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A.1 Automatic Relevance Determination ard Kernel

In this work we use the exponentiated quadratic (also known as the “squared exponential”) ard kernel:
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A.2 Derivation of lower bound

The lower bound Equation 6 is derived as follows:
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A.3 Definition of KL

The KL term in Equation 6 is the Kullback–Leibler divergence between T pairs of independent Gaussians
distribution and is defined by:
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A.4 Definition of G̃

The function G̃ that appears in the expectation Eq(ft)[log f
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Equations 9, is a specialised version of the partial derivative of the confluent hyper-geometric function,
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with respect to its first argument and is defined by:
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where (·)j denotes the rising Pochhammer series (a)0 = 1, (a)j = a(a+ 1)(a+ 2) . . . (a+ j − 1).

A.5 Definition of Ψzz

For the ard Kernel the function Ψ(z, z′) =
∫

X
K(z,x)K(x, z′)dx can be computed in closed form:
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where z̄r = 1
2 (zr + z′r).
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A.6 Detailed Derivation of the Collapsed Bound

The set of all possible assignments is:
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,

In the collapsed bound we sum over all the possible assignments to each of the allocation variables:
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A.7 Benchmark

The benchmark kernel smoother optimises the leave-one-out training objective:
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We can construct the test log-likelihood for the held-out datasets as:
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where m(h, n) is a function that maps a test data point x̃(h,n) into the dth grid-cell. For the ct case the weight
matrix A is optimised for the test data.

A.8 Mixed Continuous Discrete Co-ordinate Spaces

This Ψ-function in the mixed co-ordinate space case is Ψ(zr, z′r) =
∑

xr
K(zr, xr)K(xr, zr). When using Kro-

necker structure Ψz2z2 is simply Kz2z2Kz2z2 if Z contains all feeding station locations and the discrete dimension
is r = 2.

A.9 Adapting LPPA to Model Dynamic Interaction Networks

lppa can be used to model dynamic pair-wise interactions between V nodes, where is each sender i and receiver
j is associated with a set of observations {Di,j}Vi,j=1 and a rate functions λi,j . A straight forward approach is a
triple factorisation typical of network models (Schmidt and Morup, 2013). Each rate function is constructed as

λi,j =
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w=1 Ωi,vf

2
v,wΩj,w, where C is the number of “communities”.

To modify lppa we simply need to map Di,j and λi,j to Ds and λs, to map f2
v,w to f2

t and compute γs,t from Ωi,v

and Ωj,w. These mappings will be different depending on whether we wish to model a symmetric network with
Di,j = Dj,i, and/or a network in which reflexive interaction is by definition empty, i.e. Di,i = ∅, thus making no
contribution to the likelihood.

Since the cost of this algorithm increases quadratically as P = C2, we might also consider a simpler model in which
only intra-community interaction is allowed. In this case we may model the rate function as λi,j =
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for symmetric networks, or λi,j =
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t Υj,t where asymmetry is introduced via a third factor Υ.


