A Supplementary Material

A.1 Automatic Relevance Determination and Kernel

In this work we use the exponentiated quadratic (also known as the “squared exponential”) ARD kernel:

\[K(x, x') = \prod_{r=1}^{R} \exp \left(-\frac{(x_r - x'_r)^2}{2\alpha_r} \right). \]

(18)

A.2 Derivation of lower bound

The lower bound Equation 6 is derived as follows:

\[
\log p(\mathcal{D}_{1:S}, A_{1:S} | \Theta) = \log \left[\int \prod_{t} \int dp(f_t | u_t) q(u_t) \, du_t \, \log [p(\mathcal{D}_{1:S}, A_{1:S} | f_{1:T})] \right] \\
= \int \prod_{t} \int dp(f_t | u_t) q(u_t) \, du_t \, \log \left[\frac{p(u_{1:T})}{q(u_{1:T})} \right] \\
= E_{q(f_{1:T})} [\log p(\mathcal{D}_{1:S}, A_{1:S} | f_{1:T})] - KL(q(u_{1:T}) \parallel p(u_{1:T})) \\
\triangleq \mathcal{L}(\mathcal{D}_{1:S}, A_{1:S}; \Theta).
\]

(19)

A.3 Definition of KL

The KL term in Equation 6 is the Kullback–Leibler divergence between \(T \) pairs of independent Gaussians distribution and is defined by:

\[
KL(q(u_{1:T}) \parallel p(u_{1:T})) = \frac{1}{2} \sum_{t} \left[\text{tr} \left(K_{zz}^{-1} S_t \right) + (\bar{u}_t - \mu)^T K_{zz}^{-1} (\bar{u}_t - \mu) - M + \log \left| K_{zz}^{-1} \right| \right].
\]

(20)

A.4 Definition of \(\tilde{G} \)

The function \(\tilde{G} \) that appears in the expectation \(E_{q(f_{1:T})} [\log f_{s,t,n}^2] = \int_{-\infty}^{\infty} \log(f_{s,t,n}^2) \mathcal{N}(f_{s,t,n}; \bar{f}_{s,t,n}, \sigma_{s,t,n}^2) \, df_{s,t,n} \), Equations 9, is a specialised version of the partial derivative of the confluent hyper-geometric function,

\[
i F_1(a, b, z) = \sum_{k=0}^{\infty} \frac{a_k z^k}{b_k k!},
\]

(21)

with respect to its first argument and is defined by:

\[
\tilde{G}(z) = i F_1^{(1,0,0)} \left(0, \frac{1}{2}, z \right) = 2z \sum_{j=0}^{\infty} \frac{j! z^j}{(2j)(1/2)^{2j}},
\]

(22)

where \((\cdot)_j\) denotes the rising Pochhammer series \((a)_0 = 1, (a)_j = a(a+1)(a+2) \ldots (a+j-1)\).

A.5 Definition of \(\Psi_{zz} \)

For the ARD Kernel the function \(\Psi(z, z') = \int_{x'} K(z, x)K(x, z') \, dx \) can be computed in closed form:

\[
\Psi(z, z') = \prod_{r=1}^{R} \sqrt{\frac{\pi \alpha_r}{2}} \exp \left(-\frac{(z_r - z'_r)^2}{4\alpha_r} \right) \left[\text{erf} \left(\frac{z_r - \tilde{z}_r}{\sqrt{\alpha_r}} \right) - \text{erf} \left(\frac{z_r - \tilde{z}_r}{\sqrt{\alpha_r}} \right) \right],
\]

(23)

where \(\tilde{z}_r = \frac{1}{2}(z_r + z'_r) \).
A.6 Detailed Derivation of the Collapsed Bound

The set of all possible assignments is:
\[\{ A_S^{(1)} = 1, \ldots, A_S^{(N_s)} = 1 \}, \ldots, \{ A_S^{(1)} = T, \ldots, A_S^{(N_s)} = T \} \],

In the collapsed bound we sum over all the possible assignments to each of the allocation variables:
\[
\log p(\mathcal{D}_{1:S} | \Theta) = \log \sum_{A_{1:S}} p(\mathcal{D}_{1:S}, A_{1:S} | \Theta) \\
\geq \log \sum_{A_{1:S}} \exp (\mathcal{L}(\mathcal{D}_{1:S}, A_{1:S} | \Theta)) \\
= \log \sum_{A} \exp \left(\mathfrak{B} + \sum_{a} \sum_{n} \sum_{t} \mathbb{1}\{A_{a}^{(n)} = t\} A_{s,t,n} \right) \\
= \log \left[\exp (\mathfrak{B}) \times \prod_{a} A_{a}^{(n)} \right] \\
= \log \left[\exp (\mathfrak{B}) \times \prod_{a} A_{a}^{(n)} \right] \\
= \mathfrak{B} + \sum_{a} \sum_{n} \log \sum_{t} \exp A_{s,t,n} \\
\triangleq \mathcal{L}(\mathcal{D}_{1:S} | \Theta)
\]

A.7 Benchmark

The benchmark kernel smoother optimises the leave-one-out training objective:
\[\Sigma_* = \arg\max \Sigma \sum_{i=1}^{N_s} \log \sum_{j \neq i}^{N_s} \mathcal{N}_\Sigma(x^{(s,i)}; x^{(s,j)}, \Sigma). \]

We can construct the test log-likelihood for the held-out datasets as:
\[
\log p(\mathcal{D}_{1:S} | \mathcal{D}_{1:S}, \Sigma_* | \Theta) = \sum_{s=1}^{S} \sum_{n=1}^{N_s} \log \sum_{t=1}^{T} \sum_{a} a_{s,t} \ln b_{t,m(h,n)} - |\Delta x| \sum_{s=1}^{S} \sum_{t=1}^{T} \sum_{b=1}^{B} a_{s,t} \ln b_{t,b}
\]

where \(m(h,n) \) is a function that maps a test data point \(\tilde{x}^{(h,n)} \) into the \(d^{th} \) grid-cell. For the ct case the weight matrix \(A \) is optimised for the test data.

A.8 Mixed Continuous Discrete Co-ordinate Spaces

This \(\Psi \)-function in the mixed co-ordinate space case is \(\Psi(z_r, z'_r) = \sum_{r} K(z_r, x_r)K(x_r, z_r) \). When using Kronecker structure \(\Psi_{z_2 z_2} \) is simply \(K_{z_2 z_2} K_{z_2 z_2} \) if \(Z \) contains all feeding station locations and the discrete dimension is \(r = 2 \).

A.9 Adapting LPPA to Model Dynamic Interaction Networks

LPPA can be used to model dynamic pairwise interactions between \(V \) nodes, where is each sender \(i \) and receiver \(j \) is associated with a set of observations \(\{ D_{ij} \}_{i,j=1} \) and a rate functions \(\lambda_{i,j} \). A straight forward approach is a triple factorisation typical of network models (Schmidt and Morup, 2013). Each rate function is constructed as \(\lambda_{i,j} = \sum_{w=1}^{C} \sum_{c=1}^{C} \Omega_{i,v} f_{c,w} \Omega_{j,w} \), where \(C \) is the number of “communities”.

To modify LPPA we simply need to map \(D_{ij} \) and \(\lambda_{i,j} \) to \(D_s \) and \(\lambda_s \), to map \(f_{c,w} \) to \(f_{c} \) and compute \(\gamma_{s,t} \) from \(\Omega_{i,v} \) and \(\Omega_{j,w} \). These mappings will be different depending on whether we wish to model a symmetric network with \(D_{ij} = D_{ji} \), and/or a network in which reflexive interaction is by definition empty, i.e. \(D_{ii} = 0 \), thus making no contribution to the likelihood.

Since the cost of this algorithm increases quadratically as \(P = C^2 \), we might also consider a simpler model in which only intra-community interaction is allowed. In this case we model the rate function as \(\lambda_{i,j} = \sum_{t} \Omega_{i,t} f_{t} \Omega_{j,t} \) for symmetric networks, or \(\lambda_{i,j} = \sum_{t} \Omega_{i,t} f_{t} Y_{j,t} \) where asymmetry is introduced via a third factor \(Y \).