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Abstract

The spectral k-support norm enjoys good es-
timation properties in low rank matrix learn-
ing problems, empirically outperforming the
trace norm. Its unit ball is the convex hull of
rank k matrices with unit Frobenius norm. In
this paper we generalize the norm to the spec-
tral (k, p)-support norm, whose additional
parameter p can be used to tailor the norm to
the decay of the spectrum of the underlying
model. We characterize the unit ball and we
explicitly compute the norm. We further pro-
vide a conditional gradient method to solve
regularization problems with the norm, and
we derive an e�cient algorithm to compute
the Euclidean projection on the unit ball in
the case p = 1. In numerical experiments,
we show that allowing p to vary significantly
improves performance over the spectral k-
support norm on various matrix completion
benchmarks, and better captures the spectral
decay of the underlying model.

1 Introduction

The problem of learning a sparse vector or a low rank
matrix has generated much interest in recent years. A
popular approach is to use convex regularizers which
encourage sparsity, and a number of these have been
studied with applications including image denoising,
collaborative filtering and multitask learning, see for
example, Buehlmann and van der Geer [2011], Wain-
wright [2014] and references therein.

Recently, the k-support norm was proposed by Ar-
gyriou et al. [2012], motivated as a tight relaxation of
the set of k-sparse vectors of unit Euclidean norm. The
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authors argue that as a regularizer for sparse vector es-
timation, the norm empirically outperforms the Lasso
[Tibshirani, 1996] and Elastic Net [Zou and Hastie,
2005] penalties. Statistical bounds on the Gaussian
width of the k-support norm have been provided by
Chatterjee et al. [2014]. The k-support norm has also
been extended to the matrix setting. By applying the
norm to the vector of singular values of a matrix, Mc-
Donald et al. [2014] obtain the orthogonally invariant
spectral k-support norm, reporting state of the art per-
formance on matrix completion benchmarks.

Motivated by the performance of the k-support norm
in sparse vector and matrix learning problems, in this
paper we study a natural generalization by consider-
ing the `p-norms (for p 2 [1,1]) in place of the Eu-
clidean norm. These allow a further degree of freedom
when fitting a model to the underlying data. We de-
note the ensuing norm the (k, p)-support norm. As we
demonstrate in numerical experiments, using p = 2
is not necessarily the best choice in all instances. By
tuning the value of p the model can incorporate prior
information regarding the singular values. When prior
knowledge is lacking, the parameter can be chosen by
validation, hence the model can adapt to a variety of
decay patterns of the singular values. An interesting
property of the norm is that it interpolates between
the `1 norm (for k = 1) and the `p-norm (for k = d).
It follows that varying both k and p the norm allows
one to learn sparse vectors which exhibit di↵erent pat-
terns of decay in the non-zero elements.

A main goal of the paper is to study the proposed norm
in matrix learning problems. The (k, p)-support norm
is a symmetric gauge function hence it induces the or-
thogonally invariant spectral (k, p)-support norm. It
interpolates between the trace norm (for k = 1) and
the Schatten p-norms (for k = d) and its unit ball has
a simple geometric interpretation as the convex hull
of matrices of rank no greater than k and Schatten
p-norm no greater than one. This suggests that the
new norm favors low rank structure and the e↵ect of
varying p allows di↵erent patterns of decay in the spec-
trum. In the special case of p = 1, the (k, p)-support
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norm is the dual of the Ky-Fan k-norm [Bhatia, 1997]
and it encourages a flat spectrum when used as a reg-
ularizer.

In summary, the main contributions of the paper are:
i) we propose the (k, p)-support norm as an extension
of the k-support norm and we characterize in particu-
lar the unit ball of the induced orthogonally invariant
matrix norm (Section 3); ii) we show that the norm
can be computed e�ciently and we discuss the role
of the parameter p (Section 4); iii) we outline a condi-
tional gradient method to solve the associated regular-
ization problem for both vector and matrix problems
(Section 5); and in the special case p = 1 we pro-
vide an O(d log d) computation of the projection op-
erator (Section 5.1); finally, iv) we present numerical
experiments on matrix completion benchmarks which
demonstrate that the proposed norm o↵ers significant
improvement over previous methods, and we discuss
the e↵ect of the parameter p (Section 6). The supple-
mentary material contains derivations of results which
are sketched in or are omitted from the main body of
the paper.

Notation. We use Nn for the set of integers from 1
up to and including n. We let Rd be the d-dimensional
real vector space, whose elements are denoted by lower
case letters. For any vector w 2 Rd, its support is de-
fined as supp(w) = {i 2 Rd : wi 6= 0}, and its cardinal-
ity is defined as card(w) = | supp(w)|. We let Rd⇥m

be the space of d ⇥ m real matrices. We denote the
rank of a matrix as rank(W ). We let �(W ) 2 Rr be
the vector formed by the singular values of W , where
r = min(d, m), and where we assume that the singu-
lar values are ordered nonincreasing, that is �1(W ) �
· · · � �r(W ) � 0. For p 2 [1,1) the `p-norm of a

vector w 2 Rd is defined as kwkp = (
Pd

i=1 |wi|p)1/p

and kwk1 = maxd
i=1 |wi|. Given a norm k · k on Rd

or Rd⇥m, k · k⇤ denotes the corresponding dual norm,
defined by kuk⇤ = sup{hu, wi : kwk  1}. The convex
hull of a subset S of a vector space is denoted co(S).

2 Background and Previous Work

For every k 2 Nd, the k-support norm k·k(k) is defined
as the norm whose unit ball is given by

co
�
w 2 Rd : card(w)  k, kwk2  1

 
, (1)

that is, the convex hull of the set of vectors of car-
dinality at most k and `2-norm no greater than one
[Argyriou et al., 2012]. We readily see that for k = 1
and k = d we recover the unit ball of the `1 and `2-
norms respectively.

The k-support norm of a vector w 2 Rd can be ex-
pressed as an infimal convolution [Rockafellar, 1970,

p. 34],

kwk(k) = inf
(vg)

( X

g2Gk

kvgk2 :
X

g2Gk

vg = w

)
, (2)

where Gk is the collection of all subsets of Nd contain-
ing at most k elements and the infimum is over all vec-
tors vg 2 Rd such that supp(vg) ✓ g, for g 2 Gk. Equa-
tion (2) highlights that the k-support norm is a special
case of the group lasso with overlap [Jacob et al., 2009],
where the cardinality of the support sets is at most k.
This expression suggests that when used as a regular-
izer, the norm encourages vectors w to be a sum of a
limited number of vectors with small support. Due to
the variational form of (2) computing the norm is not
straightforward, however Argyriou et al. [2012] note
that the dual norm has a simple form, namely it is the
`2-norm of the k largest components,

kuk(k),⇤ =

vuut
kX

i=1

(|u|#i )2, u 2 Rd, (3)

where |u|# is the vector obtained from u by reorder-
ing its components so that they are nonincreasing in
absolute value. Note also from equation (3) that for
k = 1 and k = d, the dual norm is equal to the `1-
norm and `2-norm, respectively, which agrees with our
earlier observation regarding the primal norm.

A related problem which has been studied in recent
years is learning a matrix from a set of linear mea-
surements, in which the underlying matrix is assumed
to have sparse spectrum (low rank). The trace norm,
the `1-norm of the singular values of a matrix, has been
shown to perform well in this setting, see e.g. Argyriou
et al. [2008], Jaggi and Sulovsky [2010]. Recall that
a norm k · k on Rd⇥m is called orthogonally invari-
ant if kWk = kUWV k, for any orthogonal matrices
U 2 Rd⇥d and V 2 Rm⇥m. A classical result by von
Neumann establishes that a norm is orthogonally in-
variant if and only if it is of the form kWk = g(�(W )),
where �(W ) is the vector formed by the singular val-
ues of W in nonincreasing order, and g is a symmetric
gauge function [Von Neumann, 1937]. In other words,
g is a norm which is invariant under permutations
and sign changes of the vector components, that is
g(w) = g(Pw) = g(Jw), where P is any permuta-
tion matrix and J is diagonal with entries equal to ±1
[Horn and Johnson, 1991, p. 438].

Examples of symmetric gauge functions are the `p

norms for p 2 [1,1] and the corresponding orthogo-
nally invariant norms are called the Schatten p-norms
[Horn and Johnson, 1991, p. 441]. In particular, those
include the trace norm and Frobenius norm for p = 1
and p = 2 respectively. Regularization with Schatten

1062



McDonald, Pontil, Stamos

p-norms has been previously studied by Argyriou et al.
[2007] and a statistical analysis has been performed by
Rohde and Tsybakov [2011]. As the set Gk includes
all subsets of size k, expression (2) for the k-support
norm reveals that k · k(k) is a symmetric gauge func-
tion. McDonald et al. [2014] use this fact to introduce
the spectral k-support norm for matrices, by defining
kWk(k) = k�(W )k(k), for W 2 Rd⇥m and report state
of the art performance on matrix completion bench-
marks.

3 The (k, p)-Support Norm

In this section we introduce the (k, p)-support norm
as a natural extension of the k-support norm. This
follows by applying the `p-norm, rather than the Eu-
clidean norm, in the infimum convolution definition of
the norm.

Definition 1. Let k 2 Nd and p 2 [1,1]. The (k, p)-
support norm of a vector w 2 Rd is defined as

kwk(k,p) = inf
(vg)

8
<
:
X

g2Gk

kvgkp :
X

g2Gk

vg = w

9
=
; . (4)

where the infimum is over all vectors vg 2 Rd such
that supp(vg) ✓ g, for g 2 Gk.

Let us note that the norm is well defined. Indeed, pos-
itivity, homogeneity and non degeneracy are immedi-
ate. To prove the triangle inequality, let w, w0 2 Rd.
For any ✏ > 0 there exist {vg} and {v0g} such that
w =

P
g vg, w0 =

P
g v0g,

P
g kvgkp  kwk(k,p) + ✏/2,

and
P

g kv0gkp  kw0k(k,p) + ✏/2. As
P

g vg +
P

g v0g =
w + w0, we have

kw + w0k(k,p) 
X

g

kvgkp +
X

g

kv0gkp

 kwk(k,p) + kw0k(k,p) + ✏,

and the result follows by letting ✏ tend to zero.

Note that, since a convex set is equivalent to the con-
vex hull of its extreme points, Definition 1 implies that
the unit ball of the (k, p)-support norm, denoted by
Cp

k , is given by the convex hull of the set of vectors with
cardinality no greater than k and `p-norm no greater
than 1, that is

Cp
k = co

�
w 2 Rd : card(w)  k, kwkp  1

 
. (5)

Definition 1 gives the norm as the solution of a
variational problem. Its explicit computation is not
straightforward in the general case, however for p = 1
the unit ball (5) does not depend on k and is always
equal to the `1 unit ball. Thus, the (k, 1)-support norm

is always equal to the `1-norm, and we do not consider
further this case in this section. Similarly, for k = 1
we recover the `1-norm for all values of p. For p = 1,
from the definition of the dual norm it is not di�cult
to show that k · k(k,p) = max{k · k1, k · k1/k}. We
return to this in Section 4 when we describe how to
compute the norm for all values of p.

Note further that in Equation (4), as p tends to 1,
the `p-norm of each vg is increasingly dominated by
the largest component of vg. As the variational formu-
lation tries to identify vectors vg with small aggregate
`p-norm, this suggests that higher values of p encour-
age each vg to tend to a vector whose k entries are
equal. In this manner varying p allows us adjust the
degree to which the components of vector w can be
clustered into (possibly overlapping) groups of size k.

As in the case of the k-support norm, the dual (k, p)-
support norm has a simple expression. Recall that
the dual norm of a vector u 2 Rd is defined by the
optimization problem

kuk(k,p),⇤ = max
�
hu, wi : kwk(k,p) = 1

 
. (6)

Proposition 2. If p 2 (1,1] then the dual (k, p)-
support norm is given by

kuk(k,p),⇤ =

 X

i2Ik

|ui|q
! 1

q

, u 2 Rd,

where q = p/(p�1) and Ik ⇢ Nd is the set of indices of
the k largest components of u in absolute value. Fur-
thermore, if p 2 (1,1) and u 2 Rd\{0} then the max-
imum in (6) is attained for

wi =

8
<
:

sign(ui)
⇣

|ui|
kuk(k,p),⇤

⌘ 1
p�1

if i 2 Ik,

0 otherwise.
(7)

If p = 1 the maximum is attained for

wi =

8
><
>:

sign(ui) if i 2 Ik, ui 6= 0,

�i 2 [�1, 1] if i 2 Ik, ui = 0,

0 otherwise.

Note that for p = 2 we recover the dual of the k-
support norm in (3).

3.1 The Spectral (k, p)-Support Norm

From Definition 1 it is clear that the (k, p)-support
norm is a symmetric gauge function. This follows
since Gk contains all groups of cardinality k and the
`p-norms only involve absolute values of the compo-
nents. Hence we can define the spectral (k, p)-support
norm as

kWk(k,p) = k�(W )k(k,p), W 2 Rd⇥m.
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Since the dual of any orthogonally invariant norm is
given by k · k⇤ = k�(·)k⇤, see e.g. Lewis [1995], we
conclude that the dual spectral (k, p)-support norm is
given by

kZk(k,p),⇤ = k�(Z)k(k,p),⇤, Z 2 Rd⇥m.

The next result characterizes the unit ball of the spec-
tral (k, p)-support norm. Due to the relationship be-
tween an orthogonally invariant norm and its corre-
sponding symmetric gauge function, we see that the
cardinality constraint for vectors generalizes in a nat-
ural manner to the rank operator for matrices.

Proposition 3. The unit ball of the spectral (k, p)-
support norm is the convex hull of the set of matrices
of rank at most k and Schatten p-norm no greater than
one.

In particular, if p = 1, the dual vector norm is given
by u 2 Rd, by kuk(k,1),⇤ =

Pk
i=1 |u|#i . Hence, for

any Z 2 Rd⇥m, the dual spectral norm is given by
kZk(k,1),⇤ =

Pk
i=1 �i(Z), that is the sum of the k

largest singular values, which is also known as the Ky-
Fan k-norm, see e.g. Bhatia [1997].

4 Computing the Norm

In this section we compute the norm, illustrating how
it interpolates between the `1 and `p-norms.

Theorem 4. Let p 2 (1,1). For every w 2 Rd, and
k  d, it holds that

kwk(k,p) =

"X̀

i=1

(|w|#i )p +

 Pd
i=`+1 |w|#i
q
p

k � `

!p # 1
p

(8)

where 1
p + 1

q = 1, and for k = d, we set ` = d, otherwise

` is the largest integer in {0, . . . , k � 1} satisfying

(k � `)|w|#` �
dX

i=`+1

|w|#i . (9)

Furthermore, the norm can be computed in O(d log d)
time.

Proof. Note first that in (8) when ` = 0 we understand
the first term in the right hand side to be zero, and
when ` = d + 1 we understand the second term to be
zero.

We need to compute

kwk(k,p) = max

(
dX

i=1

uiwi : kuk(k,p),⇤  1

)

where the dual norm k·k(k,p),⇤ is described in Proposi-

tion 2. Let zi = |w|#i . The problem is then equivalent
to

max

(
dX

i=1

ziui :

kX

i=1

uq
i  1, u1 � · · · � ud

)
. (10)

This further simplifies to the k-dimensional problem

max

(
k�1X

i=1

uizi + uk

dX

i=k

zi :
kX

i=1

uq
i  1, u1 � · · · � uk

)
.

Note that when k = d, the solution is given by the dual
of the `q-norm, that is the `p-norm. For the remainder
of the proof we assume that k < d. We can now at-
tempt to use Holder’s inequality, which states that for
all vectors x such that kxkq = 1, hx, yi  kykp, and
the inequality is tight if and only if

xi =

✓ |yi|
kykp

◆p�1

sign(yi).

We use it for the vector y = (z1, . . . , zk�1,
Pd

i=k zi).
The components of the maximizer u satisfy ui =⇣

zi

Mk�1

⌘p�1

if i  k � 1, and

uk =

 Pd
i=`+1 zi

Mk�1

!p�1

.

where for every ` 2 {0, . . . , k � 1}, M` denotes the
r.h.s. in equation (8). We then need to verify that the
ordering constraints are satisfied. This requires that

(zk�1)
p�1 �

 
dX

i=k

zi

!p�1

which is equivalent to inequality (9) for ` = k � 1. If
this inequality is true we are done, otherwise we set
uk = uk�1 and solve the smaller problem

max

⇢ k�2X

i=1

uizi + uk�1

dX

i=k�1

zi :

k�2X

i=1

uq
i + 2uq

k�1  1, u1 � · · · � uk�1

�
.

We use again Hölder’s inequality and keep the result
if the ordering constraints are fulfilled. Continuing in
this way, the generic problem we need to solve is

max

⇢X̀

i=1

uizi + u`+1

dX

i=`+1

zi :

X̀

i=1

uq
i + (k � `)uq

`+1  1, u1 � · · · � u`+1

�
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where ` 2 {0, . . . , k � 1}. Without the ordering con-
straints the maximum, M`, is obtained by the change

of variable u`+1 7! (k � `)
1
q u` followed by applying

Hölder’s inequality. A direct computation provides

that the maximizer is ui =
⇣

zi

M`

⌘p�1

if i  `, and

(k � `)
1
q u`+1 =

 Pd
i=`+1 zi

(k � `)
1
q Mp

`

!p�1

.

Using the relationship 1
p + 1

q = 1, we can rewrite this
as

u`+1 =

 Pd
i=`+1 zi

(k � `)Mp
`

!p�1

.

Hence, the ordering constraints are satisfied if

zp�1
` �

 Pd
i=`+1 zi

(k � `)

!p�1

,

which is equivalent to (9). Finally note that M` is
a nondecreasing function of `. This is because the
problem with a smaller value of ` is more constrained,
namely, it solves (10) with the additional constraints
u`+1 = · · · = ud. Moreover, if the constraint (9) holds
for some value ` 2 {0, . . . , k � 1} then it also holds for
a smaller value of `, hence we maximize the objective
by choosing the largest `.

The computational complexity stems from using the
monotonicity of M` with respect to `, which allows us
to identify the critical value of ` using binary search.

Note that for k = d we recover the `p-norm and for
p = 2 we recover the result in Argyriou et al. [2012],
McDonald et al. [2014], however our proof technique
is di↵erent from theirs.

Remark 5 (Computation of the norm for p 2 {1,1}).
Since the norm k ·k(k,p) computed above for p 2 (1,1)
is continuous in p, the special cases p = 1 and p = 1
can be derived by a limiting argument. We readily see
that for p = 1 the norm does not depend on k and it
is always equal to the `1-norm, in agreement with our
observation in the previous section. For p = 1 we
obtain that kwk(k,1) = max (kwk1, kwk1/k).

5 Optimization

In this section, we describe how to solve regularization
problems using the vector and matrix (k, p)-support
norms. We consider the constrained optimization
problem

min
�
f(w) : kwk(k,p)  ↵

 
, (11)

Algorithm 1 Frank-Wolfe.

Choose w(0) such that kw(0)k(k,p)  ↵
for t = 0, . . . , T do

Compute g := rf(w(t))
Compute s := argmin

�
hs, gi : ksk(k,p)  ↵

 

Update w(t+1) := (1 � �)w(t) + �s, for � := 2
t+2

end for

where w is in Rd or Rd⇥m, ↵ > 0 is a regularization
parameter and the error function f is assumed to be
convex and continuously di↵erentiable. For example,
in linear regression a valid choice is the square error,
f(w) = kXw � yk2

2, where X is a matrix of obser-
vations and y a vector of response variables. Con-
strained problems of form (11) are also referred to as
Ivanov regularization in the inverse problems literature
[Ivanov et al., 1978].

A convenient tool to solve problem (11) is provided by
the Frank-Wolfe method [Frank and Wolfe, 1956], see
also Jaggi [2013] for a recent account. The method is
outlined in Algorithm 1, and it has worst case conver-
gence rate O(1/T ). The key step of the algorithm is
to solve the subproblem

argmin
�
hs, gi : ksk(k,p)  ↵

 
, (12)

where g = rf(w(t)), that is the gradient of the ob-
jective function at the t-th iteration. This problem
involves computing a subgradient of the dual norm at
g. It can be solved exactly and e�ciently as a conse-
quence of Proposition 2. We discuss here the vector
case and postpone the discussion of the matrix case
to Section 5.2. By symmetry of the `p-norm, problem
(12) can be solved in the same manner as the max-
imum in Proposition 2 and the solution is given by
si = �↵wi, where wi is given by (7) .

Specifically, letting Ik ⇢ Nd be the set of indices of
the k largest components of g in absolute value, for
p 2 (1,1) we have

si =

8
<
:
↵ sign(gi)

⇣
|gi|

kgk(k,p),⇤

⌘ 1
p�1

, if i 2 Ik

0, if i /2 Ik

(13)

and, for p = 1 we choose the subgradient

si =

(
↵ sign(gi) if i 2 Ik, gi 6= 0,

0 otherwise.
(14)

5.1 Projection Operator

An alternative method to solve (11) in the vector case
is to consider the equivalent problem

min
n

f(w) + �{k·k(k,p)↵}(w) : w 2 Rd
o

, (15)
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where �C(·) is the indicator function of con-
vex set C. Proximal gradient methods can be
used to solve optimization problems of the form
min

�
f(w) + �g(w) : w 2 Rd

 
, where f is a convex loss

function with Lipschitz continuous gradient, � > 0 is
a regularization parameter, and g is a convex function
for which the proximity operator can be computed ef-
ficiently, see Beck and Teboulle [2009], Combettes and
Wajs [2005], Nesterov [2007] and references therein.
The proximity operator of g with parameter ⇢ > 0 is
defined as prox⇢g(w) = argmin{ 1

2kx � wk2 + ⇢g(x) :

x 2 Rd}. The proximity operator for the squared k-
support norm was computed by Argyriou et al. [2012]
and McDonald et al. [2014], and for the k-support
norm by Chatterjee et al. [2014].

In the special case that g(w) = �C(w), where C is a
convex set, the proximity operator reduces to the pro-
jection operator onto C. For the (k, p)-support norm,
for the case p = 1 we can compute the projection
onto its unit ball using the following result.

Proposition 6. For every w 2 Rd, the projection x
of w onto the unit ball of the (k,1)-norm is given by

xi =

(
sign(wi)(|wi| � �), if ||wi| � �|  1,

sign(wi), if ||wi| � �| > 1,
(16)

where � = 0 if kwk1  k, otherwise � 2 (0,1) is

chosen to maximize
Pd

i=1 |xi| subject to the constraintPd
i=1 |xi|  k. Furthermore, the projection can be

computed in O(d log d) time.

Proof. (Sketch) We assume without loss of generality
that the components of w are non zero. We solve the
optimization problem

min
x2Rd

(
dX

i=1

(xi � wi)
2 : |xi|  1,

dX

i=1

|xi|  k

)
. (17)

We consider two cases. If
Pd

i=1 |wi|  k, then the
problem decouples and we solve it componentwise. IfPd

i=1 |wi| > k, we solve problem (17) by minimizing

the Lagrangian function L(x, �) =
Pd

i=1(xi � wi)
2 +

2�(
Pd

i=1 |xi|�k) with nonnegative multiplier �, which
can be done componentwise. Finally, both cases can
be combined into the form of (16). The complexity
follows by taking advantage of the monotonicity of
xi(�).

We can use Proposition 6 to project onto the unit ball
of radius ↵ > 0 by a rescaling argument (see supple-
mentary material for details).

5.2 Matrix Problem

Given data matrix X 2 Rd⇥m for which we observe
a subset of entries, we consider the constrained opti-
mization problem

min
W2Rd⇥m

�
k⌦(X) � ⌦(W )kF : kWk(k,p)  ↵

 
(18)

where the operator ⌦ applied to a matrix sets unob-
served values to zero. As in the vector case, the Frank-
Wolfe method can be applied to the matrix problems.
Algorithm 1 is particularly convenient in this case as
we only need to compute the largest k singular values,
which can result in a computationally e�cient algo-
rithm. The result is a direct consequence of Propo-
sition 2 and von Neumann’s trace inequality, see e.g.
Marshall and Olkin [1979, Ch. 9 Sec. H.1.h].

Specifically, we solve the optimization problem

min
S

{hS, Gi : kSk(k,p)  ↵},

where G is the gradient of the objective function at
the t-th iteration. Equivalently we consider

max
R

{hR, Gi : kRk(k,p)  ↵},

where R = �S. The solution is given by

R = Ukdiag(r)V >
k

where Uk and Vk are the top k left and right singular
vectors of the gradient G of the objective function in
(18) evaluated at the current solution, whose singular
values we denote by g, and r is obtained from g as

ri =

8
<
:
↵
⇣

gi

kgk(k,p),⇤

⌘ 1
p�1

, if i 2 Ik

0, if i /2 Ik

(19)

and, for p = 1

ri =

(
↵ if i 2 Ik, gi 6= 0,

0 otherwise
(20)

for p 2 (1,1) and p = 1, respectively, where Ik =
[1, . . . , k]. It follows that a subgradient for the matrix
problem is R = �Ukdiag(s)V >

k .

Note also that the proximity operator of the norm and
the Euclidean projection on the associated unit ball
both require the full singular value decomposition to
be performed. Indeed, the proximity operator of an or-
thogonally invariant norm k·k = g(�(·)) at W 2 Rd⇥m

is given by proxk·k(W ) = Udiag(proxg(�(W )))V >,
where U and V are the matrices formed by the left
and right singular vectors of W , see e.g. Argyriou
et al. [2011, Prop. 3.1], and this requires the full de-
composition.
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Table 1: Matrix completion on synthetic datasets gen-
erated with decaying spectrum. The improvement of
the (k, p)-support norm over the k-support and trace
norms is statistically significant at a level < 0.001.

dataset norm test error k p

rank 5 trace 0.8184 (0.03) - -
⇢=10% k-supp 0.8036 (0.03) 3.6 -

kp-supp 0.7831 (0.03) 1.8 7.3

rank 5 trace 0.4085 (0.03) - -
⇢=20% k-supp 0.4031 (0.03) 3.1 -

kp-supp 0.3996 (0.03) 2.0 4.7

rank 10 trace 0.6356 (0.03) - -
⇢=20% k-supp 0.6284 (0.03) 4.4 -

kp-supp 0.6270 (0.03) 2.0 4.4

6 Numerical Experiments

In this section we apply the spectral (k, p)-support
norm to matrix completion (collaborative filtering
problems), in which we want to recover a low rank,
or approximately low rank, matrix from a small sam-
ple of its entries, see e.g. Jaggi and Sulovsky [2010].
One prominent method of solving this problem is
trace norm regularization: we look for a matrix which
closely fits the observed entries and has a small trace
norm (sum of singular values) [Jaggi and Sulovsky,
2010, Mazumder et al., 2010, Toh and Yun, 2011]. We
apply the (k, p)-support norm to this framework and
we investigate the impact of varying p, and we compare
the spectral (k, p)-support norm to the trace norm and
the spectral k-support norm (p = 2) in both synthetic
and real datasets. In each case we solve the optimiza-
tion problem (18) using the Frank-Wolfe method as
outlined in Section 5. We determine the values of k
and p � 1 by validation, averaged over a number of
trials.

Impact of p. A key motivation for the additional pa-
rameter p is that it allows us to tune the norm to the
decay of the singular values of the underlying matrix.
In particular the variational formulation of (4) sug-
gests that as the spectrum of the true low rank matrix
flattens out, larger values of p should be preferred.

We ran the method on a set of 100 ⇥ 100 matrices of
rank 12, with decay of the non zero singular values �`

proportional to exp(�`a), for 26 values of a between
10�6 and 0.18, and we determined the corresponding
optimal value of p. Figure 1 illustrates the optimum
value of p as a function of a. We clearly observe the
negative slope, that is the steeper the slope the smaller
the optimal value of p. Figure 2 shows the spectrum
and the optimal p for several decay values.

Note that k is never equal to 1, which is a special case

decay
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Figure 1: Optimal p vs. decay a.
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p = 384
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Figure 2: Optimal p fitted to Matrix spectra with var-
ious decays.

in which the norm is independent of p, and is equal
to the trace norm. In each case the improvement of
the spectral (k, p)-support norm over the k-support
and trace norms is statistically significant at a level
< 0.001.

Figure 3 illustrates the impact of the curvature p on
the test error on synthetic and real datasets. We ob-
serve that the error levels o↵ as p tends to infinity, so
for these specific datasets the major gain is to be had
for small values of p. The optimum value of p for both
the real and synthetic datasets is statistically di↵erent
from p = 2 (k-support norm), and p = 1 (trace norm).

Simulated Data. We replicated the experimental
setting of McDonald et al. [2014] for synthetic matrix
completion. Each 100 ⇥ 100 matrix is generated as
W = UV > + E, where U, V 2 R100⇥r, r ⌧ 100, and
the entries of U , V and E are i.i.d. standard Gaussian.
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Table 2: Matrix completion on real datasets. The
improvement of the (k, p)-support norm over the k-
support and trace norms is statistically significant at
a level < 0.001.

dataset norm test error k p

MovieLens trace 0.2017 - -
100k k-supp 0.1990 1.9 -

kp-supp 0.1971 2.0 3.0

Jester 1 trace 0.1752 - -
k-supp 0.1739 6.4 -
kp-supp 0.1731 2.0 6.5

Jester 3 trace 0.1959 - -
k-supp 0.1942 2.1 -
kp-supp 0.1924 5.0 5.0

The error is measured as ktrue� predictedk2/ktruek2,
standard deviations are shown in brackets and the
mean values of k and p are selected by validation. Ta-
ble 1 illustrates the results. We found that the (k, p)-
support norm outperformed the standard k-support
norm, as well as the trace norm, at a statistically sig-
nificant level.

We note that although Frank Wolfe method for the
(k, p)-support norm does not generally converge as
quickly as proximal methods (which are available in
the case of k-support norm [McDonald et al., 2014,
Chatterjee et al., 2014]), the computational cost can
be mitigated using a continuation method. Specifically
given an ordered sequence of parameter values for p we
can proceed sequentially, initializing its value based on
the previously computed value. Empirically we tried
this approach for a range of values of p and found that
the total computation time increased only moderately.

Real Data. Finally, we applied the norms to
real collaborative filtering datasets. We observe
a subset of the (user, rating) entries of a matrix
and predict the unobserved ratings, with the as-
sumption that the true matrix is likely to have low
rank. We report on the MovieLens 100k dataset
(http://grouplens.org/datasets/movielens/), which
consists of ratings of movies, and the Jester 1 and 3
datasets (http://goldberg.berkeley.edu/jester-data/),
which consist of ratings of jokes. Following McDonald
et al. [2014], Toh and Yun [2011], for MovieLens for
each user we uniformly sampled ⇢ = 50% of available
entries for training, and for Jester 1 and Jester 3 we
sampled 20, respectively 8 ratings per user, using 10%
for validation. We used normalized mean absolute
error,

NMAE =
ktrue � predictedk2

#obs./(rmax � rmin)
,

where rmin and rmax are lower and upper bounds for

p value
2 4 6 8 10

0.174

0.175

0.784

0.79

synthetic
jester

Figure 3: Test error vs curvature (p). Left axis: syn-
thetic data (blue crosses); right axis: Jester 1 dataset
(red circles).

the ratings [Toh and Yun, 2011], and we implemented
a final thresholding step as in McDonald et al. [2014].

The results are outlined in Table 2. The spectral (k, p)-
support outperformed the trace norm and the spectral
k-support norm, and the improvement is statistically
significant at a level < 0.001 (the standard deviations,
not shown here, are of the order of 10�5). In summary
the experiments suggest that the additional flexibility
of the p parameter indeed allows the model to better fit
both the sparsity and the decay of the true spectrum.

7 Conclusion

We presented a generalization of the k-support norm,
the (k, p)-support norm, where the additional param-
eter p is used to better fit the decay of the compo-
nents of the underlying model. We determined the
dual norm, characterized the unit ball and computed
an explicit expression for the norm. As the norm is
a symmetric gauge function, we further described the
induced spectral (k, p)-support norm. We adapted the
Frank-Wolfe method to solve regularization problems
with the norm, and in the particular case p = 1 we
provided a fast computation for the projection opera-
tor. In numerical experiments we considered synthetic
and real matrix completion problems and we showed
that varying p leads to significant performance im-
provements. Future work could include deriving sta-
tistical bounds for the performance of the norms, and
situating the norms in the framework of other struc-
tured sparsity norms which have recently been studied
[Micchelli et al., 2013, Obozinski and Bach, 2012].
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