
Appendix

1 Rank One optimal Equivalent Kernel

In this section we present a di�erent approach to show that the optimal equiva-
lent kernel Z∗ is a rank one matrix. As discussed in the main paper, this stems
from the fact that ∇f has at least one non zero eigenvalue, and therefore the
eigenvector u corresponds to a non zero eigenvalue.

First, note that each element in the gradient matrix ∇f is non

2 Experimental Methodology

In this section we describe in details the experimental methodology of the Multi
Kernel Learning benchmark [1].

On the large datasets (ADVERT and MULTIFEAT) the data was divided
(with strati�cation) into three equal parts (denoted by segments A,B & C). Seg-
ment C was reserved as a testing set. Every algorithm was trained on segment
A, with the hyperparameter C values 0.01, 0.1, 1, 10, 100. The optimal value,
as evaluated on the segment B (the validation segment) was picked, and the
algorithm was retrained on both segment A and segment B. Then, the algo-
rithm was tested on segment C. This process was repeated with reversed roles
for segments A and B, namely with segment B as the training set and segment
A as the validation.

This procedure was repeated �ve times (5×2 cross validation), and concluded
with 10 trials. The mean and the standard deviations of the performance metrics
in these trials are presented in the main paper.

The PROTEIN database includes a given partition to a train and test sets.
The reported results were obtained by performing a 30 fold cross validation on
the train set: The train set was partitions into 30 folds (with strati�cation).
At each trial, one fold was reserved for veri�cation of the the optimal hyperpa-
rameter C (with candidate values, as before, 0.01, 0.1, 1, 10, 100), while the rest
were used to train the various algorithms. In the main paper, we report the
mean and the standard deviations of the various metrics in these 30 trials are
presented.

Finally, note that the active kernel account is the number of base kernels
that were used by the learner. In other words, �A kernel is active, if it needs to
be calculated to make a prediction for an unseen test instance� [1].
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3 Kernels 5 Kernels 7 Kernels

RBMKL 75.03± 4.65 76.22± 4 76.68± 5.23
SimpleMKL 74.53± 4.94 76.88± 5.65 75.83± 6.02
GMKL 76.77± 5.93 73.37± 6.15 75.73± 5.44

NLMKL (p = 1) 76.29± 4.26 74.62± 7.83 76.56± 4.32
NLMKL (p = 2) 73.21± 5.3 76.35± 3.67 75.85± 4.99

Nuc-MKL 84.27± 3.79 84.39± 3.75 83.91± 3.44

Table 1: The classi�cation error on the SONAR database.

3 Additional Experiments

We performed additional experiments and compared the performance of Nuc-
MKL to a selected subset, state-of-the-art MKL algorithms on additional databases,
SONAR, BREAST and IONOSPHERE. These databases are some of the most
frequently used datasets in machine learning.

Our test methodology followed precisely the experimental procedure for the
ADVERT and MULTIFEAT datasets. However, since the features were not
divided into feature categories or feature sets, we randomly divided the feature
into disjoint sets. This partition was, obviously, was performed only once and
was �xed in all experiments. Note that each feature set generates a kernel. We
experienced with di�erent number of feature sets, and report the results in this
section.

3.1 SONAR

The SONAR1 database contain 208 samples, with 59 features, corresponding
to di�erent re�ected sonar signals. The classi�cation task is to identify which
object is a rock and which is a metallic cylinder. In our experiment, NuC-MKL
came on top, with a rather large gap than the other algorithms. The errors of
the di�erent algorithms are presented in Table 1.

3.2 BREAST

The BREAST2 database contain 686 samples (after removing samples with miss-
ing entries) of categorical analysis of breast cancer cells. Since the are only nine
features, we limited ourselves to a smaller number of kernels compared to the
SONAR database. The goal in this task is to classify whether a tumor is ma-
lignant or benign. In our experiment, the NuC-MKL performed well, similarly
to the linear MKL algorithms, and there is no clear winner since the di�erence
in performance is statistically insigni�cant. It is important to note that the
non-linear MKL NLMKL algorithm fell behind since the data features of this
task are apparently very close to the features in the feature plane. Nevertheless,

1https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
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2 Kernels 3 Kernels 4 Kernels

RBMKL 96.46± 0.99 97.16± 1 96.83± 0.9
SimpleMKL 96.75± 1.28 97.27± 0.9 96.93± 0, 77
GMKL 96.6± 1.09 97.09± 1.29 96.63± 1.09

NLMKL (p = 1) 85.67± 2.01 85.59± 2.34 83.34± 2.28
NLMKL (p = 2) 86.33± 2.31 84.42± 2.37 83.29± 2.55

Nuc-MKL 96.75± 3.44 96.84± 1.01 96.87± 1.32

Table 2: The classi�cation error on the BREAST database.

3 Kernels 4 Kernels 5 Kernels

RBMKL 81.35± 2.66 81.96± 3.12 79.3± 3.9
SimpleMKL 80.64± 2.87 81.4± 2.57 80.68± 3.12
GMKL 79.94± 3.3 80.35± 3.1 80.06± 2.36

NLMKL (p = 1) 85.18± 2.06 83.02± 2.44 82.77± 3.62
NLMKL (p = 2) 84.77± 3.63 82.86± 2.89 83.03± 2.63

Nuc-MKL 92.4± 1.76 91.13± 2.26 92.35± 1.73

Table 3: The classi�cation error on the IONOSPHERE database.

although NuC-MKL is a non-linear algorithm of the base kernels, it allows a
linear combination of the base kernels as an outcome as discussed in the main
paper, and therefore performed well in this experiment too. The errors of the
di�erent algorithms are presented in Table 2.

3.3 IONOSPHERE

This database3 contain 361 samples, each having 34 features. Some samples
contains a large number of null values (more than 6 values) and were removed. In
this test, NuC-MKL was the clear winner. The errors of the di�erent algorithms
are presented in Table 3.

3.4 PASCAL VOC 2007

Next, we tested NuC-MKL in the classi�cation task of PASCAL VOC 2007.
A recent analysis had compared a few state-of-the-art Deep Neural Networks
performance in this challenge [2]. In this review, classi�cation was performed by
extracting the features from the last fully connected layer, generating a linear
kernel, and using a SVM classi�er. Table 4 restates the reported mean av-
erage precision (mAP), derived according to the experimental methodology of
PASCAL 2007 challenge. We tested NuC-MKL performance on three kernels,
corresponding the a set of three extracted features set. We tested the NuC-MKL
performance using three kernels, corresponding to the three extracted feature

3https://archive.ics.uci.edu/ml/datasets/Ionosphere
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Categories CNN-
M128
[3]

CNN-
S
[4]

CNN-
F
[5]

NuC-
MKL
(3)

NuC-
MKL
(6)

Aeroplane 91.3 90.7 88.7 96.1 96.3
Bicycle 83.9 85.7 83.9 90.8 90.9
Bird 89.2 88.9 87.0 93.8 93.8
Boat 86.9 86.6 84.7 90.9 90.9
Bottle 52.1 50.5 46.9 52.0 53.2
Bus 81.0 80.1 77.5 86.2 84.8
Car 86.6 87.8 86.3 91.6 91.4
Cat 87.5 88.3 85.4 93.1 93.3
Chair 59.1 61.3 58.6 66.1 65.8
Cow 70.0 74.8 71.0 79.1 79.6

Dining table 72.9 74.7 72.6 76.9 77.3
Dog 84.6 87.2 82.0 91.6 91.7
Horse 86.7 89.0 87.9 93.5 93.7

Motorbike 83.6 83.7 80.7 88.4 88.9
Person 89.4 92.3 91.8 95.1 95.4
Plant 57.0 58.8 58.5 59.4 59.3
Sheep 81.5 80.5 77.4 85.4 85.3
Sofa 64.8 90.5 66.3 74.3 74.0
Train 90.4 74.0 89.1 96.8 96.7

TV Monitor 73.4 75.34 71.3 77.3 76.9
mAP 78.6 79.74 77.38 83.92 83.95

Table 4: The precision and mean average precision (mAP) in PASCAL VOC
2007 classi�cation test. The NuC-MKL (3) is applied on the three linear kernels,
correponding to the extracted features of CNN-M128, CNN-S and CNN-F.

set Table 4 shows ≈ 4− 6% improvement over the classi�cation result of a lin-
ear SVM classi�er based on a single DNN features. Finally, we analyzed the
algorithm's performance under noisy conditions. The networks CNN-M, CNN-
M2048 and CNN-M4096 are minor variations of CNN-M128, and the latter's
kernel was included in the set kernel set of NuCMKL (3). Hence, the result-
ing kernels add very little information, and can be regarded as realistic noisy
versions of CNN-M128 kernel. Table 4 shows that the performance of NuC-
MKL does not deteriorate is the present of redundant information, showing it
is disinclined to over�tting in such scenarios.
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