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Abstract

This paper proposes a novel nonparametric
framework for semi-supervised learning and
for optimizing the Laplacian spectrum of the
data manifold simultaneously. Our formula-
tion leads to a convex optimization problem
that can be efficiently solved via the bun-
dle method, and can be interpreted as to
asymptotically minimize the generalization
error bound of semi-supervised learning with
respect to the graph spectrum. Experiments
over benchmark datasets in various domains
show advantageous performance of the pro-
posed method over strong baselines.

1 INTRODUCTION

Graph representation of data is ubiquitous in machine
learning. In many scenarios, we are given a partially
labeled graph with only a small number of labeled ver-
tices, and the task is to predict the missing labels of
the large number of unlabeled vertices.

With limited supervision available, it is often crucial
to leverage the intrinsic manifold structure of both
the labeled and unlabeled vertices during the training
phase. Various graph-based semi-supervised learning
(SSL) algorithms have been proposed for this purpose,
including label propagation [1], Gaussian fields [2] and
Laplacian Support Vector Machines [3]. Many of those
approaches rely on the assumption that strongly con-
nected vertices are likely to share the same labels, and
fall under the manifold regularization framework [4]
where the graph Laplacian [5] plays a key role.

Given a graph, the graph Laplacian characterizes how
the label of each vertex diffuses (propagates) from it-
self to its direct neighbors. While the graph Laplacian
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in its original form may not be sufficiently expressive
for modeling complex graph transduction patterns, it
has been shown that a rich family of important graph
transduction patterns under various assumptions, such
as multi-step random walk, heat diffusion [6] and von-
Neumann diffusion [7], can be incorporated into SSL
by transforming the spectrum1 of the graph Laplacian
with nonnegative nondecreasing functions [8, 9, 10].
The collection of those functions are referred to as the
Spectral Transformation (ST) family.

Despite of the expressiveness of the ST family, how to
find the optimal ST for any problem in hand is an open
challenge. While manual specification [8, 10] is clearly
suboptimal, various approaches have been proposed to
automatically find the optimal ST. Among the exist-
ing works, parametric approaches assume the optimal
ST belongs some pre-specified function family (e.g. the
polynomial or exponential), and then find the func-
tion hyperparameter via grid search or curve-fitting
[11]. However, the fundamental question about how to
choose the function family is left unanswered, and it is
not clear whether commonly used parametric function
families are rich enough to subsume the true optimal
ST. On the other hand, a more flexible nonparametric
framework based on kernel-target alignment has been
studied in [9], where the optimization of ST can be effi-
ciently solved via quadratically constrained quadratic
programming (QCQP). However, the target matrix it-
self may be unreliable as it is constructed based a very
small number of observed labels, and it is not conclu-
sive whether a better alignment score always leads to
a better prediction performance.

Note all the above approaches are two-step procedures,
where the optimal ST is empirically estimated in some
preprocessing step before SSL is carried out (with the
ST obtained in the previous step). We argue that the
separation of ST-finding from SSL may result in sub-
optimal performance, as combining the two steps to-
gether will allow the learned ST to better adapt to the
problem structure.

1In this paper, we refer to the spectrum of a matrix as
the multiset of its eigenvalues.
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This paper addresses the above challenge by proposing
a principled optimization framework which simultane-
ously conducts SSL and finds the optimal ST for the
graph Laplacian used in SSL. Starting with the natu-
ral formulation of the joint optimization, we show how
to reformulate it as an equivalent convex optimization
problem via Lagrangian duality, and then derive an
efficient algorithm using the bundle method. We refer
to our new approach as Adaptive Spectral Transform
(AST), meaning that the ST is automatically adapted
to the problem in hand and its target domain.

Besides strong empirical performance over benchmark
datasets across various domains, insights are provided
regarding the advantageous performance of AST by re-
visiting an existing theorem on SSL from a new angle.
Specifically, we show that AST aims to asymptotically
minimize the generalization error bound of SSL.

2 THE PROPOSED FRAMEWORK

Let us start with the formal definition of SSL (2.1), and
then move on to the spectral transformation (ST) of
the graph Laplacian (2.2), and finally the adaptation
of ST (AST) for specific problems (2.3).

2.1 SSL with the Graph Laplacian

Given a graph G of m vertices, where each vertex de-
notes an instance and each edge encodes the affinity
between a pair of instances. Suppose only a very small
set T of l vertices has been labeled where l � m, our
task is to predict the missing labels of the remaining
m− l vertices based on both the l labeled vertices and
the intrinsic manifold structure of G.

Denote by yi the true label and by fi ∈ R the system-
estimated score for vertex i, resp. In order to leverage
the labels, we hope fi and yi to be as close as possible
for all i ∈ T . Meanwhile, to leverage the large amount
of unlabeled vertices, we want the scores for all (both
labeled and unlabeled) vertices to be smooth w.r.t. the
graph structure ofG. The two desired properties entail
the following optimization problem:

min
f∈Rm

1

l

∑

i∈T
`(fi, yi) + γf>Lf (1)

where the first term is the empirical loss of the system-
predicted scores f ∈ Rm, L in the second term is the
normalized graph Laplacian matrix associated with G
characterizing G’s manifold structure. Specifically, de-
note by A the adjacency matrix of G, by D a diagonal
matrix of degrees with dii =

∑
j aij and by L = D−A

the graph Laplacian. The normalized graph Lapla-
cian is defined as L = D−

1
2LD−

1
2 , with its eigensys-

tem denoted by {(λi, φi)}mi=1. For convenience, we as-

sume the eigenvalues of L are in the increasing order:
λ1 ≤ λ2 . . . ≤ λm. It is well known that the smallest
eigenvalue λ1 is always zero, and that φi’s with small
indices tend to be “smoother” over the data manifold
than those with large indices [5].

In (1), the label information is encoded in the empir-
ical loss `(fi, yi). E.g., one could specify `(fi, yi) to be
(fi − yi)2. The manifold assumption is encoded in the
second term (a.k.a. the manifold regularizer) involving
the graph Laplacian, satisfying

f>Lf ≡ 1

2

∑

i∼j
aij

(
fi√
dii
− fj√

djj

)2

(2)

≡
m∑

i=1

λi 〈φi, f〉2 (3)

Eq. (2) suggests that the regularizer essentially encour-
ages scores fi, fj (normalized by the squared root of
degrees) to be close when vertices i, j are strongly
connected in G, namely when aij is large. An alterna-
tive perspective, as implied by (3), is to think of the
regularizer as penalizing the projection of f onto dif-
ferent bases (the φ′is) with different weights (the λ′is),
where the smooth components in f are going to receive
lighter penalty than the nonsmooth ones.

2.2 Transforming the Laplacian Spectrum

Although the graph Laplacian gives a nice character-
ization about how vertices in G influence their direct
neighbors, it is not sufficiently expressive for modeling
complex label propagation patterns, such as multi-step
influence from a given vertex to its indirect neighbors
and the decay of such influence. As a simple remedy to
incorporate a richer family of label propagation pat-
terns over the manifold, various methods have been
proposed based on transforming the spectrum of L us-
ing some nonnegative nondecreasing function, known
as the spectral transformation [8, 9, 10].

As an example, by taking the exponential of the Lapla-
cian spectrum, one gets

∑m
i=1 e

βλiφiφ
>
i = eβL where

β is a nonnegative scalar. The transformed Laplacian
has a neat physical interpretation in terms of heat dif-
fusion process, and is closely related to infinite random
walk with decay over the manifold [6]. From (3)’s per-
spective, the replacement of λi with eλi can be viewed
as a way to exaggerate the difference in weighing the
bases. That is, the nonsmooth components in f are
going to receive a larger relative penalty during the
optimization after the exponential transformation.

Formally, we define the Spectral Transformation (ST)
over L as σ(L) :=

∑m
i=1 σ(λi)φiφ

>
i , where σ : R+ 7→

R+ is a nondecreasing function which transforms each
Laplacian eigenvalue to a nonnegative scalar. Besides
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the aforementioned diffusion kernel where σ(x) = eβx,
other commonly used STs include σ(x) = x+β (Gaus-
sian field), σ(x) = 1

(α−x)β
(multi-step random walk),

σ(x) =
[
cos
(
π
4x
)]−1

(inverse cosine) [8, 11], etc.

The ST-enhanced SSL is formulated as

min
f∈Rm

1

l

∑

i∈T
`(fi, yi) + γf>σ(L)f (4)

2.3 Adapting the Spectral Transform

The nature of SSL described in (4) crucially depends
our choice of ST. It is a common practice to manually
specify σ [8, 10] or to learn the hyperparameter of σ
within a pre-specified function family [12, 11]. Both
methods are suboptimal when the true optimal σ∗ lies
in a broader function space.

In this paper, we focus on automatically learning σ∗

from data with no assumption on its function form. In
terms of SSL, we argue it suffices to learn {σ∗(λi)}mi=1

instead of the analytical expression of σ∗, as the ob-
jective in (4) is uniquely determined by these m trans-
formed eigenvalues. Therefore, in the following we
switch from the task of making σ adaptive to the equiv-
alent task of making each σ(λi) adaptive.

Define θ ∈ Rm where θi := σ(λi)
−1. We are going to

focus on learning θ as notation-wise it is more conve-
nient to work with the reciprocals. After substituting
the ST σ with θ in (4), the optimization becomes

min
f∈Rm

1

l

∑

i∈T
`(fi, yi) + γ

m∑

i=1

θ−1
i 〈φi, f〉

2

︸ ︷︷ ︸
¯
C(f;θ)

(5)

When θi = 0, we define θ−1
i := 0 as its pseudo-inverse.

For brevity, in the following we assume all the θi’s are
strictly positive. The singular case where some θi’s are
exactly zero will be studied specifically in Section 3.4.

To determine θ for (5), Zhu et al. [9] proposed a two-
step procedure based on empirical kernel-target align-
ment. In the first step, an empirical estimation about θ
is obtained by maximizing the alignment score between
the kernel matrix implied by θ, i.e.

∑
i θiφiφ

>
i , and a

target kernel matrix induced from a small amount of
observed labels. In the second step, the estimated θ̂ is
plugged-into the SSL objective (5) for learning f.

Different from existing (manual/parametric/two-step)
approaches, we argue that it is beneficial to put the
task of finding the optimal θ∗ and the task of SSL into
a unified optimization framework, as the two proce-
dures can mutually reinforce each other, thus making
θ∗ more adapted to the problem structure.

It may appear straightforward to approach the afore-
mentioned goal by minimizing (5) w.r.t. f and w.r.t. θ
in an alternating manner. Unfortunately, the resulting
optimization is non-convex, and a meaningless solution
can be obtained by simply setting all the θ−1

i ’s to zero.

Instead, we propose to achieve this goal by solving the
following optimization problem (AST)

min
θ∈Θ

(
min
f∈Rm ¯

C(f, θ)

)
+ τ‖θ‖1 (6)

where
¯
C(f; θ) is the SSL objective defined in (5), τ is a

positive scalar-valued tuning parameter, and Θ is the
space of θ, i.e. the set of all possible reciprocals of the
transformed Laplacian spectrum

Θ =
{
θ : θi = σ(λi)

−1,∀i = 1, 2 . . .m, σ is a valid ST
}

≡ {θ : θ1 ≥ θ2, . . . ≥ θm ≥ 0}
(7)

One may check the second equality above by recalling
that (i) the λi’s are in the increasing order (ii) σ can
be any nonnegative nondecreasing function.

The intuition behind optimization (6) is that we want
the optimal θ∗ (and the associated optimal ST) to si-
multaneously satisfy the following criteria:

(a) It should tend to minimize the SSL objective (5).
As in multiple kernel learning [13, 14], this is ar-
guably the most natural and effective way to make
θ∗ adaptive to the problem structure.

(b) It should have a moderate `1-norm. Namely the
“transformed” data manifold should have a mod-
erate total effective resistance [15]. This additional
requirement is crucial as it precludes degenerate
solutions. It also adds to the stability of our bun-
dle method for optimization (Section 3).

3 OPTIMIZATION STRATEGIES

Let us present our optimization strategies for solving
(6), starting with the following theorem

Theorem 1 (Convexity of AST).
(6) is a convex optimization problem over θ.

After presenting the proof for Theorem 1 (Section 3.1),
we propose our method to compute the gradient for
(6)’s structured objective function in Section 3.2, and
offer a bundle method for efficient optimization in Sec-
tion 3.3. We will study the singular case where some
θi’s are allowed to be exactly zero in Section 3.4, which
can be particularly useful in large-scale scenarios. The
SSL subroutine for AST is discussed in Section 3.5.
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3.1 Proof of Convexity

We proof Theorem 1 by first reformulating (6)’s objec-
tive function into an equivalent minimax-type function
via Lagrangian duality, and then showing the convex-
ity of the equivalent optimization problem.

The Lagrangian dual for
¯
C(f; θ) is

−ω(−u)− 1

4γ

m∑

i=1

θi 〈φi, u〉2

︸ ︷︷ ︸
C̄(u;θ)

(8)

where ω(·) is the conjugate function for
∑
i∈T `(fi, yi).

It is not hard to verify that the Slater’s condition holds
for optimization (5), i.e. minf∈Rm

¯
C(f; θ), thus strong

duality ensures that

min
f∈Rm ¯

C(f; θ) = max
u∈Rm

C̄(u; θ) (9)

and optimization (6) for AST can be recast as

min
θ∈Θ

(
max
u∈Rm

C̄(u; θ)

)

︸ ︷︷ ︸
g(θ)

+τ‖θ‖1 (10)

We claim the resulting equivalent problem (10) is con-
vex over θ. To see this, notice that C̄(u; θ) defined in
(8) is an affine over θ for each given u, and recall that
the pointwise maximum of any set of convex functions
(affines) is still convex, the first structured term g(θ) in
optimization (10), i.e. maxu∈Rm C̄(u; θ), is hence con-
vex over θ. The conclusion follows by further noticing
the second term ‖θ‖1 in (10) is also a convex function,
and that Θ defined in (7) is a convex domain.

3.2 Computing the Structured Gradient

In this section, we discuss our method to compute the
gradient of g(θ) := maxu C̄(u; θ) in (10), denoted by
∇θg(θ), as a prerequisite for subsequent optimization
algorithms. We rely on Danskin’s Theorem [16] as g(θ)
is the maximum of infinite number of functions:

Theorem 2 (Danskin’s Theorem). If function g(θ) is
in the form of g(θ) := maxu∈U C̄(u; θ) where U is a
compact space and C̄(·; θ) is a differentiable function
with C̄(u; θ) and ∇C̄(u; θ) depending continuously on
u and θ, then the subgradient of g(θ), i.e. ∂θg(θ), is
given by ∂θC̄(û; θ) where û ∈ argmaxu∈U C̄(u; θ).

For our case U := Rm and the subgradient ∂θg(θ) can
be substituted with gradient ∇θg(θ) as the function of
interest is differentiable. Recall that we have assumed
all θi’s to be positive, C̄(u; θ) is strictly convex over u
and therefore û := argmaxu C̄(u; θ) is always unique.

Suppose û is given, following Theorem 2 we have

∇θg(θ) = ∇θC̄(û; θ) = −

(
〈φ1, û〉2 , . . . , 〈φm, û〉2

)>

4γ
(11)

To compute the R.H.S. of (11), we have to get û in ad-
vance via solving maxu C̄(u; θ). In case the conjugate
function involved in C̄(u; θ) is hard to work with, it is

more convenient to first obtain the primal solution f̂ by
solving the corresponding primal problem minf

¯
C(f; θ)

described in (5), and then recover the dual solution û

from f̂ via the K.K.T. condition.

According to the stationarity condition, û and f̂ must
satisfy û = 2γ

(∑m
i=1 θ

−1
i φiφ

>
i

)
f̂ . This suggests an

alternative to (11), i.e. to compute the gradient of g(θ)
directly based on the primal variable via

∇θg(θ) = −γ
(
〈φ1, f̂〉2
θ2

1

, . . . ,
〈φm, f̂〉2
θ2
m

)>
(12)

where f̂ := argminf ¯
C(f, θ) is obtained by applying any

SSL algorithm2 to (5).

3.3 Bundle Method for AST

After obtaining ∇θg(θ) according to section 3.2, it is
straightforward to minimize the AST objective in (10):
g(θ) + γ‖θ‖1 via the subgradient method or proximal
gradient method. However, both algorithms have slow
convergence rate, and it can be tricky to choose a suit-
able step size to ensure efficient convergence.

We propose to use the bundle method for (10) (equiva-
lently, (6)), which has been found particularly efficient
in solving problems involving structured loss functions
[17, 18]. Our method is a variant of bundle method for
regularized risk minimization (BMRM) [19], and sub-
sumes the semi-infinite linear programming (SILP) for
large-scale multiple kernel learning [20].

The key idea is to replace the “tough” part in (10), i.e.
g(θ), with an “easy” piecewise linear function g̃(θ) that
lowerbounds the original g(θ). After the replacement,
optimization (10) becomes

min
θ∈Θ

g̃(θ) + τ‖θ‖1 (13)

We then alternate between solving the surrogate prob-
lem (13) and refining the lowerbound g̃(θ) until con-
vergence. Note (13) is a Linear Programming (LP), as
its objective function is piecewise linear and its feasible
set Θ defined in (7) is a polyhedron.

2Many off-the-shelf SSL solvers can be easily modified
for solving the primal problem (5).
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Algorithm 1: Bundle Method for AST

Input
ε desired convergence accuracy
L normalized graph Laplacian of G
` loss function based on available labels
γ tuning parameter for manifold regularization in (5)
τ tuning parameter for the `1-norm in (6)

Output
f system-inferred vertex labels
θ system-inferred reciprocals of

the transformed Laplacian eigenvalues
Initialization
t← 0;
/*take pseudo-inverse when necessary*/;

{λi, φi}mi=1 ← eig(L),
{
θ

(0)
i ← λ−1

i

}m
i=1

;
do

/*solve (5) via standard SSL*/;
f(t) ← argminf∈Rm ¯

C(f; θ(t));
g(θ(t))←

¯
C(f(t); θ(t));

/*according to (12)*/;

∇g(θ(t))← −γ
(
〈φ1,f

(t)〉2

θ
(t)
1

2 , . . . , 〈φm,f
(t)〉2

θ
(t)
m

2

)>
;

t← t+ 1;
/*update the piecewise-linear lowerbound*/;
g̃(t)(θ)← max0≤i≤t−1 g(θ(i))+

〈
∇g(θ(i)), θ − θ(i)

〉
;

/*solve the linear programing*/;
θ(t) ← argminθ∈{θ|θ1≥θ2≥...≥θm≥0} g̃

(t)(θ) + τ‖θ‖1;

while g(θ(t−1)) + ‖θ(t−1)‖1 − g̃(t)(θ(t))− ‖θ(t)‖1 > ε;
/*terminate when the piecewise-linear lowerbound is
sufficiently close to the original function*/;

To obtain a piecewise lowerbound g̃(θ) for g(θ), recall
any convex function can be lowerbounded by its tan-
gents. Hence it suffices to let g̃(θ) be the supremum of
a set of tangents associated with historical iterations.
Specifically, we define g̃(θ) at the t-th iteration as

g̃(t)(θ) := max
0≤i≤t−1

g(θ(i)) +
〈
∇g
(
θ(i)
)
, θ − θ(i)

〉
(14)

where superscript “(i)” indexes the quantity associated
with the i-th iteration. It is not hard to verify that
g(t)(θ) ≤ g(θ) always holds, and that g(t)(θ) tends to
better approximate g(θ) as t increases. Details of the
bundle method for AST is presented in Algorithm 1.

3.4 Singular Cases: Towards More Scalability

Now let us focus on the singular cases where some θi’s
(and their pseudo-inverse θ−1

i ’s) are exactly zero. This
may happen in two scenarios:

(a) During the bundle method, some θi’s are shrunk to
zero after solving the LP (13) due to the presence
of the `1-regularization over θ.

(b) Small-valued θi’s associated with those nonsmooth
φi’s are truncated to be zero for the sake of scala-
bility. This strategy will substantially reduce the
parameter size of SSL, and has been successfully
applied to large-scale problems [21].

In the following, we will assume θi > 0 for 1 ≤ i ≤ k
and θi = 0 for k < i ≤ m, where k � m. To handle
the singular case, we modify

¯
C(f; θ) in (5) as

1

l

∑

i∈T
`(fi, yi) + γ

∑

1≤i≤k
θ−1
i 〈φi, f〉

2
+

∑

k<i≤m
1{〈φi,f〉=0}

(15)
where 1{·} equals zero if the inside-bracket condition
is satisfied and equals +∞ otherwise. The third term
in (15) is crucial in that otherwise the projection of f
onto φi for any k < i ≤ m will be left unregularized
and the resulting model can easily over-fit.

The solution f∗ for minimizing (15) must lie in the span
of {φi}ki=1 as otherwise the indicator function will go
to infinity. Let f :=

∑
1≤j≤k αjφj . (15) can be reduced

to consist of only k (k � m) parameters

1

l

∑

i∈T
`

(
e>i

∑

1≤j≤k
αjφj , yi

)
+ γ

∑

1≤i≤k
θ−1
i α2

i (16)

where ei stands for the i-th unit vector in Rm.

Applying similar analysis3 in the previous subsections
to the modified

¯
C(f; θ) in (15), for singular cases the

gradient of g(θ) during bundle method is given by

∇θg(θ) = −γ
( 〈φ1, f̂〉2

θ2
1

, . . .
〈φk, f̂〉2
θ2
k

, 0, . . . 0

)>
(17)

≡ −γ
(
α̂1

2

θ2
1

, . . .
α̂k

2

θ2
k

, 0, . . . 0

)>
(18)

where f̂ and α̂ are solutions for minimizing (15) and
minimizing (16), respectively. Eq. (18) holds because

〈φi, f̂〉 =
∑

1≤j≤k α̂j〈φi, φj〉 = α̂i.

To carry out bundle method for the singular case, we
need to compute ∇θg(θ) via (18), which requires α̂ as
the solution of minimizing (16). Compared to solving
optimization (5) w.r.t. f ∈ Rm for the non-singular
case, minimizing (16) w.r.t. α ∈ Rk can be performed
much more efficiently due to the substantially reduced
parameter size (recall k � m). In fact, once the top-k

eigenvalues/eigenvectors {λj , φj}kj=1 of L is obtained,

the time/space complexity for both the LP subroutine
and the SSL subroutine (16) in AST will become inde-
pendent from m, which is desirable for large problems.

3The analysis follows Sections 3.1, 3.3 and 3.2. We omit
the details due to the space limit.
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3.5 Solving the SSL Subroutine

Both the original and the singular AST involve solving
a standard SSL problem as their intermediate subrou-
tines, i.e. minimizing (5) w.r.t. f or minimizing (16)
w.r.t. α. Here we use the later to demonstrate how
existing off-the-self machine learning toolkits can be
conveniently leveraged for this purpose.

We choose the squared hinge loss as our loss function
`(·, ·). Besides large-margin property, its smoothness
often leads to efficient optimization [22]. In this case,
minimizing (16) can be formulated as

min
α∈Rk

1

l

∑

i∈T
max

(
1− yie>i Φα, 0

)2

+ γα>diag(θ−1
1 , θ−1

2 , . . . θ−1
k )α

(19)

where Φ = [φ1, φ2, . . . φk] ∈ Rm×k.

By defining C := (γl)−1, wj := αj
√

2
θj

for 1 ≤ j ≤ k

and xi := diag

(√
θ1
2 ,
√

θ2
2 . . .

√
θk
2

)
Φ>ei for ∀i ∈ T ,

(19) can be recast as

min
w∈Rk

C
∑

i∈T
max

(
1− yi〈xi, w〉, 0

)2
+

1

2
‖w‖22 (20)

Note that (20) is the standard formulation of L2-SVM
and can be efficiently solved via existing solvers such as
LIBLINEAR [23]. After obtaining the solution ŵ for
(20), the solution α̂ for (19) can be easily recovered by
rescaling ŵ, and then be plugged-into (17) to compute
∇θg(θ) required by the bundle method.

4 THEORETICAL INSIGHTS

In this section we provide theoretical intuitions to jus-
tify the proposed method. We are going to show that
AST can be interpreted as an automatic procedure to
asymptotically minimize the SSL generalization error
bound w.r.t. different STs.

Our analysis is based an existing theorem on the re-
lationship between the generalization performance of
SSL and any given (fixed) graph-Laplacian spectrum
[10]. While proving the theorem is not the contribution
of this paper, our method provides a new angle to uti-
lize the theorem. To the best of our knowledge, none
of the previous work, including [10], have formulated
or provided any algorithmic solution to automatically
determine the optimal spectrum among all candidate
spectrums in this manner (i.e. formulating and solving
optimization (6)).

Theorem 3 (Adapted from [10]). Suppose indices of
the labeled vertices in T are sampled from {1, 2, . . . ,m}

uniformly at random. Let f̂(T ) be the system-predicted
scores in Rm obtained via solving optimization (4) for
any given T , and let ` be a convex loss function such
that |∇`| ≤ b. We have

1

m− lET
∑

i 6∈T
`
(

f̂i(T ), yi

)

≤
(

min
f∈Rm

1

m

m∑

i=1

` (fi, yi) + γf>σ(L)f

)
+
b2tr

(
σ(L)−1

)

2γlm

(21)

The L.H.S. of (21) stands for the empirical risk of SSL
for any given ST σ.

To see the connections between AST and Theorem 3,

let τ = b2

2γlm and recall that σ(L) =
∑m
i=1 σ(λi)φiφ

>
i =∑m

i=1 θ
−1
i φiφ

>
i , we rewrite the R.H.S. of (21) as

(
min
f∈Rm

1

m

m∑

i=1

` (fi, yi) + γ
m∑

i=1

θ−1
i 〈φi, f〉

2

)
+ τ‖θ‖1

(22)
By comparing the AST objective function in (6) with
(22), we see that AST is essentially trying to minimize
a surrogate of (22) where the true loss 1

m

∑m
i=1 ` (fi, yi)

based on all the m vertex labels is substituted by the
empirical loss 1

l

∑
i∈T ` (fi, yi) based on l partially ob-

served vertex labels. The two loss functions are asymp-
totically equivalent as l→ m. This substitution is nec-
essary since in practice it is impossible for us to access
all of the m vertex labels during the training phase.

Notice there is an additional isotonic constraint θ1 ≥
θ2 . . . θm ≥ 0 for AST when minimizing the generaliza-
tion error bound (22) w.r.t. θ, indicating AST always
favours the smooth components over the non-smooth
ones in the final prediction f̂.

5 EXPERIMENTS

5.1 Methods for Comparison

We compare the performance of the following methods
in our experiments:

(a) SSL is the standard SSL in (1) with squared hinge
loss. This amounts to taking the ST in (4) to be
the identity function σ(x) = x.

(b) Diffusion is the ST-enhanced SSL described in
(4), where σ is parametrized as σ(x) = eβx a.k.a.
the heat diffusion kernel. Prior to SSL, β is em-
pirically estimated by maximizing the kernel align-
ment score [12] via grid search over [10−4, 104].

(c) GRF is another ST-enhanced SSL algorithm with
σ(x) = x+β, a.k.a. the kernel of Gaussian random
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field. As in Diffusion, β is empirically estimated
before SSL via kernel alignment over [10−5, 103].

(d) NKTA is nonparametric kernel-target alignment
[9], a two-step procedure for ST-enhanced SSL.
Prior to SSL, we find σ that maximizes the kernel
alignment score without assuming its parametric
form. Then, we solve (4) with the empirically es-
timated ST. We follow the formulation of [9] and
solve the QCQP subroutine using SeDuMi4.

(e) AST is our proposed method of Adaptive Spec-
tral Transform. Different from the aforementioned
two-step kernel alignment approaches, the optimal
ST is obtained along with SSL by solving the con-
vex optimization problem (6) via bundle method.

5.2 Experimental Settings

We compare AST against the baselines over the bench-
mark datasets from three different domains:

1. 20NewsGroup for document classification. We
use the PC-vs-Mac subset consisting of 1,993 doc-
uments with binary labels. Following [9], a sym-
metrized unweighted 10-nearest neighbor (10NN)
graph is constructed based on the cosine similar-
ity between documents.

2. Isolet for spoken letter recognition consisting of
7,797 instances from 26 classes 5. We construct a
10NN graph using the Euclidean distance between
the audio features.

3. MNIST for pattern recognition of the handwrit-
ten digits. We use the full training set consisting
of 60,000 images from 10 classes (digits 0-9). A
10NN graph is constructed based on the Euclidean
distance among the images.

For all datasets, parameter γ for manifold regulariza-
tion is fixed to be 10−3 for all methods as we find the
results are not sensitive to the choice of γ. Instead of
tuning the hyperparameter τ for our method AST, we
simply fix it to be 10−2 across all experiments. For all
datasets, only the top-50 Laplacian eigenvectors are
used for SSL. For AST we use the singular version as
described in Section 3.4 with k = 50.

Given a dataset of m data points, we randomly sample
l labeled vertices and predict the remaining unlabeled
m − l vertices with methods described in subsection
5.1. The training size l gradually increases from 24 to

4http://sedumi.ie.lehigh.edu/downloads
5Algorithms in subsection 5.1 can be trivially extended

to the multi-class case by decomposing the original problem
into multiple binary SSL tasks.

27, and the experiment is repeated for 30 times for each
given training size. The mean and standard variance
of the prediction accuracy are reported.

5.3 Results

The results are presented in Table 1, 2 and 3. For all
aforementioned baselines, the prediction accuracy im-
proves and the variance tends to decrease as we grad-
ually enlarge the training size.

Table 1: Results on 20NewsGroup (PC-vs-Mac)

Training Size 16 32 64 128

SSL
70.3
± 15.0

78.8
± 9.6

80.1
± 6.3

81.2
± 0.3

Diffusion
69.4
± 10.7

75.0
± 7.3

82.5
± 3.6

85.6
± 2.2

GRF
70.3
± 13.6

74.1
± 8.9

77.6
± 6.3

80.8
± 5.1

NKTA
72.0
± 17.5

75.0
± 15.1

82.0
± 10.8

87.6
± 4.6

AST
72.5
± 13.9

79.7
± 8.9

86.9
± 3.0

88.5
± 2.1

Table 2: Results on Isolet
Training Size 16 32 64 128

SSL
33.3
± 6.2

40.0
± 7.6

44.6
± 7.8

60.3
± 6.7

Diffusion
32.5
± 5.9

47.3
± 4.5

59.8
± 4.3

66.8
± 2.8

GRF
32.7
± 6.5

40.9
± 8.6

45.8
± 7.6

61.3
± 6.6

NKTA
32.4
± 6.7

40.7
± 6.7

48.9
± 9.5

64.7
± 5.2

AST
34.0
± 4.3

48.7
± 4.4

60.1
± 4.4

67.4
± 2.6

Table 3: Results on MNIST
Training Size 16 32 64 128

SSL
70.1
± 7.2

81.5
± 6.5

89.5
± 2.2

92.8
± 1.5

Diffusion
71.7
± 6.5

84.0
± 5.0

91.0
± 1.6

93.1
± 1.5

GRF
68.8
± 6.8

80.9
± 6.2

89.4
± 2.2

92.8
± 1.4

NKTA
61.3
± 16.9

77.0
± 10.0

91.0
± 2.5

94.3
± 0.9

AST
68.5
± 6.9

84.4
± 5.3

92.8
± 1.4

94.5
± 0.9

First, it is evident that all ST-enhanced methods out-
perform the traditional SSL on average, which justifies
the effectiveness of allowing richer graph transduction
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patterns over the data manifold.

Secondly, among two-step methods based on empirical
kernel-target alignment, it is evident that the nonpara-
metric method NKTA outperforms the two parametric
methods Diffusion and GRF, which justifies our previ-
ous argument that pre-specifying ST to be within some
common function family is too restrictive to accurately
capture the “true” graph transduction pattern.

Finally, between nonparametric methods, we observe
that the performance of AST dominates NKTA over all
datasets. This confirms our intuition that ST-finding
and SSL are able to mutually reinforce each other dur-
ing the joint optimization. The advantageous empiri-
cal performance of AST also justifies our previous the-
oretical analysis in Section 4.

We also notice AST yields much more stable perfor-
mance than NKTA. We conjecture that NKTA might
be subject to noise as it is trying to fit the target kernel
matrix—a quantity induced from only a very limited
amount of labels. On the other hand, AST is designed
to be adaptive to the problem structure—an arguably
more robust reference.

We plotted out the STs produced by different baseline
methods over MNIST when l = 128 in Figure 1. Each
sub-figure contains 30 curves in total corresponding
to the 30 different runs. From the figure we see that
while the STs produced by Diffusion and GRF are re-
stricted to specific parametric forms, STs produced by
NKTA and AST are more flexible. Figure 1 also shows
that STs produced by AST tend to be have lower vari-
ance than those produced by NKTA, which justifies
our previous stability claim about AST.

An empirical comparison of the speed of all the base-
line methods is presented in Table 4.

Table 4: Total CPU time taken by different methods
over the MNIST dataset when l = 128 given the top-50
eigenvalues/eigenvectors. The convergence tolerance ε
for AST is set to be 10−3.

Method SSL Diffusion GRF NKTA AST

Time (secs) 0.148 0.564 0.738 24.152 2.556

6 CONCLUSION

We proposed a new nonparametric framework for car-
rying out SSL and finding the Laplacian spectrum of
the data manifold simultaneously. Different from ex-
isting two-step approaches based on manual specifica-
tion or kernel-target alignment, our approach unifies
both tasks into a joint optimization problem and is
naturally adaptive to the problem structure. Our for-
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Figure 1: STs produced by methods described in sub-
section 5.1 on the MNIST dataset (each sub-figure con-
tains the results of 30 different runs), where the x-axis
and y-axis (log-scale) correspond to the original spec-
trum λi’s and the transformed spectrum σ(λi)’s, resp.

mulation enjoys convexity and can be efficiently solved
using the bundle method. Theoretical insights are pro-
vided to show that the proposed algorithm attempts
to asymptotically minimize the SSL generalization er-
ror bound w.r.t. the Laplacian spectrum. The merits
of our framework are verified by its advantageous em-
pirical performance over strong baselines.
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