Latent Poisson Process Allocation

A Supplementary Material

A.1 Automatic Relevance Determination ard Kernel

In this work we use the exponentiated quadratic (also known as the “squared exponential”) ARD kernel:
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A.2 Derivation of lower bound

The lower bound Equation 6 is derived as follows:

log p(Z1:5, A1.s]0) = log { / / p<@1:s,A1:s|f1;T>dp<f1:Tu1:T>p<u1:T>ZEEi§§ duyr (19)

> [TL, [ antsi 100 atw) duc tog[p(Zrs Avs | fuo)]
p(ul:T)
+//dp(f1:T | uy.r) q(ur.r) log{q(um)} duy.p (20)
= Eg(pr.m[log (1.5, Avs | frr)] — KL(q(urr) || p(urr)) (21)
£ C(@LSa Ai.s; 9)~ (22)

A.3 Definition of KL

The KL term in Equation 6 is the Kullback-Leibler divergence between T pairs of independent Gaussians
distribution and is defined by:
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A.4 Definition of G

The function G that appears in the expectation E a(fy[log f? tn) = ffo log( f2 tn) N (fstns syt 6§7t7n) dfs.tn,
Equations 9, is a specialised version of the partial derivative ‘of the confluent hyper—geometric function,
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with respect to its first argument and is defined by:
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where (-); denotes the rising Pochhammer series (a)g =1, (a); =ala+1)(a+2)...(a+j —1).
A.5 Definition of ¥,
For the ARD Kernel the function ¥(z,z') = [, K Py K(x,z’)dx can be computed in closed form:
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where z, = $(z, + 2/.).
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A.6 Detailed Derivation of the Collapsed Bound

The set of all possible assignments is:
1 N 1 N,
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In the collapsed bound we sum over all the possible assignments to each of the allocation variables:
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A.7 Benchmark

The benchmark kernel smoother optimises the leave-one-out training objective:
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We can construct the test log-likelihood for the held-out datasets as:
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where m(h,n) is a function that maps a test data point x(") into the d*™® grid-cell. For the CT case the weight
matrix A is optimised for the test data.

A.8 Mixed Continuous Discrete Co-ordinate Spaces

This W-function in the mixed co-ordinate space case is W(z,, z.) = >, K(2,7,)K (2., 2:). When using Kro-
necker structure V,, ,, is simply K, ., K., ., if Z contains all feeding station locations and the discrete dimension
isr=2.

A.9 Adapting LPPA to Model Dynamic Interaction Networks

LPPA can be used to model dynamic pair-wise interactions between V nodes, where is each sender ¢ and receiver
j is associated with a set of observations {Di’j}z‘{ j—1 and a rate functions A; ;. A straight forward approach is a
triple factorisation typical of network models (Schmidt and Morup, 2013). Each rate function is constructed as
Xij = Zle 2821 Qio f2 02w, Where C' is the number of “communities”.

To modify LPPA we simply need to map D; ; and A; ; to D and \g, to map faw to f# and compute v, ¢ from €,
and €2 ,,. These mappings will be different depending on whether we wish to model a symmetric network with
D; j = Dj,, and/or a network in which reflexive interaction is by definition empty, i.e. D;; = (J, thus making no
contribution to the likelihood.

Since the cost of this algorithm increases quadratically as P = C?, we might also consider a simpler model in which
only intra-community interaction is allowed. In this case we may model the rate function as X\, ; = >, Q¢ f2Q, +
for symmetric networks, or A\j j = >, Qi J27T;+ where asymmetry is introduced via a third factor Y.



