the bottleneck, taking
O(n2) or more time while the rest of the algorithm
takes O(n log n) time. Using the O(n log n) PAV algo-
rithm for projection under unnormalized relative en-
tropy proves that the FTRL approach by Suehiro et al.
(2012) achieves both running time and optimal regret
bound of the later work by Ailon (2014). By applying
ScalingPAV, we also speed up the projection step for
binary relative entropy (Ailon et al., 2014) and hence
speed up the overall algorithm significantly. The new
algorithms that adapt smoothly to the number of dis-
tinct entries in the vertices of the permutahedra also
improve the running time for online learning over trun-
cated permutahedra (Suehiro et al., 2012).

2 Preliminaries

Permutahedra and Norm-balls. Let c =
(c1, c2, . . . , cn) denote a vector in Rn where c1 ≥ c2 ≥
. . . ≥ cn. We will use n throughout the paper to refer
to the length of the permutation vectors, and use [k]
to denote the interval of indices {1, 2, . . . , k}. Let P(c)
be the set of all permutations of vector c.

Definition 2.1. The permutahedron PH(c) induced
by c, the convex hull of P(c), is


x ∈ Rn

∣∣∣∣∣∣
∑

i∈S
xi ≤

|S|∑

i=1

ci ∀S ⊂ [n],
n∑

i=1

xi =
n∑

i=1

ci



 ,

For c ≥ 0, the signed permutahedron SPH(c)
is {x ∈ Rn | (|x1|, |x2|, . . . , |xn|) ∈ PH(c)}, which is
equivalent to



x ∈ Rn

∣∣∣∣∣∣
∑

i∈S
|xi| ≤

|S|∑

i=1

ci ∀S ⊂ [n]



 .

The term “permutahedron” is generally used in the
literature for the special case of PH((n, n− 1, . . . , 1))
in the definition above. The probability simplex is
PH((1, 0, . . . , 0)). We can also express the capped
simplex—the probability simplex with the additional
restriction ‖x‖∞ ≤ τ , for some τ ∈ (0, 1)—as
PH((τ, . . . , τ, 1−kτ, 0, . . . , 0)), where k is chosen such
that 1 − kτ ∈ [0, τ), and τ is repeated k times at the
start of c. The signed permutahedron naturally defines
an atomic norm, and can be shown to be the dual norm
of the recently introduced SLOPE or OWL norms
(Bogdan et al., 2013; Zeng and Figueiredo, 2014). The
set SPH((1, 0, . . . , 0)T) is the `1-ball.

For the rest of the paper we will use x to denote a
feasible point for the permutahedron and z to denote
an arbitrary point in Rn which we wish to project onto
this set.

Bregman Divergence. Let Φ : S → R be a
continuously-differentiable strictly convex function on
the closed set S ⊆ Rn. The Bregman divergence ∆Φ

associated with Φ is a function on pairs of points
v, w ∈ S where

∆Φ(v, w) = Φ(v)− Φ(w)− 〈∇Φ(w), v − w〉.

The function Φ is separable if we can express Φ(v) as
the sum of univariate functions Φ(v) =

∑n
i=1 φi(vi),

and Φ is uniformly separable if all φi = φ are the same
function. When Φ is uniformly separable, we can write
∆Φ(v, w) as

∑n
i=1 ∆φ(vi, wi). For the remainder of the

paper, we assume that all Bregman divergences that
we work with are uniformly separable.

Other Notation. We will use x′ or y′ to denote the
optimal solution to their corresponding optimization
problems. Given a set of indices S ⊂ [n], we use vS to
denote the subvector of v corresponding to S. Many of
the intervals described in this paper refer to intervals
of indices.

3 Reduction to Isotonic Optimization

In this section, we will extend results for relation be-
tween Euclidean projection onto the permutahedron
and the Isotonic Regression problem (as noted by Zeng
and Figueiredo (2014); Negrinho and Martins (2014))
to any uniformly separable Bregman divergence.

1207

Efficient Bregman Projections onto the Permutahedron and Related Polytopes

Recall that given vector z ∈ Rn to project, a uni-
formly separable Bregman divergence ∆Φ, and per-
mutahedron PH(c), the projection problem is

arg min
x∈PH(c)

∆Φ(x, z) =
n∑

i=1

∆φ(xi, zi). (1)

This problem has exponentially many linear con-
straints, but it can be solved in polynomial time. We
could use standard convex optimization techniques on
a compact extended formulation of the permutahedron
(Goemans, 2015), use results for polymatroids or base
polyhedron of submodular functions (e.g. Groenevelt
(1991); Fujishige (1984)), or deploy specialized algo-
rithms for this problem. Suehiro et al. (2012) observed
that for uniformly separable Bregman divergences, we
can reduce the problem to one with significantly fewer
constraints. The following lemma shows that the or-
dering of the solution is the same as the ordering of
elements in z.

Lemma 3.1. (Suehiro et al., 2012) Let x′ be the
projection of z onto the permutahedron under a uni-
formly separable Bregman divergence ∆Φ. Suppose
z1 ≥ z2 ≥ . . . ≥ zn. Then we have x′1 ≥ x′2 ≥ . . . ≥ x′n.

We can now sort the input z and restrict our attention
to only the constraints that can be active under that
ordering. Our problem (1) simplifies as follows:

arg min
x

n∑

i=1

∆φ(x, z)

such that

k∑

i=1

xi ≤
k∑

i=1

ci for k ∈ [n− 1],

n∑

i=1

xi =
n∑

i=1

ci.

(2)

This formulation only has linearly many constraints.
By the strict convexity of φ, this problem has exactly
one optimal solution.

Let di(xi) = ∆φ(xi, zi) and let d∗i denote the Legendre-
Fenchel dual of di. The dual to problem (2) is

min
y∈Rn

n∑

i=1

(d∗i (yi)− yici)

such that y1 ≤ y2 ≤ . . . ≤ yn.
(3)

(We provide the derivation in the appendix.) From
a dual solution y′, we can recover x via the following
relation:

∇φ(xi) = y′i +∇φ(zi). (4)

Problem (3) is an Isotonic Optimization problem,
which has been studied in greater generality by Best

et al. (2000) and Ahuja and Orlin (2001), who consider
the form

min
y∈Rn

n∑

i=1

fi(yi)

such that y1 ≤ y2 ≤ . . . ≤ yn,
(5)

where each fi is a convex function. Throughout this
paper we will refer to (5) as the dual problem and
the original problem (2) as the primal problem. The
Isotonic Optimization problem is generalization of the
well-known Isotonic Regression problem (where the fi
are Euclidean distance functions) and the algorithms
described in the paper will tackle this form.

3.1 Projection onto Signed Permutahedron
and Norm Balls

We can reduce the problem of projecting onto a signed
permutahedron to the dual problem (5). This is a
special case of a known result relating separable opti-
mization problems over the base polyhedron of a sub-
modular function (e.g. permutahedron) and the cor-
responding symmetric submodular polyhedron (e.g.
signed permutahedron). See Proposition 8.9 of Bach
(2013)). We will provide another derivation of this
result to keep the presentation consistent.

We will assume that the convex function φ is sign-
invariant (that is, φ(u) = φ(−u)).

The following variant of Lemma 3.1 applies here.

Lemma 3.2. Let x′ be the projection of z onto the per-
mutahedron under a uniformly separable Bregman di-
vergence defined by a sign-invariant φ. Then sgn(x′i) =
sgn(zi) for all i. Furthermore, if |z1| ≥ |z2| ≥ . . . ≥
|zn|, we have |x′1| ≥ |x′2| ≥ . . . ≥ |x′n|.

The previous lemma and the fact that φ is sign-
invariant allows us to assume without loss of generality
that z ≥ 0. The projection subproblem is identical to
(2) except that the final equality constraint is replaced
by a ≤ inequality. The dual is the same as (3) with the
addition of a nonnegativity constraint yn ≤ 0, that is,

min
y∈Rn

n∑

i=1

fi(yi)

such that y1 ≤ y2 ≤ . . . ≤ yn ≤ 0,

(6)

We can solve (6) by truncating the solution of (5).

Theorem 3.3. Let yA ∈ Rn be an optimal solution to
problem (5). We get an optimal solution to problem
(6) by truncating the positive values of yA to zero.

1208

Cong Han Lim, Stephen J. Wright

4 Pooling and Bregman Divergences

The algorithms for the Isotonic Optimization problem
will rely on our ability to compute the following func-
tion efficiently:

Definition 4.1. Given strictly convex univariate
functions fi, the function PoolVf is defined on each
set S as follows:

PoolVf (S) = arg min
γ

∑

i∈S
fi(γ). (7)

We let PoolVφ,z denote the PoolVf obtained by setting
fi(γ) to d∗i (γ)− γci, where di(xi) = ∆φ(xi, zi).

The following lemma follows directly from the strict
convexity of the functions fi and will be useful in sub-
sequent sections.

Lemma 4.2. Let S1, S2 be disjoint sets such that
PoolVf (S1) < PoolVf (S2). Then

PoolVf (S1) < PoolVf (S1 ∪ S2) < PoolVf (S2).

We now analyze the cost of computing PoolVφ,z(S)
for different Bregman projections. The minimizer of∑
i∈S fi(γ) =

∑
i∈S(d∗i (γ)− γci) is unique due to the

strict convexity of φ. It satisfies the following opti-
mality condition, obtained by setting the derivative of∑
i∈S fi(γ) to zero.

Lemma 4.3. PoolVφ,z(S) satisfies

∑

i∈S
(∇φ)

−1
(γ +∇φ(zi)) =

∑

i∈S
ci. (8)

Bregman divergences with incremental PoolV.
The following property provides a sufficient condition
for the Isotonic Optimization algorithms presented
here to find the exact solution quickly. This allows
us to give a unified presentation to the results on in-
dividual Bregman divergences, such as the work on
unnormalized relative entropy (Suehiro et al., 2012)
and Euclidean distance (Yasutake et al., 2011).

Definition 4.4. Let S ⊂ [n] be a set of indices. We
say that a Bregman divergence φ has the incremental
PoolV property if we can compute PoolVφ,z(S) in O(1)
time given the values

∑
i∈S ci,

∑
i∈S zi, and |S|.

The reason for calling them incremental is as follows:
For two disjoint sets S1 and S2, if we have stored∑
i∈Sk

ci,
∑
i∈Sk

zi, and |Sk| for each k ∈ {1, 2}, then
we can compute in O(1) time these values for the set
S3 = S1 ∪ S2.

We now describe some Bregman divergences with the
incremental PoolV property, and use Lemma 4.3 to
provide closed-form expressions for PoolVφ,z.

Euclidean distance: φ(u) = 1
2u

2, ∇φ(u) =
(∇φ)−1(u) = u. We thus obtain

PoolVφ,z(S) =
∑

i∈S
(ci − zi)/|S|.

Unnormalized relative entropy: φ(u) = u lnu − u,

∇φ(u) = lnu, and (∇φ)−1(u) = eu. Therefore

PoolVφ,z(S) = ln

∑
i∈S ci∑
i∈S zi

.

KL divergence: Krichene et al. (2015) study the fol-
lowing generalization of KL divergence, obtained from
φ(u) = (u + ε) ln(u + ε) for ε ≥ 0. (KL divergence
has ε = 0.) We have ∇φ(u) = ln(u + ε) + 1 and
(∇φ)−1(u) = eu−1 − ε, which implies

PoolVφ,z(S) = ln

∑
i∈S(ci + ε)∑
i∈S(zi + ε)

− 1.

General Uniformly Separable Bregman Diver-
gences. For these divergences (e.g. binary relative
entropy), we may be unable to compute PoolVφ,z ex-
actly, but we can obtain an approximate solution to
problem (5) by solving PoolVφ,z approximately. De-
tails are provided in Section 6.

5 Pooling Algorithms for Incremental
PoolV: PAV and MergeAndPool

5.1 Pool Adjacent Violators (PAV) algorithm

We can solve the dual problem (5) using the well-
known Pool Adjacent Violators (PAV) algorithm; see
Algorithm 1.

Algorithm 1 PAV Algorithm

Input: Convex functions fi : R→ R for i ∈ [n]
P ← {{i} | i ∈ [n]}
yi ← PoolVf ({i}) for all i ∈ [n]
while ∃ indices i, i+ 1 ∈ L where yi > yi+1 do

Let I(i) and I(i+1) be the intervals in P containing
indices i and i+ 1 respectively
Remove I(i), I(i+1) from P and add I(i) ∪ I(i+1).
yI(i)∪I(i+1)

← PoolVf (I(i) ∪ I(i+1))
end while
return y

Theorem 5.1. (Best et al., 2000) PAV terminates
within n iterations with a dual feasible solution y.

The cost of PAV depends on how the adjacent violators
are found and the cost of PoolVφ,z. For Bregman di-
vergences with the incremental PoolVφ,z property, it

1209

Efficient Bregman Projections onto the Permutahedron and Related Polytopes

takes O(1) time to obtain PoolVφ,z in each iteration.
All that is left to show is that we can find adjacent
violators efficiently. In the appendix, we provide a de-
scription of the linked-list implementation of PAV that
does so.

Theorem 5.2. Given a sorted vector z, we can solve
problem (2) for uniformly separable Bregman diver-
gences with incremental PoolV using PAV in time O(n).

Factoring in the initial sorting step, the overall cost of
the algorithm to solve problem (1) is O(n log n).

Example for Euclidean projection. Given a vec-
tor z that has been sorting in descending order, we
first initialize vector y as c − z. The PAV algorithm
now picks any pair of adjacent terms yi, yi+1 such that
yi > yi+1 (i.e. adjacent violators), takes the corre-
sponding intervals I(i) and I(i+1), and sets the yk terms
for k ∈ I(i) ∪ I(i+1) to the average of these terms.

Figure 1: One iteration of the PAV algorithm. The
circles represent y values, the dotted boxes represent
adjacent violators, and the horizontal line represents
an interval I.

5.2 MergeAndPool: Divide-and-Conquer
Pooling for Incremental PoolV

We introduce MergeAndPool (Algorithm 2), a divide-
and-conquer algorithm for the dual problem (5) that
merges intervals in a bottom-up manner. Unlike the
PAV algorithm, which requires a sorted input, the
MergeAndPool algorithm can easily be modified to
take advantage of the number of unique entries in the
vector c for our permutahedron PH(c). We will first
describe the algorithm for the case where c has n dis-
tinct entries. For MergeAndPool, the input functions
fi have to be strictly convex, as is true for Bregman
divergences.

In each outer loop of the MergeAndPool algorithm, it
makes a pass over all the elements of y, performing
Merge on pairs of adjacent intervals of terms. The
result of each call to Mergef is a single interval of terms
that is sorted in the correct order. More precisely, we
give as input to the Mergef subroutine two adjacent
intervals I1, I2 and a vector yI1∪I2 , where yI1 and yI2
are optimal solutions to problem (5) when restricted
to their respective intervals. Figure 2 illustrates the

Algorithm 2 MergeAndPool Algorithm for sorted z

Input: n strictly convex functions fi : R→ R
P ← {{i} | i ∈ [n]}
yi ← PoolVf ({i}) for all i ∈ [n]
while |P | > 1 do
Q← P , P ← ∅
while |Q| > 1 do
I1, I2 ← first two intervals in Q
yI1∪I2 ← Mergef (I1, I2, yI1∪I2)
Q← Q \ {I1, I2} , P ← P ∪ {I1 ∪ I2}

end while
P ← P ∪Q

end while
return y

input and output of Merge and Figure 3 gives a high-
level overview of the MergeAndPool algorithm.

Algorithm 3 Mergef subroutine

Input: Adjacent intervals I1, I2 and yI1∪I2
Y ← all yi values in yI1∪I2 {Search Range}

{true PoolVf (S) value is in [min(Y),max(Y)]}
while |Y| > 2 do
γtest ← d|Y|/2eth smallest value in Y
Stest ← {i ∈ I1 | yi ≥ γtest} ∪ {i ∈ I2 | yi ≤ γtest}
if γtest < PoolVf (Stest) then
Y ← {y ∈ Y | y ≥ γtest}

else
Y ← {y ∈ Y | y ≤ γtest}

end if
end while

for γtest ∈ {min(Y),max(Y)} do
Stest ← {i ∈ I1 | yi ≥ γtest} ∪ {i ∈ I2 | yi ≤ γtest}
if γtest = PoolVf (Stest) then
yStest

← PoolVf (Stest)
return yI1∪I2

end if
end for
S ← {i ∈ I1 | yi > min(Y)} ∪ {i ∈ I2 | yi < max(Y)}
yS ← PoolVf (S)
return yI1∪I2

The following lemma about the output of Mergef is
the key to proving the correctness of MergeAndPool.
The proof of this lemma relies on the correctness of the
PAV algorithm, and will demonstrate that any pooling
decision that Mergef makes is one that the PAV al-
gorithm can make in the process of solving the same
problem.

Lemma 5.3. Consider adjacent intervals I1, I2 and
vector y, where yI1 and yI2 are the optimal solution
to dual problem (5) when restricted to only the in-

1210

Cong Han Lim, Stephen J. Wright

Figure 2: The input and output of the Merge algo-
rithm. The circles and triangles represent y values cor-
responding to different intervals. The algorithm uses
binary search to find the correct γ value (represented
here by the red dotted line), then pools elements in
the left interval that are above γ with elements in the
right interval that are below γ.

Figure 3: A high-level look at the MergeAndPool al-
gorithm. Each box corresponds to one interval and
the black lines inside represent the y values. The algo-
rithm starts from the bottom, and each row represents
one iteration of the outer loop.

dices in I1 and I2, respectively. The output yI1∪I2
of Mergef (I1, I2, yI1∪I2) gives the optimal solution to
problem (5) when restricted to the indices in I1 ∪ I2.

Theorem 5.4. MergeAndPool returns the solution y′

to the dual problem (5).

The outer loop of MergeAndPool is executed O(log n)
times. We can show that a call to Mergef takes
O(|I1| + |I2|) time for Bregman divergences with the
incremental PoolVφ,z property by noting that the work
needed halves with each iteration of the main loop.

Proposition 5.5. The running time of MergeAndPool
is O(n log n) for uniformly separable Bregman diver-
gences φ with incremental PoolVφ,z cost.

5.3 MergeAndPool and Handling Repeat
Entries in c

The results in the previous section match the best
known results for the Euclidean projection onto the
permutahedron and signed permutahedron when we
factor in the cost of the initial sort, but for the sim-
plex and `1-ball, one can avoid performing an initial
sorting step and can compute the projection in just
O(n) time. We now describe the necessary modifica-
tion to MergeAndPool.

When handling vector c with repeat entries, we will
write c as (c(1), . . . , c(1), c(2), . . . , c(2), c(3), . . . , c(d)),
where c(1) > c(2) > . . . > c(d). Let ni denote the
number of c(i) entries present in c.

Our approach will rely on the fact that selecting a par-
ticular ranked item from a unsorted vector can be done
in O(n) time. This can be done in deterministic time
by using the canonical “median of medians” algorithm
or in expected time by a random pivot strategy.

Theorem 5.6. (Blum et al., 1973) Selecting the ith
largest element element in an unsorted list of length n
can be done in O(n) time.

The next result follows from applying this fast selec-
tion algorithm recursively.

Lemma 5.7. We can sort the entries of vector z into
d groups in O(n log d) time such that the ith group has
ni elements and for each zj in group i and zk in group
i+ 1, we have zj ≥ zk.

To solve the projection problem (1) when we have a
vector c with repeat entries, we begin by applying
the partial sort of Lemma 5.7 to our input vector z.
We now modify MergeAndPool to initialize partition
P with the corresponding d groups of indices, instead
of just singleton sets. To prove that this strategy re-
sults in the correct output, we note that the Mergef
subroutine does not require the z vector to be fully
sorted. In fact, we can permute any of the elements
within each interval I1, I2, and Mergef will still return
the same result. The only things that is required are
that the two intervals I1, I2 are adjacent and in the
right order, and that the input yI1 , yI2 values are cor-
rect when considering the problem restricted to their
respective intervals. Let I1, I2, . . . , Id denote the in-
tervals of indices corresponding to the d groups. The
following lemma implies that the initialization of each
yi to PoolVφ,z(i) results in the correct yIk for the dual
problem (5) over just the Ik indices for all k ∈ [d].

Lemma 5.8. For two indices i and j, if ci = cj and
zi ≥ zj, then PoolVφ,z({i}) ≤ PoolVφ,z({j}).

The modified MergeAndPool requires only O(log d) it-
erations of the outer loop, and the cost of each call to

1211

Efficient Bregman Projections onto the Permutahedron and Related Polytopes

the Mergef is still O(|I1|+ |I2|) due to Theorem 5.6.

Theorem 5.9. We can compute the projection x′

onto the permutahedron PH(c) under any incremen-
tal uniformly separable Bregman divergence in time
O(n log d).

6 Handling General Uniformly
Separable Bregman Divergences

Definition 6.1. We say a vector ŷ is an ε-close (in
`∞-norm) solution to a problem if there is a solution
y′ to the problem such that ‖ŷ − y′‖∞ < ε.

Our goal in this section is to describe algorithms for
general uniformly separable Bregman divergences that
give us an ε-close solution for the dual problem. Let
l, u ∈ {εk | k ∈ Z} denote lower and upper bounds
on all the values of the solution y′ to problem (5),
and let U = u − l. Best et al. (2000) and Ahuja and
Orlin (2001) provide two ways of obtaining an ε-close
solution on the lattice L = {εk | k ∈ Z}n.

The first method is to use PAV. We can replace func-
tions fi with continuous piecewise linear functions f εi
that interpolate between the fi values at the points in
{εk | k ∈ Z}. If each term in the sum of the objec-
tive function can be evaluated in O(1) time, we can
use binary search to find a minimizer of

∑
i∈S fi(γ) in

O(|S| log U
ε). This results in a O(n2 log U

ε) approach.

One can do better. For a given vector y ∈ Rn, let
L(y) denote the vector obtained by rounding down
each term in y to the nearest term in {εk | k ∈ Z}.
Ahuja and Orlin (2001) introduced an efficient scaling
variant of the PAV algorithm:

Theorem 6.2. (Ahuja and Orlin, 2001) Let y′ de-
note the solution to problem (5). We can find L(y′) in
O(n log U

ε) time using ScalingPAV.

For the projection problem, this result requires the
points to be sorted, resulting in an overall complexity
of O(n log nU

ε). We can further modify MergeAndPool

to obtain a faster algorithm for small values of d.

By replacing the subroutine Mergef with ε-Mergef (Al-
gorithm 4) and initializing the points y with their
rounded down PoolV values, MergeAndPool will return
an ε-close solution to problem (5). ε-Mergef works by
binary searching over L instead of the y values. The
correctness of this subroutine can be established from
the proof of Lemma 5.3 and the fact that the gradient
shows if PoolVf (Stest) is higher/lower than γtest.

If each ∇fi can be evaluated in O(1) time, then the
complexity required in each iteration of the loop re-
quires O(|I1|+ |I2|) time, leading to an complexity of
O((|I1| + |I2|) log U

ε) for each call to ε-Mergef . This

Algorithm 4 ε-Mergef subroutine

Input: Adjacent intervals I1, I2 and yI1∪I2
Y ← {εk | k ∈ Z} ∩ [l, u]
while |Y| > 2 do
γtest ← d|Y|/2eth smallest value in Y
Stest ← {i ∈ I1 | yi ≥ γtest} ∪ {i ∈ I2 | yi < γtest}
if
∑
i∈Stest

∇fi(γtest) = 0 then
yS ← γtest

return yI1∪I2
else if

∑
i∈Stest

∇fi(γtest) < 0 then
Y ← {v ∈ Y | v ≥ γtest}

else
Y ← {v ∈ Y | v ≤ γtest}

end if
end while

γtest ← max(Y)
Stest ← {i ∈ I1 | yi ≥ γtest} ∪ {i ∈ I2 | yi < γtest}
if
∑
i∈Stest

∇fi(γtest) = 0 then
yStest

← γtest

else
S ← {i ∈ I1 |yi ≥ min(Y)}∪{i ∈ I2 |yi < min(Y)}
yS ← min(Y)

end if
return yI1∪I2

leads to the following theorem:

Theorem 6.3. Let y′ denote the solution to problem
(5). We can find L(y′) in O((n log d) log U

ε) time using
MergeAndPool.

The same technique for handling repeat entries in c for
Mergeφ,z also apply here, hence the complexity bound

for the projection problem remains O((n log d) log U
ε) .

This result improves on Ahuja and Orlin (2001) when
(Uε)log d−1 = o(n), and matches the O(n log U

ε) algo-
rithm (Krichene et al., 2015) for the simplex case.
In the full version, we will describe a modification
of ScalingPAV that achieves a better complexity of
O(n log dU

ε).

7 Acknowledgements

We thank Okan Akalin and Ravi Ganti for helpful com-
ments and suggestions on the presentation of this pa-
per. We thank the anonymous referees for feedback
that improved the paper and its presentation. Lim’s
work on this project was supported by NSF Award
DMS-1216318 and Award EM02076 from Exxon Mobil
Corp. Wright’s work supported by NSF Awards DMS-
1216318 and IIS-1447449, ONR Award N00014-13-1-
0129, AFOSR Award FA9550-13-1-0138, and Subcon-
tract 3F-30222 from Argonne National Laboratory.

1212

Cong Han Lim, Stephen J. Wright

References

Ahuja, R. K. and Orlin, J. B. (2001). A Fast Scaling
Algorithm for Minimizing Separable Convex Func-
tions Subject to Chain Constraints. Operations Re-
search, 49(5):784–789.

Ailon, N. (2014). Improved Bounds for Online Learn-
ing Over the Permutahedron and Other Ranking
Polytopes. In Proceedings of the Seventeenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 29–37.

Ailon, N., Hatano, K., and Takimoto, E. (2014). Ban-
dit online optimization over the permutahedron. In
Auer, P., Clark, A., Zeugmann, T., and Zilles, S.,
editors, Algorithmic Learning Theory, volume 8776
of Lecture Notes in Computer Science, pages 215–
229. Springer International Publishing.

Bach, F. (2013). Learning with submodular functions:
A convex optimization perspective. Foundations and
Trends in Machine Learning, 6(2-3):145–373.

Barlow, R. (1972). Statistical Inference Under Order
Restrictions: The Theory and Application of Iso-
tonic Regression. J. Wiley.

Best, M. J., Chakravarti, N., and Ubhaya, V. A.
(2000). Minimizing Separable Convex Functions
Subject to Simple Chain Constraints. SIAM Journal
on Optimization, 10(3):658–672.

Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and
Tarjan, R. E. (1973). Time bounds for selection. J.
Comput. Syst. Sci., 7(4):448–461.

Bogdan, M., van den Berg, E., Su, W., and Candes,
E. (2013). Statistical estimation and testing via the
sorted L1 norm. arXiv:1310.1969.

Brucker, P. (1984). An O(n) algorithm for quadratic
knapsack problems. Operations Research Letters,
3(3):163–166.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chan-
dra, T. (2008). Efficient projections onto the l1-ball
for learning in high dimensions. In McCallum, A.
and Roweis, S., editors, Proceedings of the 25th An-
nual International Conference on Machine Learning
(ICML 2008), pages 272–279. Omnipress.

Fujishige, S. (1984). Submodular systems and related
topics. In Korte, B. and Ritter, K., editors, Mathe-
matical Programming at Oberwolfach II, pages 113–
131. Springer, Berlin, Heidelberg.

Goemans, M. (2015). Smallest compact formulation
for the permutahedron. Mathematical Programming,
Series A, 153(1):5–11.

Groenevelt, H. (1991). Two algorithms for maximiz-
ing a separable concave function over a polymatroid
feasible region. European Journal of Operational Re-
search, 54(2):227–236.

Hazan, E. (2012). The convex optimization approach
to regret minimization. In Sra, S., Nowozin, S.,
and Wright, S. J., editors, Optimization for Machine
Learning, pages 287–304. MIT press.

Krichene, W., Krichene, S., and Bayen, A. (2015). Ef-
ficient bregman projections onto the simplex. In
2015 IEEE 54rd Annual Conference on Decision
and Control (CDC).

Negrinho, R. and Martins, A. (2014). Orbit regulariza-
tion. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems
27, pages 3221–3229. Curran Associates, Inc.

Suehiro, D., Hatano, K., Kijima, S., Takimoto, E.,
and Nagano, K. (2012). Online prediction under
submodular constraints. In Bshouty, N., Stoltz, G.,
Vayatis, N., and Zeugmann, T., editors, Algorithmic
Learning Theory, volume 7568 of Lecture Notes in
Computer Science, pages 260–274. Springer Berlin
Heidelberg.

Wang, W. and Lu, C. (2015). Projection onto the
capped simplex. arXiv:1503.01002.

Yasutake, S., Hatano, K., Kijima, S., Takimoto, E.,
and Takeda, M. (2011). Online linear optimiza-
tion over permutations. In Asano, T., Nakano, S.-
i., Okamoto, Y., and Watanabe, O., editors, Algo-
rithms and Computation, volume 7074 of Lecture
Notes in Computer Science, pages 534–543. Springer
Berlin Heidelberg.

Zeng, X. and Figueiredo, M. A. T. (2014). The Or-
dered Weighted `1 Norm: Atomic Formulation, Pro-
jections, and Algorithms. arXiv:1409.4271.

1213

