
Supplementary Material

1 Proof of Proposition 1

Proposition 1. Suppose f : 2N 7→ R is submodu-
lar. After each iteration of A1 (A2), we have Xmin ⊆
[Xt, Yt] (Xmax ⊆ [Xt, Yt]).

For Algorithm 1, the proof can be found in [3]. For
Algorithm 2, the proof can be found in [2]. A proof
using weaker assumption of quasi-submodular function
f can be found in [5]. We prove Proposition 1 here for
completeness.

Proof. Algorithm 1. Obviously Xmin ⊆ [X0, Y0].
Suppose Xmin ⊆ [Xk, Yk], we now prove Xmin ⊆
[Xk+1, Yk+1]. Suppose X∗ ∈ Xmin is a minimum of f ,
then we have Xk ⊆ X∗ ⊆ Yk. For ∀i ∈ Uk, if i 6∈ X∗,
by submodularity, we have f(i|X∗) ≤ f(i|Xk) < 0,
i.e., f(X∗ + i) < f(X∗), which contradicts with the
optimality of X∗. So we have Uk ⊆ X∗, and Xk+1 =
Xk ∪ Uk ⊆ X∗. ∀j ∈ Dk, if j ∈ X∗, by submodu-
larity, we have f(j|X∗ − j) ≥ f(j|Yk − j) > 0, i.e.,
f(X∗) > f(X∗ − j), which also contradicts with the
optimality of X∗. Therefore we have Dk ⊆ N \ X∗,
and X∗ ⊆ Yk+1 = Yk \Dk.

Now we have Xk+1 ⊆ X∗ ⊆ Yk+1. Since X∗ can
be an arbitrary element of Xmin, we have Xmin ⊆
[Xk+1, Yk+1].

Algorithm 2. Obviously Xmax ⊆ [X0, Y0]. Suppose
Xmax ⊆ [Xk, Yk], we now prove Xmax ⊆ [Xk+1, Yk+1].
Suppose X∗ ∈ Xmax is a maximum of f , then we have
Xk ⊆ X∗ ⊆ Yk. ∀i ∈ Uk, if i ∈ X∗, by submodularity,
we have f(i|X∗ − i) ≤ f(i|Xk) < 0, i.e., f(X∗) <
f(X∗ − i), which contradicts with the optimality of
X∗. So we have Uk ⊆ N \ X∗, and X∗ ⊆ Yk+1 =
Yk\Uk. ∀j ∈ Dk, if j 6∈ X∗, by submodularity, we have
f(j|X∗) ≥ f(j|Yk − j) > 0, i.e., f(X∗ + j) > f(X∗),
which also contradicts with the optimality of X∗. So
we have Dk ⊆ X∗, and Xk+1 = Xk ∪Dk ⊆ X∗.

Now we have Xk+1 ⊆ X∗ ⊆ Yk+1. Since X∗ can
be an arbitrary element of Xmax, we have Xmax ⊆
[Xk+1, Yk+1].

2 Reduction Rate of Algorithm 1

Figure 1 shows the reduction rates of Algorithm 1. All
the settings are the same as those of Algorithm 2 in
the paper.

3 More Experimental Results

3.1 Results of Maximization

In the paper we use the random bi-directional greedy
method as the approximate solver for maximization.
We also report the results of random permutation [3]
and random local search [3]. The settings are the same
as those in the paper. The results are shown in Figure
2 and Figure 3.

3.2 Results Using Real Data

Finally, we compare the results on real data. The ob-
jective function is the log-determinant function. For
each test case, we randomly select 100 samples from
the CIFAR dataset [4], and then we compute the simi-
larity matrix as the positive definite matrix K. Other
settings are the same as those in the paper. The results
are shown in Figure 4.

In Figure 4, the first three subfigures show the re-
sults of maximization using random local search, ran-
dom permutation, and random bi-directional greedy,
respectively. The last subfigure presents the results
of minimization using the Fujishige-Wolfe minimum-
norm point algorithm [1].
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(a) Subset selection (b) Mutual information (d) Negative half-products(c) Log-determinant
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Figure 1: Average Reduction Rates of Minimization

(a) Subset selection (b) Mutual information (c) Log-determinant (d) Negative half-products
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Figure 2: Maximization Results Using Random Permutation [3]

(a) Subset selection (b) Mutual information (c) Log-determinant
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(d) Negative half-products
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Figure 3: Maximization Results Using Random Local Search [3]

(a) Random local search (b) Random permutation (c) Random bi-directional greedy (d) Minimum-norm point
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Figure 4: Results of Log-determinant Function Using CIFAR Dataset


