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Abstract

The variational framework for learning in-
ducing variables (Titsias, 2009a) has had a
large impact on the Gaussian process liter-
ature. The framework may be interpreted
as minimizing a rigorously defined Kullback-
Leibler divergence between the approximat-
ing and posterior processes. To our knowl-
edge this connection has thus far gone unre-
marked in the literature. In this paper we
give a substantial generalization of the liter-
ature on this topic. We give a new proof of
the result for infinite index sets which allows
inducing points that are not data points and
likelihoods that depend on all function val-
ues. We then discuss augmented index sets
and show that, contrary to previous works,
marginal consistency of augmentation is not
enough to guarantee consistency of varia-
tional inference with the original model. We
then characterize an extra condition where
such a guarantee is obtainable. Finally we
show how our framework sheds light on in-
terdomain sparse approximations and sparse
approximations for Cox processes.

1 Introduction

The variational approach to inducing point selection
of Titsias (2009a) has been highly influential in the
active research area of scalable Gaussian process ap-
proximations. The chief advantage of this particular
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framework is that the inducing points positions are
variational parameters rather than model parameters
and as such are protected from overfitting. In this pa-
per we argue that whilst this is true, it may not be
for exactly the reasons previously thought. The origi-
nal framework is applied to conjugate likelihoods and
has been extended to non-conjugate likelihoods (Chai,
2012; Hensman et al., 2015). An important advance in
the use of variational methods was their combination
with stochastic gradient descent (Hoffman et al., 2013)
and the variational inducing point framework has been
combined with such methods in the conjugate (Hens-
man et al., 2013) and non-conjugate cases (Hensman
et al., 2015). The approach has also been successfully
used to perform scalable inference in more complex
models such as the Gaussian process latent variable
model (Titsias and Lawrence, 2010; Damianou et al.,
2015) and the related Deep Gaussian process (Dami-
anou and Lawrence, 2013; Hensman and Lawrence,
2014).

To be more concrete let us set up some notation. Con-
sider a function f mapping an index set X to the set
of real numbers f : X 7→ R. Entirely equivalently we
may write f ∈ RX or use sequence notation (f(x))x∈X .
We also define set indexing of the function. If S ⊆ X
is some subset of the index set, then fS := (f(x))x∈S .
We can put this notation to immediate use by defin-
ing a subset D ⊆ X of the index set, of size N , that
corresponds to those input points for which we have
observed data. The corresponding function values will
then be denoted fD. For simplicity, we will initially as-
sume that we have one, possibly noisy, possibly non-
conjugate observation y per input data point which
will together form a set Y .

Gaussian processes allow us to define a prior over func-
tions f . After we observe the data we will have some
posterior which we wish to approximate with a sparse
distribution. At the heart of the variational induc-
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ing point approximation is the idea of ‘augmentation’
that appears in the original paper and many subse-
quent ones. We choose to monitor a set Z ⊆ X of size
M . These points may have some overlap with the in-
put data points D but to give a computational speed
up M will need to be less than the number of data
points N . The Kullback-Leibler divergence given as
an optimization criterion in Titsias’ original paper is

KL[q(fD\Z , fZ)||p(fD\Z , fZ |Y )]

=

∫
q(fD\Z , fZ) log

{
q(fD\Z , fZ)

p(fD\Z , fZ |Y )

}
dfD\ZdfZ .

(1)

The variational distribution at those data points which
are not also inducing points is taken to have the form:

q(fD\Z , fZ) := p(fD\Z |fZ)q(fZ) (2)

where p(fD\Z |fZ) is the prior conditional and q(fZ) is
a variational distribution on the inducing points only.
Under this factorization, for a conjugate likelihood, the
optimal q(fZ) has an analytic Gaussian solution (Tit-
sias, 2009a). The non-conjugate case was then stud-
ied in subsequent work (Chai, 2012; Hensman et al.,
2015). In both cases the sparse approximation requires
only O(NM2) rather than the O(N3) required by ex-
act methods in the conjugate case, or many commonly
used non-conjugate approximations that don’t assume
sparsity.

The augmentation is justified by arguing that the
model remains marginally the same when the inducing
points are added. It is therefore suggested that vari-
ational inference in the augmented model, including
for the parameters of said augmentation, is equivalent
to variational inference in the original model, i.e that
the inducing point positions can be considered to be
variational parameters and are consequently protected
from overfitting. For example see Titsias’ original con-
ference paper (Titsias, 2009a), section 3 or the longer
technical report version (Titsias, 2009b), section 3.1.
In the common case in the literature where the ar-
gument proceeds by applying Jensen’s inequality to
the marginal likelihood as, for example, in Hensman
et al (2015) equations (6) and (17), the slack of the
bound on the marginal likelihood is precisely the KL-
divergence (1). Therefore maximizing such a bound
is exactly equivalent to minimizing this objective and
the considerations that follow all apply.

In fact in this paper, whilst we applaud the excellent
prior work, we will show that variational inference in
an augmented model is not equivalent to variational
inference in the original model. Without this justifica-
tion, the KL-divergence in equation (1) could seem to

be a strange optimization target. The KL-divergence
has the inducing variables on both sides, so it might
seem that in optimizing the inducing point positions
we are trying to hit a ‘moving target’. It is desirable to
rigorously formulate a ‘one sided’ KL-divergence that
leads to Titsias’ formulation. Such a derivation could
be viewed as putting these elegant and popular meth-
ods on a firmer foundation, and is the topic of this
article. As we shall show, this cements the framework
for sparse interdomain inducing approximations and
sparse variational inference in Cox processes. We wish
to re-emphasize our respect for the previous work and
for the avoidance of suspense we will find that much of
the existing work carries over mutatis mutandis. Nev-
ertheless we feel that most readers at the end of the
paper will agree that a precise treatment of the topic
should be of benefit going forward.

In terms of prior work for the theoretical aspect, the
major other references are the early work of Seeger
(2003a; 2003b). In particular Seeger identifies the KL-
divergence between processes (more commonly referred
to as a relative entropy in those texts) as a measure of
similarity and applies it to PAC-Bayes and to subset
of data sparse methods. Crucially, Seeger outlines the
rigorous formulation of such a KL-divergence which
is a large technical obstacle. Here we give a shorter,
more general, and intuitive proof of the key theorem.
We extend the stochastic process formulation to induc-
ing points which are not necessarily selected from the
data and show that this is equivalent to Titsias’ formu-
lation. In so far as we are aware this relationship has
not previously been noted in the literature. The idea
of using the KL-divergence between processes is also
mentioned in the early work of Csato and Opper (2002;
2002) but the transition from finite dimensional mul-
tivariate Gaussians to infinite dimensional Gaussian
processes is not covered at the level of detail discussed
here. An optimization target that in intent seems to
be similar to a KL-divergence between stochastic pro-
cess is briefly mentioned in the work of Alvarez (2011).
The notation used suggests that the integration is with
respect to an ‘infinite dimensional Lebesgue measure’,
which as we shall see is an argument that arrives at the
right answer via a mathematically flawed route. Chai
(2012) seems to have been at least partly aware of
Seeger’s KL-divergence theorems (Seeger, 2003b) but
instead uses them to bound the finite joint predictive
probability of a non sparse process.

This article proceeds by first discussing the finite di-
mensional version of the full argument. This requires
considerably less mathematical machinery and much
of the intuition can be gained from this case. We then
proceed to give the full measure theoretic formulation,
giving a new proof that allows inducing points that
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are not data points and for the likelihood to depend
on infinitely many function values. Next we discuss
augmentation of the original index set, using the cru-
cial chain rule for KL-divergences. This gives us a
framework to discuss marginal consistency and how
variational inference in augmented models is not nec-
essarily equivalent to variational inference in the orig-
inal model. We then show that under very general
conditions augmentation which is deterministic con-
ditioned on the whole latent function does have the
desired property. We apply our results to sparse vari-
ational interdomain approximations and to posterior
inference in Cox processes. Finally we conclude and
highlight avenues for further research.

2 Finite index set case

This section is in fact a less general case of what fol-
lows. It is included for the benefit of those familiar
with the previous work on variational sparse approx-
imations and as an important special case. Consider
the case where X is finite. We introduce a new set
∗ := X\(D ∪ Z), in words: all points that are in the
index set that aren’t inducing points or data points.
These points might be of practical interest for instance
when making predictions on hold out data.

We extend the variational distribution to include these
points:

q(f∗, fD\Z , fZ) := p(f∗, fD\Z |fZ)q(fZ). (3)

We then consider the KL-divergence between this ex-
tended variational distribution and the full posterior
distribution p(f |Y )

KL[q(f∗, fD\Z , fZ)||p(f |Y )]

=KL[q(f∗, fD\Z , fZ)||p(f∗, fD\Z , fZ |Y )]

=

∫
q(f∗, fD\Z , fZ) log

q(f∗, fD\Z , fZ)

p(f∗, fD\Z , fZ |Y )
df∗dfD\ZdfZ

(4)

Next we expand the term inside the logarithm and
cancel one of the terms that appears in both the nu-
merator and the denominator:

q(f∗, fD\Z , fZ)

p(f∗, fD\Z , fZ |Y )

=
p(f∗|fD\Z , fZ)p(fD\Z |fZ)q(fZ)p(Y )

p(f∗|fD\Z , fZ)p(fD\Z |fZ)p(fZ)p(Y |fD)

=
p(fD\Z |fZ)q(fZ)p(Y )

p(fD\Z |fZ)p(fZ)p(Y |fD)

=
q(fD\Z , fZ)

p(fD\Z , fZ |Y )
(5)

Substituting back into the full integral and exploiting
the marginalization property of the conditional density
we obtain:

∫
p(f∗, fD\Z |fZ)q(fZ) log

q(fD\Z , fZ)

p(fD\Z , fZ |Y )
df∗dfD\ZdfZ

=

∫
p(fD\Z |fZ)q(fZ) log

q(fD\Z , fZ)

p(fD\Z , fZ |Y )
dfD\ZdfZ

(6)

The last line is exactly the KL-divergence used by Tit-
sias (2009a) that we already described in equation (1).
We thus see that for finite index sets considering the
KL-divergence between the two distributions is equiv-
alent to Titsias’ KL-divergence. We might choose to
optimize our choice of the M by selecting them from
the |X| possible values in the index set and compar-
ing the KL-divergence between distributions given in
equation (4). The equivalence with equation (1) that
we have just derived shows us that in this case the ap-
pearance of the inducing values on both sides of the
equation is just a question of ‘accounting’. That is to
say, whilst we are in fact optimizing the KL-divergence
between the full distributions, we only need to keep
track of the distribution over function values fZ and
fD\Z . All the other function values f∗ marginalize.
For different choices of inducing points we will need to
keep track of different function values and be able to
safely ignore different values f∗.

3 Infinite index set case

3.1 There is no useful infinite dimensional
Lebesgue measure

One might hope to cope with not only finite index
sets but also infinite index sets in the way discussed
in section 2. Unfortunately when X and hence f∗ are
infinite sets we cannot integrate with respect to a ‘in-
finite dimensional vector’. That is to say the notation∫

(·)df∗ can no longer be correctly used.

For a discussion of this see, for example, Hunt et al
(1992). The crux of the issue is that to give sensible
answers such a measure would need to be translation
invariant and locally finite. Unfortunately the only
measure that obeys these two properties is the zero
measure which assigns zero to every input set. Thus we
see that it will be necessary to rethink our approach to
a KL-divergence between stochastic processes. It will
turn out that a reasonable definition will require the
full apparatus of measure theory. Readers looking for
some background on these issues may wish to consult
a larger text (Billingsley, 1995; Capinski and Kopp,
2004).
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3.2 The KL-divergence between processes

In this section we review the rigorous definition of the
KL-divergence between stochastic processes (Gray,
2011).

Suppose we have two measures µ and η for (Ω,Σ)
and that µ is absolutely continuous with respect to
η. Then there exists a Radon-Nikodym derivative dµ

dη
and the correct definition for KL-divergence between
these measures is:

KL[µ||η] =

∫

Ω

log

{
dµ

dη

}
dµ . (7)

In the case where µ is not absolutely continuous with
respect to η we let KL[µ||η] = ∞. In the case where
the sample space is RK for some finite K and both
measures are dominated by Lebesgue measure m this
reduces to the more familiar definition:

KL[µ||η] =

∫

Ω

u log
{u
v

}
dm (8)

where u and v are the respective densities with respect
to Lebesgue measure. The first definition is more gen-
eral and allows us to deal with the problem of there
being no sensible infinite dimensional Lebesgue mea-
sure by instead integrating with respect to the measure
µ.

3.3 A general derivation of the sparse
inducing point framework

In this section we give a general derivation of the
sparse inducing point framework. The derivation is
more general than that of Seeger (2003a; 2003b) since
it does not require that the inducing points are se-
lected from the data points. Nor does it assume that
the relevant finite dimensional marginal distributions
have density with respect to Lebesgue measure. Fi-
nally since the dependence on the elegant properties
of Radon-Nikodym derivatives has been made more ex-
plicit we believe it is clearer why the derivation works
and how one would generalize it.

We are now interested in three types of probability
measure on sets of functions f : X 7→ R. The first
is the prior measure P which will be assumed to be
a Gaussian process. The second is the approximat-
ing measure Q which will be assumed to be a sparse
Gaussian process and the third is the posterior process
P̂ which may be Gaussian or non-Gaussian depending
on whether we have a conjugate likelihood. We start
with a measure theoretic definition of Bayes’ theorem
for a dominated model (Schervish, 1995). It specifies
the Radon-Nikodym derivative of the posterior with

respect to the prior.

dP̂

dP
(f) =

L(Y |f)

L(Y )
(9)

with L(Y |f) being the likelihood and L(Y ) =∫
RX L(Y |f)dP (f) the marginal likelihood. As we have

assumed in previous sections we will initially restrict
the likelihood to only depend on the finite data sub-
set of the index set. We denote by πC : RX 7→ RC a
projection function, which takes the whole function as
an argument and returns the function at some set of
points C. In this case we have:

dP̂

dP
(f) =

dP̂D
dPD

(πD(f)) =
L(Y |πD(f))

L(Y )
(10)

and similarly the marginal likelihood only depends
on the function values on the data set L(Y ) =∫
RD L(Y |fD)dPD(fD). In fact, we will relax the as-

sumption that the data set is finite in section 5.2 and
the ability to do so is one of the benefits of this frame-
work. Next we specify Q by assuming it has density
with respect to the posterior and thus the prior and
that the density with respect to the prior depends on
some set of points Z:

dQ

dP
(f) =

dQZ
dPZ

(πZ(f)) . (11)

Under this assumption Q is fully specified if we know
P and dQZ

dPZ
. To gain some intuition for this assump-

tion we can compare equations (11) and (10). We
see that in the approximating distribution the set Z
is playing a similar one to that played for D in the
true posterior distribution. We now bring these as-
sumptions together. Let us apply the chain rule for
Radon-Nikodym derivatives and a standard property
of logarithms:

KL[Q||P̂ ]

=

∫

RX

log

{
dQ

dP
(f)

}
dQ(f)−

∫

RX

log

{
dP̂

dP
(f)

}
dQ(f) .

(12)

Taking the first term alone we exploit the sparsity as-
sumption for the approximating distribution:

∫

RX

log

{
dQ

dP
(f)

}
dQ(f)

=

∫

RZ

log

{
dQZ
dPZ

(fZ)

}
dQZ(fZ) . (13)

Taking the second term in the last line of equation (12)
and exploiting the measure theoretic Bayes’ theorem
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we obtain:

∫

RX

log

{
dP̂

dP
(f)

}
dQ(f)

=

∫

RD

log

{
dP̂D
dPD

(fD)

}
dQD(fD)

=EQD
[logL(Y |fD)]− logL(Y ) . (14)

Finally noting the appearance of a marginal KL-
divergence we obtain our result:

KL[Q||P̂ ] = KL[QZ ||PZ ]− EQD
[ logL(Y |fD)]

+ logL(Y ) . (15)

As is common with variational approximations, in
most cases of interest the marginal likelihood will be
intractable. However since it is an additive constant,
independent of Q, it can be safely ignored. The final
equation shows that we need to be able to compute the
KL-divergence between the inducing point marginals
of the approximating distribution and the prior for all
Z ⊂ X and the expectation under the data marginal
distribution of Q of the log likelihood. In the case
where the likelihood factorizes across data terms this
will give a sum of one dimensional expectations. Note
the similarity of equation (15) with Hensman et al.
(2015) equation (17) where a less general expression is
motivated from a ‘model augmentation’ view. Notice
that at no point in our derivation did we try to in-
voke the pathological ‘infinite dimensional Lebesgue
measure’ which is important for the reasons discussed
in section 3.1. The ease of derivation suggests that
Radon-Nikodym derivatives and measure theory pro-
vide the most natural and general way to think about
such approximations.

4 Augmented index sets

We now consider the case where we supplement the
original (finite or infinite) index set X with a finite
set of elements I, intending to use them as inducing
points. The precise nature of the augmented prior
model will be parameterized by some parameters θ
which we will hope to tune to give a good approxi-
mation. It will be seen that the this is very much in
the spirit of the original augmentation argument given
by Titsias (2009a) and the ‘variational compression’
framework of Hensman and Lawrence (2014). This
setup also covers the case of variational ‘interdomain’
Gaussian processes which were mooted but not imple-
mented in Figueiras-Vidal and Lazaro-Gredilla (2009)
and implemented under the basis of the marginal con-
sistency argument in Alvarez et al (2011). We intend
to discuss the marginal consistency argument in some

detail and we shall deal with the thorny issues sur-
rounding the rigorous treatment of the various infini-
ties involved.

Marginal consistency is easily ensured by specify-
ing the distribution of the augmented function value
points fI conditioned on the values of the function
on the original set fX . We denote the corresponding
measure as PI|X(· ; θ)1. Let ΩX = RX and ΩI = RI
be the sample spaces associated with the original in-
dex set and the augmenting variables respectively. Let
FX and FI be their σ-algebras. Marginal consistency
states that we will be interested in probability mea-
sures that have the following behaviour on the mea-
surable rectangles AX ×AI ∈ FX ×FI :

PX∪I(AX ×AI ; θ) =

∫

AX

PI|X(AI ; θ)dPX(fX). (16)

We have included the augmentation parameters θ ex-
plicitly up until now, but for brevity we will omit them
in what follows. We will make this marginal con-
sistency assumption in all that follows. Let us call
the overall set X ∪ I the ‘union set’. In a similar
vein to the previous section we assume that the ap-
proximating measure QX∪I has density with respect
to the augmented prior model PX∪I and that the
Radon-Nikodym derivative is only a function of the
augmented function points:

dQX∪I
dPX∪I

(fX∪I) =
dQI
dPI

(πI(fX∪I)) . (17)

Acting as if the augmented set were the original index
set we would obtain by a similar argument:

KL[QX∪I ||P̂X∪I ] = KL[QI ||PI ]− EQD
[logL(Y |fD)]

+ logL(Y ) .
(18)

Sharp eyed readers, however, will have noted that since
P̂X∪I depends on the augmentation parameters θ we
are back in a situation where we can tune the approx-
imation on the left hand side and the optimization
target on the right. As we will see in the next sec-
tion we are not necessarily rescued by the marginal
consistency argument. It is not the case in general
that KL[QX ||P̂X ] equals KL[QX∪I ||P̂X∪I ]. In fact
the relationship is governed by the chain rule for KL-
divergences as we shall now see.

4.1 The chain rule for KL-divergences

For what follows we will require the chain rule for KL-
divergences (Gray, 2011). Let U and V be two Polish

1Note that for brevity our notation for conditional mea-
sures won’t include the explicit function dependence. For
example, in this case we omit the explicit dependence on
fX .
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spaces endowed with their standard Borel σ-algebras
and let U×V be the Cartesian product of these spaces
endowed with the corresponding product σ-algebra.
Consider two probability measures µU×V , ηU×V on
this product space and let µU |V , ηU |V be the corre-
sponding regular conditional measures. Assume that
µU×V is dominated by ηU×V . The chain rule for KL-
divergences says that:

KL[µU×V ||ηU×V ] = EµV
{KL[µU |V ||ηU |V ]}
+KL[µV ||ηV ] . (19)

The first term on the right hand side is referred to as
the ‘conditionalKL-divergence’ or ‘conditional relative
entropy’.

4.2 The marginally consistent augmentation
argument is not correct in general.

Applying the chain rule for KL-divergences to the di-
vergence on the union set we obtain:

KL[QX∪I ||P̂X∪I ]
= EQX

{
KL[QI|X ||P̂I|X ]

}
+KL[QX ||P̂X ]

= EQX

{
KL[QI|X ||PI|X ]

}
+KL[QX ||P̂X ] . (20)

The final line follows from the fact that in the as-
sumed model augmentation scheme the additional
variables fI are conditionally independent of the data
given fX . This relation makes precise our claim that
marginal consistency is not enough to guarantee that
KL[QX ||P̂X ] equals KL[QX∪I ||P̂X∪I ]. In fact this will
only be true if QI|X = PI|X , QX -almost surely. In
the case where this is not true variational inference
in the family of augmented models is not equivalent
to variational inference in the original model and we
will be optimizing a ‘two-sided’ objective function. We
will consider an important condition which ensures the
desired equality does hold in the next section.

Before we move on, however, it is also instructive to
consider a transformation of the original unaugmented
problem into the augmented problem. Take the trans-
formed augmentation set and index set (Ĩ , X̃) to be
defined in terms of the old sets as (X\D,D). The
chain rule then tells us that the KL-divergence on the
data set is not in general equal to the KL-divergence
on the index set although this is true if Z ⊂ D.

4.3 Deterministic augmentation

Here we discuss an important case where the aug-
mented KL-divergence and the unaugmented KL-
divergence are indeed equal, namely where the addi-
tional variables fI are a deterministic function h of
the function values on the original index set fX . A

few conceptual points may be useful before we go into
the detail. First the constraint only says that the val-
ues are deterministic conditioned on the function over
the whole index set and the index set itself may be in-
finite. Usually in practice either through noise, finite
observations or both, we can’t know the latent func-
tion exactly and hence in our model we won’t know
the inducing variables exactly. Second, whilst this as-
sumption may initially seem contrived, in fact it cov-
ers two very important cases: the original framework
where some inducing points are selected from the in-
dex set X then ‘copied’ over to I and as we shall see
later the interdomain inducing point framework. Hav-
ing a deterministic function mapping is equivalent to
having a delta function conditional distribution cen-
tred on the function value. Thus the conditional KL-
divergence term in equation (20) i.e the expectation of
the conditional on the right hand side, will be zero if
the approximating measure QX∪I has the same delta
function conditional. The next theorem shows that if
we follow the usual prescription for defining QX∪I this
will indeed be the case.

4.3.1 The governing theorem on
deterministic augmentation

Let (ΩX ,FX) and (ΩI ,FI) be two Polish spaces and
let (ΩX×ΩI ,FX×FI) be their product space endowed
with product σ-algebra. Let h : ΩX 7→ ΩI be a FX/FI
measurable function. We are interested in a measure
P : FX ×FI 7→ R which has the following property on
the measurable rectangles AX ×AI

P (AX ×AI) = PX(AX ∩ h−1(AI)) (21)

where PX := P (AX × ΩI) is the marginal distribu-
tion for X. This assumption in turn implies that the
marginal distribution for I has the form

PI(AI) = PX(h−1(AI)) (22)

which is the push forward measure of PX under the
function h. It is clear that the regular conditional dis-
tribution PI|X(·) has a point measure property:

PI|X(AI) = δh(fX)(AI) . (23)

Let PX|I(·) be the regular conditional distribution of
fX conditioned on fI . Next we define a second mea-
sureQ : FX×FI 7→ R which has the following property
on measurable rectangles

Q(AX ×AI) =

∫

AI

PX|I(AX)dQI(fI) . (24)

Finally we assume thatQI << PI . The theorem states
that under the assumptions of the previous section the
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marginal distributions of Q have the following prop-
erty:

QI(AI) = QX(h−1(AI)) . (25)

That is to say the marginal distribution of Q for Z is
the push forward measure of QX under the function
h. Consequently the approximating distribution for fI
conditioned on fX also has the point measure property

QI|X(AI) = δh(fX)(AI) . (26)

We now give a proof. Starting from the right hand
side of equation (25)

QX(h−1(AI)) = Q(h−1(AI)× ΩI)

=

∫

ΩI

PX|I(h
−1(AI))dQI(fI) . (27)

Next since QI << PI we apply the Radon-Nikodym
theorem:

∫

ΩI

PX|I(h
−1(AI))dQI(fI)

=

∫

ΩI

PX|I(AX)
dQI
dPI

dPI(fI) . (28)

The existence of conditional distributions is also guar-
anteed by the Radon-Nikodym theorem. Explicitly we
have

PX|I(AX) =
dP (AX × ·)
dPI(·) . (29)

Continuing on from equation (28) and applying an el-
ementary theorem of Radon-Nikodym derivatives we
have:

∫

ΩI

PX|I(h
−1(AI))

dQI
dPI

dPI(fI)

=

∫

ΩI

dQI
dPI

dP (h−1(AI)× fI) . (30)

Now we apply the property given by equation (21)
∫

ΩI

dQI
dPI

dP (h−1(AI)× fI)

=

∫

ΩI

dQI
dPI

dPX(h−1(AI) ∩ h−1(fI)) . (31)

Now we apply some algebraic manipulations of the in-
tegral:

∫

ΩI

dQI
dPI

dPX(h−1(AI) ∩ h−1(fI))

=

∫

ΩI

dQI
dPI

dPX(h−1(AI ∩ fI))

=

∫

ΩI

dQI
dPI

dPI(AI ∩ fI)

=

∫

AI

dQI
dPI

dPI(fI) = QI(AI) (32)

as was claimed.

5 Examples

5.1 Variational interdomain approximations

Here we consider the sparse variational interdomain
approximation which was suggested but not realized
in Figueiras-Vidal and Lazaro-Gredilla (2009) and ap-
peared under the basis of the marginal consistency ar-
gument in Alvarez et al (2011). An interdomain vari-
able is a random variable, indexed by i ∈ I defined in
the following way:

fi(θ) =

∫

X

gi(x, θ)fx dλ(x) (33)

Here λ is a measure on X with some appropriate σ-
algebra, {gi : i ∈ I} is a set of λ-integrable func-
tions from X to R. The interdomain variables may
be viewed as deterministic conditional on the whole
function fX so the theorems of section 4.3 come into
play. Since the intention here is to put this frame-
work on a firm logical footing, we should also consider
the thorny issue of the measurability of this transfor-
mation and the associated random variable. The ex-
istence of separable, measurable, versions of stochas-
tic processes, including most commonly used Gaussian
processes, was settled in the work of Doob (1953). It
also discusses the conditions necessary to apply Fu-
bini’s theorem to expectations of the random variable
defined by equation (33). The application of Fubini’s
theorem is essential to the utility of such methods in
practice (Figueiras-Vidal and Lázaro-Gredilla, 2009).

Thus we may correctly optimize the parameters θ of in-
terdomain inducing points, safe in the knowledge that
this decision is variationally protected from overfitting
and optimizes a well defined KL-divergence objective.
The potential for a wide variety of improved sparse ap-
proximations in this direction is thus, in our opinion,
significant.

5.2 Approximations to Cox process
posteriors

In this section we relax the assumption that the data
set D is finite, which is necessary to consider Gaussian
process based Cox processes. One specific case of this
model is considered by Lloyd et al (2015) under the
marginal consistency motivation. A Gaussian process
based Cox process has the following generative scheme:

f ∼ GP(m,K)

h = ρ(f)

Y |h ∼ PP(h) . (34)

Here GP(m,K) denotes a Gaussian process with mean
m and kernel K, ρ : R 7→ (0,∞) is an inverse link

237



On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes

function, PP(h) is a Poisson process with intensity h
and D is a set of points in the original index set X. For
example in a geographical spatial statistics application
we might take X to be some bounded subset of R2.
The key issue with the Poisson process likelihood is
that it depends not just on those members of X where
points were observed but in fact on all points in X.
Intuitively the absence of points in an area suggests
that the intensity is lower there. Thus D = X. The
likelihood in question is:

L(Y |fD) =


∏

y∈Y
ρ(y)


 exp

{
−
∫

X

ρ(x)dm(x)

}
.

(35)
where m denotes for instance Lebesgue measure on
X. The full X dependence manifests itself through
the integral on the right hand side. We will require
that the integral exists almost surely. In Lloyd et al
(2015) equation (3), the application of Bayes’ theorem
appears to require a density with respect to infinite
dimensional Lebesgue measure. As pointed out in 3.1
such a notion is pathological. This however can be
fixed because the more general form of Bayes’ theorem
in equation (9) of this paper still applies. Thus we can
apply the results of section 3.3 to obtain:

KL[Q||P̂ ] =KL[QZ ||PZ ]−
∑

y∈Y
EQy [log ρ(y)]

+ EQX

[∫

X

ρ(x)dm(x)

]
+ logL(Y ) .

(36)

As in section 5.1 we will need to check that the condi-
tions for Fubini’s theorem apply (Doob, 1953) which
gives:

KL[Q||P̂ ] =KL[QZ ||PZ ]−
∑

y∈Y
EQy

[log ρ(y)]

+

∫

X

EQx
[ρ(x)] dm(x) + logL(Y ) . (37)

For the specific case of ρ used in Lloyd et al (2015)
the working then continues as in that paper and the
elegant results that follow all still apply. Note that
one could combine these Cox process approximations
with the interdomain framework and this could be a
fruitful direction for further work.

6 Conclusion and acknowledgements

In this work we have elucidated the connection be-
tween the variational inducing point framework (Tit-
sias, 2009a) and a rigorously defined KL-divergence
between stochastic processes. Early use of the rig-
orous formulation of KL-divergence in the Gaussian

processes for machine learning literature was made by
Seeger (2003a; 2003b). Here we have increased the do-
main of applicability of those proofs by allowing for
inducing points that are not data points, and remov-
ing unnecessary dependence on Lebesgue measure. We
would argue that our proof clarifies the central and el-
egant role played by Radon-Nikodym derivatives. We
then consider for the first time in this framework the
case where additional variables are added solely for
the purpose of variational inference. We show that
marginal consistency is not enough to guarantee a
principled optimization objective but that if we make
the inducing points deterministic conditional on the
whole function then a principled optimization objec-
tive is guaranteed and the parameters of the augmen-
tation are variationally protected. We then show how
the extended theory allows us to correctly handle prin-
cipled interdomain sparse approximations and that we
can cope correctly with the importance case of Cox
processes where the likelihood depends on an infinite
set of function points.

It seems reasonable to hope that elucidating the mea-
sure theoretic roots of the formulation will help the
community to generalise the framework and lead to
even better practical results. In particular it seems
that since interdomain inducing points are linear func-
tionals, the theory of Hilbert spaces might profitably
be applied here. It also seems reasonable to think given
the generality of section 3.3 that other Bayesian and
Bayesian nonparametric models might be amenable to
such a treatment.
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