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A Tempered Partition Functions

Variational Tempering requires that we precompute the tem-
pered partition functions for a finite set of pre-specified
temperatures:

C(T ) =
∫

dβ p(β )
N

∏
i=1

(∫
dxidzi p(xi,zi|β )1/T

)
.(1)

We first show how to reduce this to an integral only over
the globals. Because the size of the remaining integration is
independent of N, it is tractable by Monte-Carlo integration
with a few hundred to thousand samples.

A.1 Generic model.

Here we consider a generic latent variable model of the
SVI class, i.e. containing local and global hidden variables.
The following calculation reduces the original integral over
global and local variables to an integral over the global
variables alone:

C(T ) =
∫

dxdzdβ p(β )p(z,x|β )1/T (2)

=
∫

dβ p(β )
N

∏
i=1

(∫
dxi dzi p(xi,zi|β )1/T

)
=

∫
dβ p(β )

N

∏
i=1

(∫
dzi dxi

×exp{T−1
β t(xi,zi)−T−1al(β )}

)
.

We now use the following identity:∫
dzi dxi exp{T−1

β t(xi,zi)−T−1al(β )}

=
∫

dzi dxi e T−1β t(xi,zi)−T−1al(β )+al(T−1β )−al(T−1β )

= e−T−1al(β )+al(T−1β )
∫

dzi dxi e T−1β t(xi,zi)−al(T−1β )︸ ︷︷ ︸
=1

= exp{−T−1al(β )+al(T−1
β )}.

Note that the integral is independent of i, as all data points
contribute the same amount to the tempered partition func-
tion. Combining the last 2 equations yields

C(T ) =
∫

dβ p(β )exp{−NT−1al(β )+Nal(T−1
β )}.

The complexity of computing the remaining integral does
not depend on the number of data points, and therefore
it is tractable with simple Monte-Carlo integration. We
approximate the integral as is

logC(T )≈ log
1
Ns

∑
β∼p(β )

exp
{
−NT−1al(β )+Nal(T−1

β )
}
. (3)

For the models under consideration, we found that typically
less than 100 samples suffice. In more complicated setups,
more advances methods to estimate the Monte Carlo integral
can be used, such as annealed importance sampling. While
we typically precompute the tempered partition function
for about 100 values of T, the corresponding computation
could easily be incorporated into the variational tempering
algorithm.

Analytic approximation. Instead of precomputing the
log partition function, one could also use an analytic ap-
proximation for sparse priors with a low variance (this ap-
proximation was not used in the paper). In this case, we can



Stephan Mandt, James McInerney

MAP-approximate the β−integral, which results in

logC(T ) ≈ N
(
T−1al(β

∗)−al(T−1
β
∗)
)
. (4)

For large data, this approximation gets better and yields an
analytic result.

B Latent Dirichlet Allocation

B.1 Tempered partition function

We now demonstrate the calculation of the tempered par-
tition function on the example of Latent Dirichlet Alloca-
tion (FFM). We use the multinomial representation of LDA
where the topic assignments are integrated out,

p(w,β ,θ) = p(β )p(θ)∏
nd

(
∑
k

θdkβkwdn

)
. (5)

The probability that word wdn is the multinomial parameter
∑k θdkβkwdn . In this formulation, LDA relates to probabilis-
tic matrix factorization models.

LDA uses Dirichlet priors p(θ )=∏d Dir(θd |α) and p(β )=
∏k Dir(βk|η) for the global variational parameters β and
the per-document topic proportions θ .

The inner "integral" over wdn is just the sum over the multi-
nomial mean parameters,

∫
dwdn p(wdn|θd ,β )

1/T =
V

∑
v=1

(
∑
k

θdkβkv

)1/T

. (6)

The tempered partition function for LDA is therefore

C(T ) =
∫

dβ p(β )
D

∏
d=1

∫
dθd p(θd)

∑
v

(
∑
k

θdkβkv

)1/T
Nd

≈
∫

dβ p(β )

∫ dθ p(θ)

∑
v

(
∑
k

θkβkv

)1/T
ND

,

where as usual N = W/D is the approximate number of
words per document. The corresponding Monte-Carlo ap-
proximation for the log partition function is

logC(T ) ≈ log
1

Nβ
∑

β∼p(β )
exp{D log

1
Nθ

(7)

× ∑
θ∼p(θ)

exp(N log∑
v
(∑

k
θkβkv)

1/T ))}.

Nθ and Nβ are the number of samples from p(θ) and p(β ),
respectively. To bound the log partition function we can
now apply Jensen’s inequality twice: Once for the concave
logarithm, and once in the other direction for the convex

functions x→ xD and x→ xN :

logC(T )≥ N ·D
∫

dβ p(β )
∫

dθ p(θ) log∑
v

(
∑
k

θkβkv

)1/T

, (8)

logC(T )≤ N ·D log
∫

dβ p(β )
∫

dθ p(θ)∑
v

(
∑
k

θkβkv

)1/T

.

We see that the log partition function scales with the total
number of observed words N ×D, This is conceptually
important because otherwise logC(T ) would have no effect
on the updates in the limit of large data sets.

B.2 Variational updates

In its formulation with the local assignment variables zn, the
LDA model is

p(w,z,β ,θ) = p(β )p(θ) ∏
n,d,k

exp{zdnk(logθdk + logβkwdn)}.

Let Ntot be overall the number of words in the corpus, Nd
the number of words in document d, D the number of
documents, and K the number of topics. We have that
∑

D
d=1 Nd = Ntot . The tempered model becomes

p(w,z,β ,θ ,y) = p(β )p(θ)∏
m
×

exp{ym

[
∑

n,d,k
zdnk

logθdk + logβkwdn

Tm
− logC(Tm)

]
}.

where m indexes temperatures.

Variational updates. We obtain the following optimal
variational distributions from the complete conditionals (all
up to constants). We replaced sums over word indices n
by sums over the vocabulary indices v, weighted with word
counts ndv:

logq∗(zdvk) = zdvkndvE[1/Ty](E[logθdk]+E[logβkv]),

(9)

logq∗(ym) = ym

[
1

Tm
∑
vk

ndvE[zdvk](E[logθdk]

+ E[logβkv])−E[logC(Ty)]] ,

logq∗(θdk) = logθdk

(
∑
v

ndvE[1/Ty]E[zdvk]+α

)
,

logq∗(βkv) = logβkv

(
∑
d

ndvE[1/Ty]E[zdvk]+η

)
.

C Tempered Partition function for the
Factorial Mixture Model

We apply variational tempering to the factorial mixture
model (FMM) as described in the main paper,

p(X,Z,µ,π|α,µ0) = p(X|Z,µ,σn)p(Z|π)p(µ|σµ).
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For convenience, we define the assigned cluster means for
each data point:

µn(Z) = ∑
k

Znkµk. (10)

The data generating distribution for the FMM is now a
product over D−dimensional Gaussians:

p(X|Z,µ,σn) = ∏
n

N (Xn; µn(Z),σn1D) (11)

The local conditional distribution also involves the prior
∏n p(Zn|π) of hidden assignments,

p(X,Z|µ,σn) = ∏
n

N (Xn; µn(Z),σn1D)p(Zn|π).

Here is the tempered local conditional:

p(X,Z|µ,π)1/T = ∏
n

1√
(2πσn)D

×exp
{
− 1

2σnT ∑
n
(Xn−µn)

>(Xn−µn)+
1
T

log p(Zn|π)
}
.

When computing the tempered partition function, we need
to integrate out all variables, starting with the locals. We
can easily integrate out X; this removes the dependence on
µ which only determines the means of the Gaussians:

C(T,Z,π) =
∫

dDX p(X,Z|µ,π)1/T (12)

=

(
N

∏
n=1

√
(2πσnT )D√
(2πσn)D

)
∏

n
p(Zn|π)1/T

=
√

T
ND

∏
n

p(Zn|π)1/T .

Hence, integrating the tempered Gaussians removes the
µ−dependence and gives an analytic contribution

√
T

ND
to

the tempered partition function. It remains to compute

C(T ) =
√

T
ND
∫

dZ∏
n

p(Zn|π)1/T . (13)

Since the Bernoulli variables are discrete, the last marginal-
ization yields

∑
{Znk}

∏
nk

π
Znk/T
k (1−πk)

(1−Znk)/T

= ∏
nk

∑
{Znk=±1}

π
Znk/T
k (1−πk)

(1−Znk)/T

= ∏
k

(
π

1/T
k +(1−πk)

1/T
)N

. (14)

Finally, the log tempered partition function is

logC(T ) =
1
2

ND log(T )+N ∑
k

log
(

π
1/T
k +(1−πk)

1/T
)

=
1
2

ND log(T )+NK log
(

π
1/T +(1−π)1/T

)
.

In the last line we used that the hyperparameters πk ≡ π are
isotropic in K−space.


