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Abstract

This paper addresses the problem of scal-
able optimization for l1-regularized conditional
Gaussian graphical models. Conditional Gaus-
sian graphical models generalize the well-known
Gaussian graphical models to conditional distri-
butions to model the output network influenced
by conditioning input variables. While highly
scalable optimization methods exist for sparse
Gaussian graphical model estimation, state-of-
the-art methods for conditional Gaussian graph-
ical models are not efficient enough and more
importantly, fail due to memory constraints for
very large problems. In this paper, we propose
a new optimization procedure based on a New-
ton method that efficiently iterates over two
sub-problems, leading to drastic improvement
in computation time compared to the previous
methods. We then extend our method to scale
to large problems under memory constraints, us-
ing block coordinate descent to limit memory us-
age while achieving fast convergence. Using syn-
thetic and genomic data, we show that our meth-
ods can solve problems with millions of variables
and tens of billions of parameters to high accu-
racy on a single machine.

1 INTRODUCTION

Sparse Gaussian graphical models (GGMs) [2] have been
extremely popular as a tool for learning a network structure
over a large number of continuous variables in many dif-
ferent application domains including neuroscience [7] and
biology [2]. A sparse GGM can be estimated as a sparse in-
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verse covariance matrix by minimizing the convex function
of l1-regularized negative log-likelihood. Highly scalable
learning algorithms such as graphical lasso [2], QUIC [3],
and BigQUIC [4] have been proposed to learn the model.

In this paper, we address the problem of scaling up the op-
timization of sparse conditional GGM (CGGM), a model
closely related to sparse GGM, to very large problem sizes
without requiring excessive time or memory. Sparse CG-
GMs have been introduced as a discriminative extension of
sparse GGMs to model a sparse network over outputs con-
ditional on input variables [8, 10]. CGGMs can be viewed
as a Gaussian analogue of conditional random field [6],
while GGMs are a Gaussian analogue of Markov random
field. A sparse CGGM can be estimated by minimizing a
convex function of l1-regularized negative log-likelihood.
This optimization problem is closely related to that for
sparse GGMs because CGGMs also model the network
over outputs. However, the presence of the additional pa-
rameters in CGGMs for the functional mapping from in-
puts to outputs makes the optimization significantly more
complex than in sparse GGMs.

Several different approaches have been previously pro-
posed to estimate sparse CGGMs, including OWL-QN [8],
accelerated proximal gradient method [11], and Newton
coordinate descent algorithm [10]. In particular, the New-
ton coordinate descent algorithm extends the QUIC algo-
rithm [3] for sparse GGM estimation to the case of CG-
GMs, and has been shown to have superior computational
speed and convergence. This approach finds in each iter-
ation a descent direction by minimizing a quadratic ap-
proximation of the original negative log-likelihood func-
tion along with l1 regularization. Then, the parameter esti-
mate is updated with this descent direction and a step size
found by line search.

Although the Newton coordinate descent method [10] is
state-of-the-art for its scalability and fast convergence, it is
still not efficient enough to be applied to many real-world
problems even with tens of thousands of variables. More
importantly, it suffers from a large space requirement, be-
cause for very high-dimensional problems, several large
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dense matrices need to be precomputed and stored during
optimization. For a CGGM with p inputs and q outputs, the
algorithm requires storing several p × p and q × q dense
matrices, which cannot fit in memory for large p and q.

We propose new algorithms for learning l1-regularized CG-
GMs that significantly improve the computation time of the
previous Newton coordinate descent algorithm and also re-
move the large memory requirement. We first propose an
optimization method, called an alternating Newton coordi-
nate descent algorithm, for improving computation time.
Our algorithm is based on the key observation that the
computation simplifies drastically, if we alternately opti-
mize the two sets of parameters for output network and for
mapping inputs to outputs, instead of updating all parame-
ters at once as in the previous approach. The previous ap-
proach updated all parameters simultaneously by forming
a second-order approximation of the objective on all pa-
rameters, which requires an expensive computation of the
large Hessian matrix of size (p + q) × (p + q) in each
iteration. Our approach of alternate optimization forms a
second-order approximation only on the network parame-
ters, which requires the Hessian of size q × q, as the other
set of parameters can be updated easily using a simple co-
ordinate descent.

In order to overcome the constraint on the space require-
ment, we then extend our algorithm to an alternating New-
ton block coordinate descent method that can be applied
to problems of unbounded size on a machine with limited
memory. Instead of recomputing each element of the large
matrices on demand, we divide the parameters into blocks
for block-wise updates such that the results of computa-
tion can be reused within each block. Block-wise parame-
ter updates were previously used in BigQUIC [4] for learn-
ing a sparse GGM, where the block sparsity pattern of the
network parameters was leveraged to overcome the space
limitations. We propose an approach for block-wise update
of the output network parameters in CGGMs that extends
their idea. We then propose a new block-wise update strat-
egy for the parameters for mapping inputs to outputs. In
our experiments, we show that we can solve problems with
a million inputs and hundreds of thousands of outputs on a
single machine.

The rest of the paper is organized as follows. In Section 2,
we provide a brief review of sparse CGGMs and the current
state-of-the-art Newton coordinate descent algorithm [10]
for learning the models. In Section 3, we propose an al-
ternating Newton coordinate descent algorithm that signifi-
cantly reduces computation time compared to the previous
method. In Section 4, we further extend our algorithm to
perform block-wise updates in order to scale up to very
large problems on a machine with bounded memory. In
Section 5, we demonstrate our proposed algorithms on syn-
thetic and real-world genomic data.

2 BACKGROUND

2.1 The Conditional Gaussian Graphical Model

A CGGM [8, 10] models the conditional probability den-
sity of x ∈ Rp given y ∈ Rq as follows:

p(y|x; Λ,Θ) = exp{−yTΛy − 2xTΘy}/Z(x),

where Λ is a q × q matrix for modeling the network
over y and Θ is a p × q matrix for modeling the
mapping between the input variables x and output vari-
ables y. The normalization constant is given as Z(x) =
(2π)q/2|Λ|−1 exp(xTΘΛ−1ΘTx). Inference in a CGGM
gives p(y|x) = N (BTx,Λ−1), where B = −ΘΛ−1,
showing the connection to multivariate linear regression.

Given a mean-centered dataset of X ∈ Rn×p and Y ∈
Rn×q for n samples, and their covariance matrices Sxx =
1
nXTX,Sxy = 1

nXTY,Syy = 1
nYTY, a sparse estimate

of CGGM parameters can be obtained by minimizing l1-
regularized negative log-likelihood:

min
Λ�0,Θ

f(Λ,Θ) = g(Λ,Θ) + h(Λ,Θ), (1)

where g(Λ,Θ) = −log |Λ| + tr(SyyΛ + 2Sxy
TΘ +

Λ−1ΘTSxxΘ) for the smooth negative log-likelihood and
h(Λ,Θ)=λΛ‖Λ‖1+λΘ‖Θ‖1 for the non-smooth elemen-
twise l1 penalty. λΛ, λΘ > 0 are regularization parameters.
As observed in [8, 10, 11], this objective is convex.

2.2 Optimization

The current state-of-the-art method for solving Eq. (1) for
l1-regularized CGGM is the Newton coordinate descent
algorithm [10] that extends QUIC [3] for l1-regularized
GGM estimation. In each iteration, this algorithm found a
generalized Newton descent direction by forming a second-
order approximation of the smooth part of the objective and
minimizing this along with the l1 penalty. Given this New-
ton direction, the parameter estimates were updated with a
step size found by line search using Armijo’s rule [1].

In each iteration, the Newton coordinate descent algorithm
found the Newton direction as follows:

DΛ,DΘ = argmin
∆Λ,∆Θ

ḡΛ,Θ(∆Λ,∆Θ)

+ h(Λ+∆Λ,Θ+∆Θ), (2)

where ḡΛ,Θ is the second-order approximation of g given
by Taylor expansion:

ḡΛ,Θ(∆Λ,∆Θ) = vec(∇g(Λ,Θ))T vec([∆Λ ∆Θ])

+
1

2
vec([∆Λ ∆Θ])T∇2g(Λ,Θ) vec([∆Λ ∆Θ]).
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The gradient and Hessian matrices above are given as:

∇g(Λ,Θ) = [∇Λg(Λ,Θ) ∇Θg(Λ,Θ)]

= [Syy−Σ−Ψ 2Sxy + 2Γ] (3)

∇2g(Λ,Θ) =

[
∇2

Λg(Λ,Θ) ∇Λ∇Θg(Λ,Θ)
∇Λ∇Θg(Λ,Θ)T ∇2

Θg(Λ,Θ)

]

=

[
Σ⊗ (Σ + 2Ψ) −2Σ⊗ ΓT

−2Σ⊗ Γ 2Σ⊗ Sxx

]
, (4)

where Σ = Λ−1, Ψ = ΣΘTSxxΘΣ, and Γ = SxxΘΣ.
Given the Newton direction in Eq. (2), the parameters can
be updated as Λ← Λ+αDΛ and Θ← Θ+αDΘ, where
step size 0 < α ≤ 1 ensures sufficient decrease in Eq. (1)
and positive definiteness of Λ.

The Lasso problem [9] in Eq. (2) was solved using coordi-
nate descent. Despite the efficiency of coordinate descent
for Lasso, applying coordinate updates repeatedly to all
q2 + pq variables in Λ and Θ is costly. So, the updates
were restricted to an active set of variables given as:

SΛ = {(∆Λ)ij : |(∇Λg(Λ,Θ))ij | > λΛ ∨Λij 6= 0}
SΘ = {(∆Θ)ij : |(∇Θg(Λ,Θ))ij | > λΘ ∨Θij 6= 0}.

Because the active set sizes mΛ = |SΛ|,mΘ = |SΘ| ap-
proach the number of non-zero entries in the sparse solu-
tions for Λ∗ and Θ∗ over iterations, this strategy yields a
substantial speedup.

To further improve the efficiency of coordinate descent, in-
termediate results were stored for the large matrix products
that need to be computed repeatedly. At the beginning of
the optimization for Eq. (2), U := ∆ΛΣ and V := ∆ΘΣ
were computed and stored. Then, after a coordinate descent
update to (∆Λ)ij , row i and j of U were updated. Simi-
larly, after an update to (∆Θ)ij , row i of V was updated.

2.3 Computational Complexity and Scalability

Although the Newton coordinate descent method is com-
putationally more efficient than other previous approaches,
it does not scale to problems even with tens of thousands
of variables. The main computational cost of the algorithm
comes from computing the large (p + q) × (p + q) Hes-
sian matrix in Eq. (4) in each application of Eq. (2) to find
the Newton direction. At the beginning of the optimization
in Eq. (2), large dense matrices Σ, Ψ, and Γ, for comput-
ing the gradient and Hessian in Eqs. (3) and (4), are pre-
computed and reused throughout the coordinate descent it-
erations. Initializing Σ = Λ−1 via Cholesky decomposi-
tion costs up to O(q3) time, although in practice, sparse
Cholesky decomposition exploits sparsity to invert Λ in
much less than O(q3). Computing Ψ = 1

nRTR, where
R = XΘΣ, requiresO(nmΘ +nq2) time, and computing
Γ costs O(npq + nq2). After the initializations, the cost of
coordinate descent update per each active variable (∆Λ)ij
and (∆Θ)ij is O(p+ q). During the coordinate descent for

solving Eq. (2), the entire (p+ q)× (p+ q) Hessian matrix
in Eq. (4) needs to be evaluated, whereas for the gradient in
Eq. (3) only those entries corresponding to the parameters
in active sets are evaluated.

A more serious obstacle to scaling up to problems with
large p and q is the space required to store dense matri-
ces Σ (size q×q), Ψ (size q×q), and Γ (size p×q). In our
experiments on a machine with 104 Gb RAM, the Newton
coordinate descent method exhausted memory when p+ q
exceeded 80,000.

In the next section, we propose a modification of the
Newton coordinate descent algorithm that significantly im-
proves the computation time. Then, we introduce block-
wise update strategies to our algorithm to remove the mem-
ory constraint.

3 ALTERNATING NEWTON
COORDINATE DESCENT

In this section, we introduce our alternating Newton co-
ordinate descent algorithm for learning an l1-regularized
CGGM that significantly reduces computation time com-
pared to the previous method. Instead of performing New-
ton descent for all parameters Λ and Θ simultaneously, our
approach alternately updates Λ and Θ, optimizing Eq. (1)
over Λ given Θ and vice versa until convergence.

Our approach is based on the key observation that with Λ
fixed, the problem of solving Eq. (1) over Θ becomes sim-
ply minimizing a quadratic function with l1 regularization.
Thus, it can be solved efficiently using a coordinate descent
method, without the need to form a second-order approx-
imation or to perform line search. On the other hand, op-
timizing Eq. (1) for Λ given Θ still requires forming a
quadratic approximation to find a generalized Newton di-
rection and performing line search to find the step size.
However, this computation involves only q×q Hessian ma-
trix and is significantly simpler than performing the same
type of computation on both Λ and Θ jointly as in the pre-
vious approach.

3.1 Coordinate Descent Optimization for Λ

Given fixed Θ, the problem of minimizing the objective in
Eq. (1) with respect to Λ becomes

argmin
Λ�0

gΘ(Λ) + λΛ‖Λ‖1,

where gΘ(Λ) = − log |Λ| + tr(SyyΛ + Λ−1ΘTSxxΘ).
In order to solve this, we first find a generalized Newton di-
rection that minimizes the l1-regularized quadratic approx-
imation of gΘ(Λ):

DΛ = argmin
∆Λ

ḡΛ,Θ(∆Λ) + λΛ‖Λ + ∆Λ‖1, (5)
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Algorithm 1: Alternating Newton Coordinate Descent
input : Inputs X ∈ Rn×p and Y ∈ Rn×q; regularization

parameters λΛ, λΘ

output: Parameters Λ,Θ
Initialize Θ← 0,Λ← Iq
for t = 0, 1, . . . do

Determine active sets SΛ,SΘ

Solve via coordinate descent:
DΛ =argmin

∆Λ

ḡΛ,Θ(Λ + ∆Λ,Θ) + h(Λ+∆Λ,Θ)

Update Λ+ = Λ + αDΛ, where step size α is found
with line search

Solve via coordinate descent:
Θ+ = argminΘ gΛ(Θ) + λΘ‖Θ‖1

where ḡΛ,Θ(∆Λ) is obtained from a second-order Taylor
expansion and is given as

ḡΛ,Θ(∆Λ) = vec(∇Λg(Λ,Θ))T vec(∆Λ)

+
1

2
vec(∆Λ)T∇2

Λg(Λ,Θ) vec(∆Λ).

The ∇Λg(Λ,Θ) and ∇2
Λg(Λ,Θ) above are components

of the gradient and Hessian matrices corresponding to Λ
in Eqs. (3) and (4). We solve the Lasso problem in Eq. (5)
via coordinate descent. Similar to the Newton coordinate
descent method, we maintain U := ∆ΛΣ to reuse inter-
mediate results of the large matrix-matrix product. Given
the Newton direction for Λ, we update Λ ← Λ + α∆Λ,
where α is obtained by line search.

Restricting the generalized Newton descent to Λ simpli-
fies the computation significantly for coordinate descent
updates, compared to the previous approach [10] that ap-
plies it to both Λ and Θ jointly. Our updates only in-
volve ∇Λg(Λ,Θ) and ∇2

Λg(Λ,Θ), and no longer involve
∇Θg(Λ,Θ) and ∇Λ∇Θg(Λ,Θ), eliminating the need to
compute the large p × q dense matrix Γ in O(npq + nq2)
time. Our approach also reduces the computational cost for
the coordinate descent update of each element of ∆Λ from
O(p+ q) to O(q).

3.2 Coordinate Descent Optimization for Θ

With Λ fixed, the optimization problem in Eq. (1) with re-
spect to Θ becomes

argmin
Θ

gΛ(Θ) + λΘ‖Θ‖1, (6)

where gΛ(Θ) = tr(2Sxy
TΘ + Λ−1ΘTSxxΘ). Since

gΛ(Θ) is a quadratic function itself, there is no need to
form its second-order Taylor expansion or to determine a
step size via line search. Instead, we solve Eq. (6) directly
with coordinate descent method, storing and maintaining
V := ΘΣ. Our approach reduces the computation time for

updating Θ compared to the corresponding computation in
the previous algorithm [10]. We avoid computing the large
p×q matrix Γ, which had dominated overall computation
time with O(npq). Our approach also eliminates the need
for line search for updating Θ. Finally, it reduces the cost
for each coordinate descent update in Θ toO(p), compared
to O(p + q) for the corresponding computation for ∆Θ in
the previous method.

Our approach is summarized in Algorithm 1. We provide
the details of the coordinate descent update equations in
Appendix. In practice, we approximately solve Eqs. (5) and
(6) by using a warm-start for Λ and Θ with the results of
the previous iteration and making a single pass over the
active set. This ensures decrease in the objective in Eq. (1)
and reduces the overall computation time in practice.

4 ALTERNATING NEWTON BLOCK
COORDINATE DESCENT

The alternating Newton coordinate descent algorithm in
the previous section improves the computation time of the
previous state-of-the-art method, but is still limited by the
space required to store large matrices during coordinate de-
scent computation. Solving Eq. (5) for updating Λ requires
precomputing and storing q×q matrices, Σ and Ψ, whereas
solving Eq. (6) for updating Θ requires Σ and a p× p ma-
trix Sxx. A naive approach to reduce the memory footprint
would be to recompute portions of these matrices on de-
mand for each coordinate update, which would be very ex-
pensive.

In this section we describe how our algorithm in the previ-
ous section can be combined with block coordinate descent
to scale up the optimization to very large problems on a
machine with limited memory. During coordinate descent
optimization, we update blocks of Λ and Θ so that within
each block, the computation of the large matrices can be
cached and re-used, where these blocks are determined au-
tomatically by exploiting the sparse stucture. For Λ, we ex-
tend the block coordinate descent approach in BigQUIC [4]
developed for GGMs to take into account the conditioning
variables in CGGMs. For Θ, we describe a new approach
for block coordinate descent update. Our algorithm can, in
principle, be applied to problems of any size on a machine
with limited memory.

4.1 Blockwise Optimization for Λ

4.1.1 Block Coordinate Descent Method

A coordinate-descent update of (∆Λ)ij requires the ith and
jth columns of Σ and Ψ. If these columns are in memory,
they can be reused. Otherwise, it is a cache miss and we
should compute them on demand. Σi for the ith column
of Σ can be obtained by solving linear system ΛΣi = ei
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Algorithm 2: Alternating Newton Block Coordinate De-
scent
input : Inputs X ∈ Rn×p and outputs Y ∈ Rn×q;

regularization parameters λΛ, λΘ

output: Parameters Λ,Θ
Initialize Θ← 0,Λ← Iq
for t = 0, 1, . . . do

Determine active sets SΛ,SΘ

Partition columns of Λ into kΛ blocks
. Minimize over Λ

Initialize ∆Λ ← 0
for z = 1 to kΛ do

Compute ΣCz ,UCz , and ΨCz

for r = 1 to kΛ do
if z 6= r then

Identify columns Bzr ⊂ Cr with active
elements in Λ

Compute ΣBzr
,UBzr

, and ΨBzr

Update all active (∆Λ)ij in (Cz, Cr)

Update Λ+ ← Λ + α∆Λ, where step size α is found
with line search

Partition columns of Θ into kΘ blocks
. Minimize over Θ

for r = 1 to kΘ do
Compute ΣCr

, and initialize V← ΘΣCr

for row i ∈ {1, . . . , p} if Iφ(S(i,Cr)) do
Compute (Sxx)ij for non-empty rows j in VCr

Update all active Θij in (i, Cr)

with conjugate gradient method in O(mΛK) time, where
K is the number of conjugate gradient iterations. Then, Ψi

can be obtained from 1
nRTRi in O(nq) time, where R =

XΘΣ.

In order to reduce cache misses, we perform block coor-
dinate descent, where within each block, the columns of
Σ are cached and re-used. Suppose we partition N =
{1, . . . , q} into kΛ blocks, C1, . . . , CkΛ . We apply this
partitioning to the rows and columns of ∆Λ to obtain
kΛ × kΛ blocks. We perform coordinate-descent updates
in each block, updating all elements in the active set within
that block. Let ACr

denote a q by |Cr| matrix contain-
ing columns of A that corresponds to the subset Cr. In
order to perform coordinate-descent updates on (Cz, Cr)
block of ∆Λ, we need ΣCz

, ΣCr
, ΨCz

, and ΨCr
. Thus,

we pick the smallest possible kΛ such that we can store
2q/kΛ columns of Σ and 2q/kΛ columns of Ψ in mem-
ory. When updating the variables within block (Cz, Cr)
of ∆Λ, there are no cache misses once ΣCz , ΣCr , ΨCz ,
and ΨCr are computed and stored. After updating each
(∆Λ)ij to (∆Λ)ij + µ, we maintain UCz

and UCr
by

Uit ← Uit +µΣjt,Ujt ← Ujt +µΣit,∀t ∈ {Cz ∪Cr}.

Figure 1: Schematic of block coordinate descent for Λ. The
Λ of size q = 9 is updated for each of the k2

Λ blocks in turn
with kΛ = 3. Filled elements denote the parameters in the
active set. The green arrows denote rows of Σ and Ψ that
are computed once and reused while sweeping through a
row of blocks. The red arrows denote cache misses and the
corresponding columns of Σ and Ψ need to be recomputed.

Figure 2: Schematic of block coordinate descent for Θ. The
Θ of size p = 8, q = 6 is updated for each of the p × kΘ

blocks with kΘ = 2. Filled elements denote the parameters
in the active set. Green arrows denote columns of Σ that
are computed once and reused while sweeping through the
column of p blocks. The red arrows denote cache misses
for (Sxx)i.

To go through all blocks, we update blocks
(Cz, C1), . . . , (Cz, CkΛ) for each z ∈ {1, . . . , kΛ}.
Since all of these blocks share ΣCz and ΨCz , we pre-
compute and store them in memory. When updating an
off-diagonal block (Cz, Cr), z 6= r, we compute ΣCr

and
ΨCr

. In the worst case, overall Σ and Ψ will be computed
kΛ times.

4.1.2 Reducing Computational Cost Using Graph
Clustering

In typical real-world problems, the graph structure of Λ
will exhibit clustering, with an approximately block di-
agonal structure. We exploit this structure by choosing a
partition {C1, . . . , CkΛ} that reduces cache misses. Within
diagonal blocks (Cz, Cz)’s, once ΣCz

and ΨCz
are com-

puted, there are no cache misses. For off-diagonal blocks
(Cz, Cr)’s, r 6= z, we have a cache miss only if some vari-

533



Large-Scale Optimization Algorithms for Sparse CGGMs

ables in {(∆Λ)ij |i ∈ Cz, j ∈ Cr} lie in the active set. We
thus minimize the active set in off-diagonal blocks via clus-
tering, following the strategy for sparse GGM estimation in
[4]. In the best case, if all parameters in the active set ap-
pear in the diagonal blocks, Σ and Ψ are computed only
once with no cache misses. We use the METIS [5] graph
clustering library. Our method for updating Λ is illustrated
in Figure 1.

4.2 Blockwise Optimization for Θ

4.2.1 Block Coordinate Descent Method

The coordinate descent update of Θij requires (Sxx)i and
Σj to compute (Sxx)Ti Vj , where Vj = ΘΣj . If (Sxx)i
and Σj are not already in the memory, it is a cache miss.
Computing (Sxx)i takes O(np), which is expensive if we
have many cache misses.

We propose a block coordinate descent approach for solv-
ing Eq. (6) that groups these computations to reduce cache
misses. Given a partition of {1, . . . , q} into kΘ subsets,
C1, . . . , CkΘ , we divide Θ into p × kΘ blocks, where
each block comprises a portion of a row of Θ. We denote
each block (i, Cr), where i ∈ {1, . . . , p}. Since updating
block (i, Cr) requires (Sxx)i and ΣCr

, we pick the small-
est possible kΘ such that we can store q/kΘ columns of Σ
in memory. While performing coordinate descent updates
within block (i, Cr) of Θ, there are no cache misses, once
(Sxx)i and ΣCr

are in memory. After updating each Θij to
Θij + µ, we update VCr

by Vit ← Vit + µΣjt,∀t ∈ Cr.
In order to sweep through all blocks, each time we select
a q ∈ {1, . . . , kΘ} and update blocks (1, Cr), . . . , (p, Cr).
Since all of these p blocks with the same Cr share the com-
putation of ΣCr

, we compute and store ΣCr
in memory.

Within each block, the computation of (Sxx)i is shared,
so we pre-compute and store it in memory, before updat-
ing this block. The full matrix of Σ will be computed once
while sweeping through the full Θ, whereas in the worst
case Sxx will be computed kΘ times.

4.2.2 Reducing Computational Cost Using Row-wise
Sparsity

We further reduce cache misses for (Sxx)i by strategically
selecting partition C1, . . . , CkΘ , based on the observation
that if the active set is empty in block (i, Cr), we can
skip this block and forgo computing (Sxx)i. We therefore
choose a partition where the active set variables are clus-
tered into as few blocks as possible. Formally, we want to
minimize

∑
i,r Iφ(S(i,Cr)), where Iφ(S(i,Cr)) is an indi-

cator function that outputs 1 if the active set S(i,Cr) within
block (i, Cr) is not empty.We therefore perform graph clus-
tering over the graph G = (V,E) defined from the active
set in Θ, where V = {1, . . . , q}with one node for each col-
umn of Θ, and E = {(j, k)|∃i : Θij ∈ SΘ,Θik ∈ SΘ},

connecting two nodes j and k with an edge if both Θij and
Θik are in the active set. This edge set corresponds to the
non-zero elements of ΘTΘ, so the graph can be computed
quickly in O(mΘq).

We also exploit row-wise sparsity in Θ to reduce the cost of
each cache miss. Every empty row in Θ corresponds to an
empty row in V = ΘΣ. Because we only need elements in
(Sxx)i for the dot product (Sxx)Ti Vj , we skip computing
the kth element of (Sxx)i if the kth row of Θ is all zeros.
Our strategy for updating Θ is illustrated in Figure 2.

Our method is summarized in Algorithm 2. See Appendix
for analysis of the computational cost.

4.3 Parallelization

The most expensive computations in our algorithm are em-
barrassingly parallelizable, allowing for further speedups
on machines with multiple cores. Throughout the algo-
rithm, we parallelize matrix and vector multiplications. In
addition, for block-wise Λ updates, we compute multiple
columns of ΣCz and ΨCz as well as multiple columns of
ΣCr

and ΨCr
for multiple cache misses in parallel, run-

ning multiple conjugate gradient methods in parallel. For
block-wise Θ updates, we compute multiple columns of
Σ in parallel before sweeping through blocks and perform
a parallel computation within each cache miss, computing
elements within each (Sxx)i in parallel.

5 EXPERIMENTS

We compare the performance of our methods with the
existing state-of-the-art Newton coordinate descent algo-
rithm, using synthetic and real-world genomic datasets. All
methods were implemented in C++ with parameters repre-
sented in sparse matrix format. All experiments were run
on 2.6GHz Intel Xeon E5 machines with 8 cores and 104
Gb RAM, running Linux OS. We run the Newton coordi-
nate descent and alternating Newton coordinate descent al-
gorithms as a single thread job on a single core. For our
alternating Newton block coordinate descent method, we
run it on a single core and with parallelization on 8 cores.

5.1 Synthetic Data Experiments

We compare the different methods on two sets of syn-
thetic datasets, one for chain graphs and another for ran-
dom graphs with clustering for Λ, generated as follows.
For chain graphs, the true sparse parameters Λ is set with
Λi,i−1 = 1 and Λi,i = 2.25 and the true Θ is set with
Θi,i = 1. We perform one set of chain graph experiments
with p = q, and another set with an additional q irrelevant
features unconnected to any outputs, so that p = 2q. For
random graphs with clustering, following the procedure in
[4] for generating a GGM, we set the true Λ to a graph with
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Figure 3: Comparison of scalability on chain graphs. We vary p and q, where (a) p = q and (b) p = 2q. The Newton
coordinate descent and alternating Newton coordinate descent methods could not be run beyond the problem sizes shown
due to memory constraint. (c) Convergence when q = 20,000 and p = 40,000.
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Figure 4: Comparison of scalability on random graphs with clustering. (a) Varying p with q fixed at 10,000. (b) Varying q
with p fixed at 40,000. (c) Active set size versus time with p = 20,000 and q = 10,000.

clusters of nodes of size 250 and with 90% of edges con-
necting randomly-selected nodes within clusters. We set
the number of edges so that the average degree of each node
is 10, with edge weights set to 1. We then set the diagonal
values so that Λ is positive definite. To set the sparse pat-
terns for Θ, we randomly select 100

√
p input variables as

having edges to at least one output and distribute total 10q
edges among those selected inputs to influence randomly
selected outputs. We set the edge weights of Θ to 1.

Then, we draw samples from the CGGM defined by these
true Λ and Θ. We generate datasets with n = 100 sam-
ples for the chain graphs and n = 200 samples for ran-
dom graphs with clustering. We choose λΛ and λΘ so that
the number of edges in the estimated Λ and Θ is close
to ground truth. Following the strategy used in GGM es-
timation [4], we use the minimum-norm subgradient of the
objective as our stopping criterion: ‖gradS(Λt,Θt)‖1 <
0.01(‖Λ‖1 + ‖Θ‖1).

We compare the scalability of the different methods on
chain graphs of different sizes. We show the computation
times for datasets with p = q in Figure 3(a) and for datasets
with p = 2q with q additional irrelevant features in Figure
3(b). For large problems, computation times are not shown
for Newton coordinate descent and alternating Newton co-
ordinate descent methods because they could not complete
the optimization with limited memory. In addition, for large
problems, alternating block coordinate descent was termi-
nated after 60 hours of computation. We provide results

on varying the sample size n in Appendix. In Figure 3(c),
using the dataset with p = 40,000 and q = 20,000, we
plot the suboptimality in the objective f − f∗ over time,
where f∗ is obtained by running alternating Newton coor-
dinate descent algorithm to numerical precision. Our new
methods converge substantially faster than the previous ap-
proach, regardless of desired accuracy level. We notice that
as expected from the convexity of the optimization prob-
lem, all algorithms converge to the global optimum and find
nearly identical parameter estimates.

In Figure 4, we compare scalability of different methods
for random graphs with clustering. In Figure 4(a), we vary
p, while setting q to 10,000. In Figure 4(b), we vary q, fix-
ing p to 40,000. Similar to the results from chain graph, for
larger problems, Newton coordinate descent and alternat-
ing Newton coordinate descent methods ran out of memory
and alternating block coordinate descent was terminated af-
ter 60 hours. For all problem sizes, our alternating New-
ton coordinate descent algorithm significantly reduces the
computation time of the previous method, the Newton coor-
dinate descent algorithm. This gap in the computation time
increases for larger problems. In Figure 4(c), we compare
the convergence in sparsity pattern for the different meth-
ods as measured by the active set size, for p = 20,000 and
q = 10,000. All our methods recover the optimal sparsity
pattern much more rapidly than the previous approach.

Figures 3 and 4 show that our alternating Newton block
coordinate descent can run on much larger problems than
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Table 1: Computation time in hours on genomic dataset. ‘*’ indicates running out of memory.
p q ‖Λ∗‖0 ‖Θ∗‖0 Newton CD Alternating Newton CD Alternating Newton BCD

34,249 3,268 34,914 28,848 22.0 0.51 0.24
34,249 10,256 86,090 103,767 > 50 2.4 2.3

442,440 3,268 26,232 30,482 * * 11

1 4 8 12 16
number of cores
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104gb RAM

28.8gb RAM

Figure 5: Speedup with parallelization for alternating New-
ton block coordinate descent.

any other methods, while those methods without block
coordinate descent run out of memory. For example, in
Figure 4(a) alternating Newton block coordinate descent
could handle problems with one million inputs, while with-
out block-wise optimization it ran out of memory when
p > 100,000. We also notice that on a single core, the alter-
nating Newton block coordinate descent is slighly slower
than the same method without block-wise optimization be-
cause of the need to recompute Σ and Sxx. However, it is
still substantially faster than the previous method.

Finally, we evaluate the parallelization scheme for our
alternating Newton block coordinate descent method on
multi-core machines. Given a dataset generated from clus-
ter graph with p = 40,000 and q = 20,000, in Figure 5, we
show the folds of speedup for different numbers of cores
with respect to a single core. We obtained about 7 times
speedup on a 8-core machine with 104Gb RAM, and about
12 times speedup on a 16-core machine with 28Gb RAM.
In general, we observe greater speedup on larger problems
and for random graphs, because such problems tend to have
more cache misses that can be computed in parallel.

5.2 Genomic Data Analysis

We compare the different methods on a genomic dataset.
The dataset consists of genotypes for 442,440 single nu-
cleotide polymorphisms (SNPs) and 10,256 gene expres-
sion levels for 171 individuals with asthma, after removing
genes with variance < 0.01. We fit a sparse CGGM us-
ing SNPs as inputs and expressions as outputs to model
a gene network influenced by SNPs. We also compared the
methods on a smaller dataset of 34,249 SNPs from chromo-
some 1 and expression levels for 3,268 genes with variance
> 0.1. As typically sparse model structures are of interests
in this type of analysis, we chose regularization parameters
so that the number of non-zero entries in each of Θ and
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Figure 6: Convergence results on genomic dataset. (a) Sub-
optimality and (b) active set size over time.

Λ at convergence was approximately 10 times the number
of genes. The alternating Newton block coordinate descent
was run on a 8-core machine with parallelization.

The computation time of different methods are provided
in Table 1. On the largest problem, the previous approach
could not run due to memory constraint, whereas our block
coordinate descent converged in around 11 hours. We also
compare the convergence of the different methods on the
dataset with 34,249 SNPs and 3,268 gene expressions in
Figure 6, and find that our methods provide vastly superior
convergence than the previous method.

6 CONCLUSION

In this paper, we addressed the problem of large-scale op-
timization for sparse CGGMs. We proposed a new opti-
mization procedure, called alternating Newton coordinate
descent, that reduces computation time by alternately op-
timizing for the two sets of parameters Λ and Θ. Further,
we extended this with block-wise optimization so that it
can run on any machine with limited memory.
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