A Supplementary Material

A. 1 Automatic Relevance Determination ard Kernel

In this work we use the exponentiated quadratic (also known as the "squared exponential") ARD kernel:

$$
\begin{equation*}
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\prod_{r=1}^{R} \exp \left(-\frac{\left(x_{r}-x_{r}^{\prime}\right)^{2}}{2 \alpha_{r}}\right) \tag{18}
\end{equation*}
$$

A. 2 Derivation of lower bound

The lower bound Equation 6 is derived as follows:

$$
\begin{align*}
& \log p\left(\mathscr{D}_{1: S}, A_{1: S} \mid \Theta\right)= \log \left[\iint p\left(\mathscr{D}_{1: S}, A_{1: S} \mid f_{1: T}\right) \mathrm{d} p\left(f_{1: T} \mid \mathbf{u}_{1: T}\right) p\left(\mathbf{u}_{1: T}\right) \frac{q\left(\mathbf{u}_{1: T}\right)}{q\left(\mathbf{u}_{1: T}\right)} \mathrm{d} \mathbf{u}_{1: T}\right] \tag{19}\\
& \geq \int \prod_{t} \int \mathrm{~d} p\left(f_{t} \mid \mathbf{u}_{t}\right) q\left(\mathbf{u}_{t}\right) \mathrm{d} \mathbf{u}_{t} \log \left[p\left(\mathscr{D}_{1: S}, A_{1: S} \mid f_{1: T}\right)\right] \\
&+\iint \mathrm{d} p\left(f_{1: T} \mid \mathbf{u}_{1: T}\right) q\left(\mathbf{u}_{1: T}\right) \log \left[\frac{p\left(\mathbf{u}_{1: T}\right)}{q\left(\mathbf{u}_{1: T}\right)}\right] \mathrm{d} \mathbf{u}_{1: T} \tag{20}\\
&= \mathbb{E}_{q\left(f_{1: T}\right)}\left[\log p\left(\mathscr{D}_{1: S}, A_{1: S} \mid f_{1: T}\right)\right]-\operatorname{KL}\left(q\left(\mathbf{u}_{1: T}\right) \| p\left(\mathbf{u}_{1: T}\right)\right) \tag{21}\\
& \triangleq \mathcal{L}\left(\mathscr{D}_{1: S}, A_{1: S} ; \Theta\right) \tag{22}
\end{align*}
$$

A. 3 Definition of KL

The KL term in Equation 6 is the Kullback-Leibler divergence between T pairs of independent Gaussians distribution and is defined by:

$$
\begin{equation*}
\operatorname{KL}\left(q\left(\mathbf{u}_{1: T}\right) \| p\left(\mathbf{u}_{1: T}\right)\right)=\frac{1}{2} \sum_{t}\left[\operatorname{tr}\left(\mathbf{K}_{z z}^{-1} \mathbf{S}_{t}\right)+\left(\overrightarrow{1} \bar{u}_{t}-\mathbf{m}\right)^{\top} \mathbf{K}_{z z}^{-1}\left(\overrightarrow{1} \bar{u}_{t}-\mathbf{m}\right)-M+\log \frac{\left|\mathbf{K}_{z z}\right|}{\left|\mathbf{S}_{t}\right|}\right] \tag{23}
\end{equation*}
$$

A. 4 Definition of \tilde{G}

The function \tilde{G} that appears in the expectation $\mathbb{E}_{q\left(f_{t}\right)}\left[\log f_{s, t, n}^{2}\right]=\int_{-\infty}^{\infty} \log \left(f_{s, t, n}^{2}\right) \mathcal{N}\left(f_{s, t, n} ; \tilde{\mu}_{s, t, n}, \tilde{\sigma}_{s, t, n}^{2}\right) \mathrm{d} f_{s, t, n}$, Equations 9, is a specialised version of the partial derivative of the confluent hyper-geometric function,

$$
\begin{equation*}
{ }_{1} F_{1}(a, b, z)=\sum_{k=0}^{\infty} \frac{(a)_{k} z^{k}}{(b)_{k} k!}, \tag{24}
\end{equation*}
$$

with respect to its first argument and is defined by:

$$
\begin{equation*}
\tilde{G}(z)={ }_{1} F_{1}^{(1,0,0)}\left(0, \frac{1}{2}, z\right)=2 z \sum_{j=0}^{\infty} \frac{j!z^{j}}{(2)_{j}\left(1 \frac{1}{2}\right)_{j}} \tag{25}
\end{equation*}
$$

where $(\cdot)_{j}$ denotes the rising Pochhammer series $(a)_{0}=1,(a)_{j}=a(a+1)(a+2) \ldots(a+j-1)$.

A. 5 Definition of $\Psi_{z z}$

For the ARD Kernel the function $\Psi\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\int_{\mathcal{X}} K(\mathbf{z}, \mathbf{x}) K\left(\mathbf{x}, \mathbf{z}^{\prime}\right) \mathrm{d} \mathbf{x}$ can be computed in closed form:

$$
\begin{equation*}
\Psi\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\prod_{r=1}^{R} \frac{\sqrt{\pi \alpha_{r}}}{2} \exp \left(-\frac{\left(z_{r}-z_{r}^{\prime}\right)^{2}}{4 \alpha_{r}}\right)\left[\operatorname{erf}\left(\frac{\left.\bar{z}_{r}-\mathcal{X}_{r}^{\mathrm{Min}}\right)}{\sqrt{\alpha_{r}}}\right)-\operatorname{erf}\left(\frac{\bar{z}_{r}-\mathcal{X}_{r}^{\mathrm{Max}}}{\sqrt{\alpha_{r}}}\right)\right] \tag{26}
\end{equation*}
$$

where $\bar{z}_{r}=\frac{1}{2}\left(z_{r}+z_{r}^{\prime}\right)$.

A. 6 Detailed Derivation of the Collapsed Bound

The set of all possible assignments is:

$$
\left\{\left\{A_{1}^{(1)}=1, \ldots, A_{S}^{\left(N_{S}\right)}=1\right\}, \ldots,\left\{A_{1}^{(1)}=T, \ldots, A_{S}^{\left(N_{S}\right)}=T\right\}\right\}
$$

In the collapsed bound we sum over all the possible assignments to each of the allocation variables:

$$
\begin{align*}
\log p\left(\mathscr{D}_{1: S} \mid \Theta\right) & =\log \sum_{A_{1: S}} p\left(\mathscr{D}_{1: S}, A_{1: S} \mid \Theta\right) \tag{27}\\
& \geq \log \sum_{A_{1: S}} \exp \left(\mathcal{L}\left(\mathscr{D}_{1: S}, A_{1: S} ; \Theta\right)\right) \tag{28}\\
& =\log \sum_{A} \exp \left(\mathfrak{B}+\sum_{s} \sum_{n} \sum_{t} \mathbb{1}\left\{A_{s}^{(n)}=t\right\} \mathfrak{A}_{s, t, n}\right) \tag{29}\\
& =\log \left[\exp (\mathfrak{B}) \times \sum_{A_{1}^{(1)}=1}^{T} \ldots \sum_{A_{S}^{(N S)}=1}^{T} \prod_{s} \prod_{n} \exp \left(\sum_{t} \mathbb{1}\left\{A_{s}^{(n)}=t\right\} \mathfrak{A}_{s, t, n}\right)\right] \tag{30}\\
& =\log \left[\exp (\mathfrak{B}) \times \prod_{s} \prod_{n} \sum_{A_{s}^{(n)}=1}^{T} \exp \left(\sum_{t} \mathbb{1}\left\{A_{s}^{(n)}=t\right\} \mathfrak{A}_{s, t, n}\right)\right] \tag{31}\\
& =\log \left[\exp (\mathfrak{B}) \times \prod_{s} \prod_{n} \sum_{t} \exp \left(\mathfrak{A}_{s, t, n}\right)\right] \tag{32}\\
& =\mathfrak{B}+\sum_{s} \sum_{n} \log \sum_{t} \exp \mathfrak{A}_{s, t, n} \tag{33}\\
& \triangleq \mathcal{L}\left(\mathscr{D}_{1: S} ; \Theta\right) \tag{34}
\end{align*}
$$

A. 7 Benchmark

The benchmark kernel smoother optimises the leave-one-out training objective:

$$
\begin{equation*}
\Sigma_{s}^{*}=\underset{\Sigma}{\operatorname{argmax}} \sum_{i=1}^{N_{s}} \log \sum_{j \neq i=1}^{N_{s}} \mathcal{N}_{\mathcal{X}}\left(\mathbf{x}^{(s, i)} ; \mathbf{x}^{(s, j)}, \Sigma\right) \tag{35}
\end{equation*}
$$

We can construct the test log-likelihood for the held-out datasets as:

$$
\log p\left(\mathscr{H}_{1: S} \mid \mathscr{D}_{1: S}, \Sigma_{1: S}^{*}\right)=\sum_{s=1}^{S} \sum_{n=1}^{\tilde{N}_{h}} \log \sum_{t=1}^{T} a_{s, t} b_{t, m(h, n)}-|\Delta \mathbf{x}| \sum_{s=1}^{S} \sum_{t=1}^{T} \sum_{b=1}^{B} a_{s, t} b_{t, b}
$$

where $m(h, n)$ is a function that maps a test data point $\tilde{\mathbf{x}}^{(h, n)}$ into the $d^{\text {th }}$ grid-cell. For the CT case the weight matrix \mathbf{A} is optimised for the test data.

A. 8 Mixed Continuous Discrete Co-ordinate Spaces

This Ψ-function in the mixed co-ordinate space case is $\Psi\left(z_{r}, z_{r}^{\prime}\right)=\sum_{x_{r}} K\left(z_{r}, x_{r}\right) K\left(x_{r}, z_{r}\right)$. When using Kronecker structure $\Psi_{z_{2} z_{2}}$ is simply $\mathbf{K}_{z_{2} z_{2}} \mathbf{K}_{z_{2} z_{2}}$ if \mathcal{Z} contains all feeding station locations and the discrete dimension is $r=2$.

A. 9 Adapting LPPA to Model Dynamic Interaction Networks

LPPA can be used to model dynamic pair-wise interactions between V nodes, where is each sender i and receiver j is associated with a set of observations $\left\{\mathcal{D}_{i, j}\right\}_{i, j=1}^{V}$ and a rate functions $\lambda_{i, j}$. A straight forward approach is a triple factorisation typical of network models (Schmidt and Morup, 2013). Each rate function is constructed as $\lambda_{i, j}=\sum_{v=1}^{C} \sum_{w=1}^{C} \Omega_{i, v} f_{v, w}^{2} \Omega_{j, w}$, where C is the number of "communities".
To modify LPPA we simply need to map $\mathcal{D}_{i, j}$ and $\lambda_{i, j}$ to \mathcal{D}_{s} and λ_{s}, to map $f_{v, w}^{2}$ to f_{t}^{2} and compute $\gamma_{s, t}$ from $\Omega_{i, v}$ and $\Omega_{j, w}$. These mappings will be different depending on whether we wish to model a symmetric network with $\mathcal{D}_{i, j}=\mathcal{D}_{j, i}$, and/or a network in which reflexive interaction is by definition empty, i.e. $\mathcal{D}_{i, i}=\emptyset$, thus making no contribution to the likelihood.
Since the cost of this algorithm increases quadratically as $P=C^{2}$, we might also consider a simpler model in which only intra-community interaction is allowed. In this case we may model the rate function as $\lambda_{i, j}=\sum_{t} \Omega_{i, t} f_{t}^{2} \Omega_{j, t}$ for symmetric networks, or $\lambda_{i, j}=\sum_{t} \Omega_{i, t} f_{t}^{2} \Upsilon_{j, t}$ where asymmetry is introduced via a third factor Υ_{t}.

