
NuC-MKL: A Convex Approach to Non Linear Multiple Kernel Learning

Eli A. Meirom Pavel Kisilev
Dept. of Electrical Engineering

Technion - Israel Institute of Technology
Haifa, Israel

IBM Research
Haifa, Israel

Abstract

Multiple Kernel Learning (MKL) methods are
known for their effectiveness in solving classifi-
cation and regression problems involving multi-
modal data. Many MKL approaches use linear
combination of base kernels, resulting in some-
what limited feature representations. Several
non-linear MKL formulations were proposed re-
cently. They provide much higher dimensional
feature spaces, and, therefore, richer representa-
tions. However, these methods often lead to non-
convex optimization and to intractable number of
optimization parameters.

In this paper, we propose a new non-linear MKL
method that utilizes nuclear norm regulariza-
tion and leads to convex optimization problem.
The proposed Nuclear-norm-Constrained MKL
(NuC-MKL) algorithm converges faster, and re-
quires smaller number of calls to an SVM solver,
as compared to other competing methods. More-
over, the number of the model support vectors in
our approach is usually much smaller, as com-
pared to other methods. This suggests that our
algorithm is more resilient to overfitting. We test
our algorithm on several known benchmarks, and
show that it equals or outperforms the state-of-
the-art MKL methods on all these data sets.

1 Introduction

Classification and Regression are two of the key tasks in
Machine Learning. Support Vector Machines have proven
to be a powerful technique, and are one of the fundamental
tools-of-the-trade in solving those problems. Their utility
stems from the “kernel trick”, which represents the linear

Appearing in Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz,
Spain. JMLR: W&CP volume 51. Copyright 2016 by the authors.

product of points (x1, x2) in feature space as a possibly
non-linear kernel K(x1, x2) in the data space. Intuitively,
the kernel K(x1, x2) measures the distance between the
points in feature space. However, the transformation from
data space to feature space is generally unknown. There-
fore, in practice, the transformation represented by the ker-
nel K(x1, x2) is a proxy for the true transformation to the
feature space.

Recent work have shown that, by considering a weighted
sum of different kernels, one may obtain an improved ap-
proximation to the true kernel, representing the inner prod-
uct in feature space. This increased flexibility has both deep
theoretical implications [1] and was shown to enhance ex-
perimental results [2]. Generally, in this Multiple Kernel
Learning (MKL) framework, one seeks to find an optimal
kernel, K(xi, xj) =

∑m
β=1 zβK

β (xi, xj), as a sum of m
base kernels

{
Kβ
}

. Regularization and constraints on the
kernel coefficients {zβ |β = 1...m} are often added.

The Multiple Kernel Learning approach is particularly
promising when the available data involves multiple, het-
erogeneous data sources. In this case, different kernels
represent the similarity between data points in different
modalities. In computer vision, in particular, image fea-
tures are frequently an ensemble of different features types
corresponding to various properties, such as texture, ob-
jects segmentation, global histograms etc. Alternatively, it
is possible to merge extracted features from different Con-
volutional Neural Networks, or from different layers, as
presented in Section 5. As another example in a different
domain, in a biometric identity recognition task, one ker-
nel may represent the distance between the faces of distinct
persons, and include only visual features, while the other
refers to the voice signature of each person, i.e, it is com-
posed of audio features only. In many cases, and, in partic-
ular, in the previous example, a successful identification re-
quires that the object will be similar in both (or all) feature
representations. Therefore, a sum of products of kernels,
K(xi, xj) =

∑m
β1,β2=1 zβ1,β2

Kβ1 (xi, xj)K
β2 (xi, xj),

is a promising proxy for this, and other, logical relations.
This is a non-linear function of the base kernels, although
it can be represented, as we shall later see, as a linear sum

610



of emerging kernels. However, finding the optimal parame-
ters

{
z∗β1,β2

}
is a high dimensional optimization problem,

as the number of parameters is quadratic in the number of
kernels. Therefore, due to the curse of dimensionality, this
approach is, in practice, inapplicable.

In this paper we show that by using a nuclear norm reg-
ularization term, we can write this problem as a convex
optimization problem. We shall show that in practice, the
number of parameters is linear, rather than quadratic, in
the number of kernels, hence the risk of over-fitting is not
enhanced, compared to other MKL versions, and the curse
of dimensionality is removed. We present an algorithm to
solve this problem efficiently. Moreover, we demonstrate
that other formulations of Multiple Kernel Learning can be
derived as a special case of our formulation. Finally, we
show experimentally that our algorithm outperforms other
MKL algorithms.

The rest of the paper is organized as follows. In the next
section, we review related work and present our work in
its context. In section 3, we pose our optimization prob-
lem and analyze it. In section 4, we describe the proposed
NuC-MKL algorithm that solves the above problem. Sec-
tion 5 presents the experimental results. In section 6, we
summarize the proposed algorithm and discuss possible ex-
tensions.

2 Related work

The literature on Multiple Kernel Learning is vast. Vari-
ous algorithms and problem formulations have been sug-
gested, including hyperkernels [3, 4, 5], Q-MKL formal-
ism [6], and others [7]. Some MKL algorithms, such as
SimpleMKL [8], use a unity constraint on the kernel coef-
ficients

∑
β zβ = 1 [9] while others apply an Lp-norm reg-

ularization on the kernel coefficients [10, 1, 11]. Alterna-
tively, many authors have considered using different kernel
alignment metrics [12, 13], which measure the similarity
between different kernel matrices, in order to set the ker-
nel coefficients {zβ}. We address additional algorithms in
the experiments section. For a recent thorough review, ac-
counting for numerous other methods, we refer the reader
to [2].

The work which is most closely related to ours is [14]. In
this work, the authors considered a sum over products of
kernels, and further assumed the coefficients {zβ1,β2} are
products of underlining m coefficients, such that zβ1,β2

=
zβ1

zβ2
. However, the resulting optimization problem is

convex only under extremely strict conditions, which are
generally impossible to validate. Here, we formulate a non-
linear, multiple kernel learning problem as a convex opti-
mization problem, and do not impose the latter constraint,
which allow a richer set of solutions. We shall show in Sec-
tion 5 that our formulation and solution algorithm achieves

superior performance results over the aforementioned algo-
rithm, in terms of accuracy, the number of support vectors,
and the number of calls to an SVM solver.

The nuclear norm of a matrix Z, denoted by ‖Z‖∗, is the
sum of its singular values. We impose a constraint on the
nuclear norm of the coefficients matrix {zβ1,β2

}. A nuclear
norm regularization was previously used in a multitude of
machine learning applications, such as matrix completion
[15] and recommendation systems [16], as a proxy for a
low rank solution [17]. Multiple algorithms for solving op-
timization problem with a nuclear norm constraint [18] or
regularization terms [19] have been developed recently. In
order to solve our optimization problem, we propose an al-
gorithm that incorporates a variation of the solution algo-
rithm of [20], chosen for its simplicity, as a gradient descent
step.

The main contribution of this paper is the posing of a non-
linear MKL problem as a convex optimization problem.
We show that this approach outperforms the state-of-the-
art in multiple kernel learning. Our solution algorithm con-
verges quickly, using a lower number of calls to the SVM
solver than other competing techniques. Furthermore, the
number of support vectors in our model is much lower, sug-
gesting that our algorithm is more resilient to overfitting.
Finally, we show we can obtain, as a special case, a solu-
tion for linear, traditional, multiple learning problems.

In the next section, we pose our optimization problem and
report theoretical result.

3 Problem Formulation and Analysis

We now state our multiple kernel learning problem. While
we pose it as a classification task, this formalism can also
be applied to a regression problem and other machine learn-
ing challenges.

We denote a vector by a bold letter v and a matrix by an
underlined, bold capital letter,A. In a multiple kernel clas-
sification task, we are given N data point {xi} and their
corresponding labels {yi}. In addition, we are equipped
with m mappings φβ(xi), where each mapping induces a
kernelKβ(xi,xj) ,

〈
φβ(xi),φβ(xj)

〉
.

We denote the tensor product of the mappings as
φβ1,β2

(xi) , φβ1
(xi) ⊗ φβ2

(xi). We define the kernel
product

Kβ1,β2(xi,xj) , Kβ1(xi,xj)K
β2(xi,xj)

=
〈
φβ1,β2

(xi),φβ1,β2
(xj)

〉
.

Note thatKβ1,β2 is a positive definite matrix as an element-
wise product of positive definite matrices [21].

We write the set of kernels as a tensor K, where the β1, β2

kernel is Kβ1,β2 The space of of m×m matrices with pos-

611



itive elements is denoted by Rm×m+ , and we denote an
element-wise inequality by ≺.

We propose the following formulation of the MKL opti-
mization problem:

min
S

m∑

β1,β2=1

〈wβ1,β2 ,wβ1,β2〉 /2 + c〈1, ε〉 (1)

w.r.t. S =

{{
wβ1,β2

∣∣∣∣β1, β2 = 1..m

}
,

ε ∈ RN×1,Z ∈ Rm×m+

}

s.t. yi




m∑

β1,β2=1

√
zβ1,β2

〈
wβ1,β2

,φβ1,β2
(xi)

〉
+b


 ≥ 1− ε

ε ≥ 0, 0 < ‖Z‖∗ ≤ d, 0 � Z.

The set of optimization variables S includes m2 vectors
{wβ1,β2

}, representing the normals to separating hyper-
planes according to the mapping φβ1,β2

(·), the vector of
slack variables ε ∈ RN×1 , and Z, a matrix with elements
zβ1,β2

, which weigh the relative contribution of the various
mappings φβ1,β2

(·). For simplicity, we assume the slack
variables are identical for all data points, such that ε = ε1,
where ε ∈ R. Note that, as suggested in [8], this problem
can be postulated as a convex optimization problem by the
transformation, w′β1,β2

=
√
zβ1,β2wβ1,β2 .

We rewrite the the above optimization problem (problem
(1)) in terms of primed variables:

max
S′

m∑

β1,β2=1

〈
w′β1,β2

,w′β1,β2

〉

2zβ1,β2

+ c〈1, ε〉 (2)

w.r.t. S ′ =
{{

w′β1,β2

∣∣∣∣β1, β2 = 1..m

}
,

ε ∈ RN×1,Z ∈ Rm×m+

}

s.t. yi




m∑

β1,β2=1

〈
w′β1,β2

,φβ1,β2
(xi)

〉
+b


 ≥ 1− ε

ε ≥ 0, 0 < ‖Z‖∗ ≤ d, 0 � Z (3)

By rescaling z′β1,β2
·d = zβ1,β2

, problem (2) can be rewrit-

ten as

min
S′

d




m∑

β1,β2=1

〈
w′β1,β2

,w′β1,β2

〉

2z′β1,β2

+
c

d
〈1, ε〉


 (4)

s.t. yi




m∑

β1,β2=1

〈
w′β1,β2

,φβ1,β2
(xi)

〉
+b


 ≥ 1− ε

ε ≥ 0, 0 <
∥∥Z ′

∥∥
∗ ≤ 1, 0 � Z ′. (5)

Note that the solution of problem (4) is obtained at ‖Z‖∗ =
1, since, for any matrix Z where ‖Z‖∗ = x it is possible
to substitute Z/x and obtain a strictly lower value in (4)
without violating constraint (5). Namely, the solution is
obtained at the boundary of the feasible domain, ‖Z‖∗ =
1.

The minimum of both (2) and (4) is obtained at the same
point. Therefore, problem (2) is invariant under the trans-
formation c ← c/d, d ← 1 . In other words, there is
effectively only a single free parameter in problem (2), and
w.l.o.g. we may set d = 1. This is particularity useful
when the hyper-parameter c is optimized by a grid search,
as it reduces dimension of the grid search from two to one.

3.1 The Saddle Point Problem

The solution of many Multiple Kernel Learning problems
is often obtained by writing the dual problem, and we shall
follow this path.

For a fixed coefficient matrixZ, denote the effective kernel
as A ∈ RN×N , where A = Z � K =

∑
zβ1,β2

Kβ1,β2 .
Here,� is the tensor contraction operator, andA is a n×n
matrix. Following [8], we transform our problem to the

dual variables of
{
wβ1,β2

∣∣∣∣β1, β2 = 1..m

}
and obtain the

saddle point problem

min
Z
f (Z) (6)

subject to 0 < ‖Z‖∗ ≤ 1, 0 � Z

where the function f(Z) is the solution of the dual of the
equivalent single kernel problem,

f (Z) = max
α

J (α) = 〈1,α〉 − 1
2 〈α,Aα〉

w.r.t α ∈ RN
s.t. A = Z �K =

∑
zβ1,β2

Kβ1,β2

∑
αiyi = 0

0 � α � c1.
(7)

Note that problem (7) can be solved using standard SVM
solvers or tools, such as LIBSVM [22]. We follow the com-
mon convention and assume the general case, in whichA is

612



a full rank matrix for all Z 6= 0. It is a reasonable assump-
tion, since, otherwise there exists a linear combination of
kernels that makes data points to be linearly dependent in
the spanned feature space. The following lemma states a
useful property of ∇f (Z).

Lemma 1. The gradient matrix ∇f (Z) is a non zero ma-
trix for all Z ∈ Rm×m .

Proof. The gradient matrix is zero if and only if(
f(Z + εZ ′)− f (Z)

)
/ε = 0 for all Z ′. Assume the

maximum of max
α
J (α) is obtained at α∗.

Now, consider f (Z (1− ε)). Since α∗ is also the feasible
domain of f (Z), it is also in the feasible domain of f

(
Z ′
)
.

Therefore, f
(
Z ′
)
≥ J (α∗;Z′). Set Z ′ = −Z. We have(

f(Z + εZ ′)− f (Z)
)
/ε = 1

2 〈α∗,Aα∗〉 6= 0, since A
is a full rank, SDP matrix, and α∗ 6= 0.

4 Nuclear-norm Constrained MKL
(NuC-MKL) algorithm and Practical
Implementation

Problem 6 is a nuclear norm constrained optimization prob-
lem. Such problems have received wide interest, no-
tably due to their successful implementation in the Netflix
challenge, and other matrix completion challenges. Var-
ious algorithms were proposed for solving nuclear norm
constrained problems, such as singular value thresholding
methods [23] and stochastic gradient descent [24]. While
numerous methods are available, our gradient descent step
applies a variant of [20]’s algorithm, an SVD-like gradient
descent algorithm, based on Simon Funk’s SVD heuristic.
This algorithm was chosen mainly for its simplicity and in-
terpretability.

Given a nuclear norm constrained problem for a differen-
tiable function f (Z), the solution of min‖Z‖∗≤1 f (Z)

is achieved by the following generalized Frank-Wolfe step
(conditional gradient-like step):

Z(n+1) ← Z(n) (1− l)− luvT . (8)

Here, l is the step size, while u and v are the vectors cor-
responding to the largest singular value of the∇f (Z) ma-
trix. Namely, if ∇f (Z) = USV T and the diagonal el-
ements of S are in a decreasing order, then u (v) is the
first column of U (respectively, V ) . In particular, for a
symmetric, positive definite matrix, both u and v are the
corresponding eigenvectors of the largest eigenvalue of the
∇f (Z) matrix.

Denote the solution of problem 6 by Z∗. The previous dis-
cussion indicates ‖Z∗‖∗ = 1. Since Z is symmetric, by
writingZ in its spectral base,Z =

∑
i λiwiw

T
i , wherewi

is the eigenvector corresponding to the i-th nonzero eigen-
value λi, we have

∑
λi = 1. It was shown in [25] that

there exists l → 0 such that the gradient step (8) reduces
f (Z). In particular, the optimal stable solution is a fixed
point of the gradient decent step (8). Now, from Lemma (1)
uvT is a non zero matrix, and therefore a rank one matrix.
Now, ifB is a rank one matrix, thenA = (1− δ)A+ δB
if and only if A is a rank one matrix and, trivially, A = B.

Accordingly, the optimal solution Z∗ is a rank one matrix.
Namely, there is only a single non-zero eigenvalue, λ1 = 1
and w1 = u. The key point is that the optimal point is
characterized by m parameters, corresponding to the en-
tries of u, rather than m2 parameters. Therefore, using the
nuclear norm normalization eases the curse of dimension-
ality of considering products of kernels.

In order to apply this algorithm for solving the nuclear
norm constrained problem (6), we must be able to differen-
tiate f (Z) as defined in (7) and obtain∇f (Z). Denote the
stationary point of the equivalent single kernel sub-problem
(problem (7)) as α∗. Note that the coefficient matrix Z
parametrizes this sub-problem, namely, in this sub-problem
it is fixed rather than optimized. Lemma 2 in [9] shows that
at the stationary point α∗, the derivative of the target func-
tion with respect to the sub-problem parameter Z is:

∂J(Z)

∂zβ1,β2

=
∂f (α (Z) ,A (Z))

∂zβ1,β2

∣∣∣∣
α(Z)=α∗

= −1

2

〈
α∗,

∂A

∂zβ1,β2

α∗
〉

= −1

2

〈
α∗,Kβ1,β2α∗

〉
.

In other words, at the stationary point α∗ it is possible to
differentiate the function f (α (Z) ,A (Z)) with respect to
zβ1,β2 as if α is independent of Z.

We are now at a position to present our solution algorithm
for the Nuclear-norm Constrained MKL (NuC-MKL) prob-
lem, problem (6), Algorithm 1. According to previous dis-
cussion, this algorithm solves the inner sub-problem, prob-
lem (7) and then takes gradient-like steps in the Z space.
Since the optimal point Z∗ is at the boundary, the line
search, Algorithm (2), attempts to take a maximal step
(s = 1) towards the boundary. If this fails, the standard
1/m step size is taken. In line 2, we treat 0/0 as infinity.
This line search is further motivated by noting that if the
maximal eigenvalue of ∇f (Z∗) is non degenerate, then
the optimal point Z∗is a rank one matrix, and Z∗ = uuT

where u is the eigenvector of the maximal eigenvalue of
∇f (Z∗).
There are numerous alternatives for the simple line search
Algorithm (Algorithm (2)), such as Armijo’s step rule or
more elaborate methods. If the number of kernels is not
large, then it is even possible to evaluate both the gradi-
ent and the function value at every step of the line search,

613



as there are efficient algorithms for finding the maximal
eigenvalue, e.g., the Jacobi-Davidson algorithm. The only
requirement is that the line search will allow hitting the
boundary fast enough, as the optimal point lays there. Lines
3-11 are a theoretical requirement in order apply the con-
vergence correctness result of [25]. In practice, an effective
heuristic alternative is to replace lines 3-11 simply by line
8. This heuristic was used in the experiments reported in
Section (5).

Algorithm 1 Nuclear-norm Constrained MKL (NuC-
MKL)

Input: k kernel matrices
{
Kβ ∈ RN×N

∣∣∣β = 1..m
}

N data labels {yi| i = 1..N}
1: Generate a random symmetric matrix Z
2: m = 1
3: Z ← Z/2 ‖Z‖
4: while stopping conditions are not met do
5: A← Z �K =

∑
zβ1,β2

Kβ1,β2

6: Compute f (Z) using an SVM solver for the equiv-
alent kernelA and obtain the support vectors α∗ .

7: ∇fβ1,β2 ← − 1
2

〈
α∗,Kβ1,β2α∗

〉

8: u ← The eigenvector corresponding to the largest
eigenvalue of ∇f .

9: ∆Z ← uuT

10: Z ←ModifiedLineSearch(Z,∆Z,m)
11: m← m+ 1
12: end while

Algorithm 2 ModifiedLineSearch
Input: Z ∈ RN×N ,∆Z ∈ RN×N ,m ∈ R
Output: Z ′ ∈ RN×N

1: ρ = 0.75 (any ρ < 1 will do)
2: smax ← max

Zi,j

Zi,j+∆Zi,j

3: s0 = min (1, smax)
4: s1 = min (1/m, smax)
5: Z′0 ← Z(1− s0)− s0∆Z

6: Z′1 ← Z(1− s1)− s1∆Z

7: if f
(
Z0

)
< f

(
Z1

)
then

8: s← s0, Z
′ ← Z′0

9: else
10: s← s1, Z

′ ← Z′1
11: end if
12: while f (Z′) > f (Z) do
13: s = ρs
14: Z′ ← Z(1− s)− s∆Z
15: end while
16: return Z′

4.1 Linear MKL as a special case of NuC-MKL

Generally, the optimal mapping from data space to feature
space is a combination of linear and non-linear base ker-
nels. In this case, an equivalent kernel can be written as

A(xi,xj) =
m∑

β=1
θβK

β(xi,xj)

+
m∑

β1,β2=1
zβ1,β2

Kβ1(xi,xj)K
β2(xi,xj)

for some set of coefficients {θβ , zβ1,β2} . Note that in par-
ticular, by setting zβ1,β2

≡ 0, we obtained the previously
formulated linear multiple kernel problem.

The only modification required in order to obtain such
solution is the addition of a unity kernel , defined as
K0 (xi,xj) = 1 every pair of data points (xi,xj). The
solution of the modified optimization problem with m + 1

base kernels
{
Kβ |β = 0..m

}
is the optimal coefficient set

{
z∗β1,β2

|β1, β2 = 0..m
}

, such that the optimal equivalent
kernel of the SVM problem is

A(xi,xj) = 1 +
m∑

β=1
z∗β,0K

β(xi,xj)

+

m∑

β1,β2=1
z∗β1,β2

Kβ1(xi,xj)K
β2(xi,xj).

The additional unit merely induces a shift in the parameter
b of problem (1), and hence the optimal solution is a com-
bination of linear and non-linear terms, as required. In par-
ticular, an almost purely linear solution is obtained if the
optimal matrix is Z∗ = uuT u = (1−∑ δi, δ1, δ2, ...)
δi ∈ O(δ), δ → 0. In this case, the optimal coefficients of
the bilinear terms are z∗β1,β2

∈ O(δ2) while the linear ker-
nel contribution is O(δ). Hence, the solution is composed
of a linear sum of kernels, with a infinitesimal bilinear term.
In other words, our algorithm can successfully recover the
solution of a linear multiple kernel learning problem as a
special case.

4.2 Performance and correctness

The convex formulation of problem (2) guarantees that gra-
dient descent-like approaches, such as our algorithm, will
find the global optimal point. The correctness of the sub-
problem is provided by its correspondence to an equivalent
single kernel learning (or support vector machine) problem.
The complexity and performance of solving it depends on
the internal solver and its parameters (e.g., the slack vari-
ables relative weight c in the cost function).

614



The generalized Frank-Wolfe step (8) ensures that we find
an ε approximation to the optimal solution [20, 25] of prob-
lem 6 after O

(
ε−1
)

steps. In practice, since each step re-
quires the solution of an SVM problem, it is beneficial to
take large steps, as discussed above. In the next section we
indeed show that our algorithm requires very small number
of calls of the SVM solver, as compared to the state-of-the-
art MKL algorithms.

5 Experiments

Recently, a thorough, in-depth survey [2] of various multi-
ple kernel methods was published. This review also com-
pared the performance of the state of the art algorithms,
including linear and non-linear MKL methods, on vari-
ous UCI databases, ranging from biology (Protein Fold-
ing database) to Internet advertisements (ADVERT). These
databases are fairly large, some composed of a few thou-
sands samples. In this section we present the performance
of our algorithm in this benchmark.

We evaluated our algorithm on these data sets, each con-
taining a few feature representations. Each representa-
tion induces a different kernel matrix. We followed the
prescribed experimental procedure and evaluated our al-
gorithm, NuC-MKL, on these data sets. Furthermore, we
tested NuC-MKL in the vision classification task of PAS-
CAL VOC 2007 in Sec. 5.2. We extracted features from
several state-of-the-art Deep Neural Networks (DNN), and
showed an improvement of ≈ 4− 6% in classification.

We expand the Experiments section in the appendix, and
provide complete details on the benchmark testing method-
ology, as described in [2].

5.1 Comparison to other MKL methods

In many cases in the above report [2] the classification error
was fairly small. In order to display a viable comparison,
we present the different algorithms in settings where the
reported performance was relatively low, in order to allow
maximal discrimination in performance. It is important to
mention that on the other tests reported in [2] our algo-
rithm performance was better or equivalent to the other al-
gorithms, but as errors were so small, the difference was
not statistically significant. We reproduce the results for
the various algorithms as obtained in [2], and add the NuC-
MKL results for comparison. Unless specified otherwise,
we have included a unity kernel, allowing for hybrid linear
and non-linear terms.

The results are summarized in Tables 1-2. The support vec-
tor column presents the percentage of data points that were
used as support vectors. The active kernel column amounts
the number of base kernels used in the solution, namely.
The last column presents the number of calls to the inter-
nal SVM solver. All values are accompanied by the corre-

sponding standard deviations.

In the aforementioned review, 16 MKL algorithms and two
SVM algorithms were compared. We briefly mention those
algorithms, as described there (with slight variations):

We train SVMs on each feature representation separately,
and report the results of the one with the highest average
validation accuracy, which we refer to as SVM (best). We
also train an SVM on the concatenation of all feature rep-
resentations, which we refer to as SVM (all).

RBMKL denotes rule-based MKL algorithms. RBMKL
(mean) trains an SVM with the mean of the combined ker-
nels. RBMKL (product) trains an SVM with the prod-
uct of the combined kernels. ABMKL denotes alignment-
based MKL algorithms. ABMKL (ratio) is described
in [26], ABMKL (conic) is the algorithm of [12], and
ABMKL (convex) solves the quadratic programming prob-
lem posed in [27]. CABMKL denotes centered-alignment-
based MKL algorithms, and both variations, CABMKL
(linear) and CABMKL (conic) are presented in [13]. MKL
is the original MKL algorithm of [1]. SimpleMKL is the
iterative algorithm of [8]. GMKL is the generalized MKL
algorithm of [28]. GLMKL denotes the group Lasso-based
MKL algorithms proposed in [5]. GLMKL (p = 1) learns a
convex combination of kernels while GLMKL (p = 2) up-
dates the kernel weights setting learns a conic combination
of the kernels. NLMKL denotes the nonlinear MKL algo-
rithm of [14]. NLMKL (p = 1) and NLMKL (p = 2) apply
different constraint on the feasible set. LMKL denotes the
localized MKL algorithm of [29], where the two variations
LMKL (softmax) and LMKL (sigmoid) are described.

5.1.1 Protein folding

The Protein Folding prediction data base1 consists of 694
data points, partitioned to a training set of 311 instances
and a testing set of 383 instances. The goal in this classifi-
cation task is to predict to which of the two major structural
classes a given protein belongs to.

The NuC-MKL described in this paper outperforms all the
other MKL variations (Table 1). Furthermore, a relatively
low percentage of points were used as support vectors, less
than half of the points used by the second-best algorithm.
Moreover, the NuC-MKL algorithm was one of the fastest
MKL algorithms in terms of the number of calls to the in-
ternal SVM solver.

5.1.2 Internet Advertisements

The last classification goal was to successfully identify
whether a given image is an advertisement or not. This task
took advantage of the ADVERT2 database of 3,279 labeled

1http://mldata.org/repository/data/viewslug/protein-fold-
prediction-ucsd-mkl/

2http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

615



Algorithm Test
Accuracy

Support
Vector

Active
Kernel

Calls to
Solver

SVM
(best)

72.06
±0.74

58.29
±1.00

1.00
±0.00

6.00

SVM
(all)

79.13
±0.45

62.14
±1.04

6.00
±0.00

1.00

RBMKL
(mean)

78.01
±0.63

60.89
±1.02

6.00
±0.00

1.00

RBMKL
(product)

72.35
±0.95

100.00
±0.00

6.00
±0.00

1.00

ABMKL
(conic)

79.03
±0.92

49.96
±1.01

4.60
±0.5

1.00

ABMKL
(convex)

76.90
±1.17

29.54
±0.89

6.00
±0.00

1.00

ABMKL
(ratio)

78.06
±0.62

56.95
±1.07

6.00
±0.00

1.00

CABMKL
(linear)

79.51
±0.78

49.81
±0.82

5.97
±0.18

1.00

CABMKL
(conic)

79.28
±0.97

49.84
±0.77

4.73
±0.52

1.00

MKL 76.38
±1.19

29.65
±1.02

6.00
±0.00

1.00

SimpleMKL 76.34
±1.24

29.62
±1.08

6.00
±0.00

18.83
± 4.27

GMKL 74.96
±0.50

79.85
±0.70

2.37
±0.56

37.10
± 3.23

GLMKL
(p = 1)

77.71
±0.96

55.80
±0.95

6.00
±0.00

6.10
± 0.31

GLMKL
(p = 2)

77.20
±0.42

75.34
±0.70

6.00
±0.00

5.00
± 0.00

NLMKL
(p = 1)

83.49
±0.76

75.34
±0.7 0

6.00
±0.0

17.50
± 0.51

NLMKL
(p = 2)

82.30
±0.62

85.67
±0.86

6.00
±0.00

13.40
± 4.41

LMKL
(softmax)

81.91
±0.92

89.57
±0.77

6.00
±0.00

85.27
±41.77

LMKL
(sigmoid)

80.24
±1.37a

27.24
±1.76

6.00
±0.00

103.90
±62.69

NuC-
MKL

85.2
±0.42

36.61
±0.99

6.00
±0.0

9.13
±1.69

Table 1: A comparison of the NuC-MKL and other MKL
algorithm performances on the PROTEIN data set [2].

images, including five different feature representations.

The NuC-MKL achieved superior performance over all the
other MKL algorithms. The fraction of data points used
as support vector was extremely low, and was within less
than half standard deviation of the algorithm with the low-
est number of support vectors.

5.2 PASCAL VOC 2007

Next, we tested NuC-MKL in the classification task of
PASCAL VOC 2007. A recent analysis had compared a
few state-of-the-art Deep Neural Networks performance in
this challenge [30]. In this review, classification was per-
formed by extracting the features from the last fully con-
nected layer, generating a linear kernel, and using a SVM
classifier. Table 3 restates the reported mean average preci-
sion (mAP), derived according to the experimental method-
ology of PASCAL 2007 challenge. We tested the NuC-
MKL performance using three kernels, corresponding to
the three extracted feature set. Table 3 shows ≈ 4 − 6%
improvement over the classification result of a linear SVM
classifier based on a single DNN features.

Finally, we analyzed the algorithm’s performance under
noisy conditions. The networks CNN-M, CNN-M2048
and CNN-M4096 are minor variations of CNN-M128, and
the latter’s kernel was included in the set kernel set of
NuCMKL (3). Hence, the resulting kernels add very little
information, and can be regarded as realistic noisy versions
of CNN-M128 kernel. Table 3 shows that the performance
of NuC-MKL does not deteriorate is the present of redun-
dant information, indicating it is disinclined to overfitting
in such scenarios.

6 Conclusions

In this paper, we presented the NuC-MKL algorithm, a new
MKL approach that utilizes nuclear norm regularization.
This approach leads to a convex optimization problem. We
showed that the number of effective optimization parame-
ters in our formulation is linear, rather than quadratic, in
the number of kernels.

The proposed method is tested on a number of known
benchmarks, and is shown to outperform the state-of-the-
art MKL methods on all those sets. We showed that, often,
our algorithm converges faster than other competing meth-
ods, requiring fewer number of calls to an SVM solver.
Moreover, the number of learned model support vectors in
our approach is significantly smaller than in other compet-
ing MKL methods. The low number of support vectors and
the low effective dimension of optimization parameters in
our method ensure that our algorithm is less prone to over-
fitting.

616



Algorithm Test Ac-
curacy

Support
Vector

Active
Kernel

Calls to
Solver

SVM
(best)

95.45
±0.31

64.90
±5.41

1.00
±0.00

5.00
±0.00

SVM
(all)

96.43
±0.24

41.99
±1.76

5.00
±0.00

1.00
±0.00

RBMKL
(mean)

96.53
±0.58

34.40
±4.25

5.00
±0.00

1.00
±0.00

RBMKL
(product)

89.98
±0.49

96.61
±1.71

5.00
±0.00

1.00
±0.00

ABMKL
(conic)

95.69
±0.27

44.16
±2.65

3.00
±0.00

1.00
±0.00

ABMKL
(convex)

95.10
±0.52

58.07
±2.47

3.00
±0.00

1.00
±0.00

ABMKL
(ratio)

96.23
±0.61

35.07
±2.92

5.00
±0.00

1.00
±0.00

CABMKL
(linear)

95.86
±0.19

36.43
±1.50

5.00
±0.00

1.00
±0.00

CABMKL
(conic)

95.84
±0.19

38.06
±2.36

4.40
±0.52

1.00
±0.00

MKL 96.32
±0.50

35.82
±4.35

4.10
±0.32

1.00
±0.00

SimpleMKL 96.37
±0.46

33.78
±4.40

4.60
±0.52

27.00
±7.39

GMKL 96.40
±0.49

33.18
±3.49

4.70
±0.48

27.20
±7.94

GLMKL
(p = 1)

96.35
±0.55

32.81
±3.56

5.00
±0.00

5.40
±1.07

GLMKL
(p = 2)

96.56
±0.32

35.62
±1.55

5.00
±0.00

4.90
±0.74

NLMKL
(p = 1)

95.96
±0.50

67.63
±3.46

5.00
±0.00

15.90
±5.38

NLMKL
(p = 2)

96.13
±0.31

65.70
±3.03

5.00
±0.00

13.00
±0.00

LMKL
(softmax)

95.68
±0.53

24.18
±5.74

5.00
±0.00

38.80
±24.11

LMKL
(sigmoid)

95.49
±0.48

18.22
±12.16

5.00
±0.00

56.60
±53.70

NuC-
MKL

97.28
±0.16

23.38
±2.44

5.00
±0.00

14.3
±3.88

Table 2: A comparison of the NuC-MKL and representative
MKL algorithm performances on the ADVERT data set [2].

Categories CNN-
M128
[31]

CNN-
S

[32]

CNN-
F

[33]

NuC-
MKL

(3)

NuC-
MKL

(6)
Aeroplane 91.3 90.7 88.7 96.1 96.3

Bicycle 83.9 85.7 83.9 90.8 90.9
Bird 89.2 88.9 87.0 93.8 93.8
Boat 86.9 86.6 84.7 90.9 90.9

Bottle 52.1 50.5 46.9 52.0 53.2
Bus 81.0 80.1 77.5 86.2 84.8
Car 86.6 87.8 86.3 91.6 91.4
Cat 87.5 88.3 85.4 93.1 93.3

Chair 59.1 61.3 58.6 66.1 65.8
Cow 70.0 74.8 71.0 79.1 79.6

Dining
table

72.9 74.7 72.6 76.9 77.3

Dog 84.6 87.2 82.0 91.6 91.7
Horse 86.7 89.0 87.9 93.5 93.7

Motorbike 83.6 83.7 80.7 88.4 88.9
Person 89.4 92.3 91.8 95.1 95.4
Plant 57.0 58.8 58.5 59.4 59.3
Sheep 81.5 80.5 77.4 85.4 85.3
Sofa 64.8 90.5 66.3 74.3 74.0
Train 90.4 74.0 89.1 96.8 96.7
TV

Monitor
73.4 75.34 71.3 77.3 76.9

mAP 78.6 79.74 77.38 83.92 83.95

Table 3: The precision and mean average precision (mAP)
in PASCAL VOC 2007 classification test. The NuC-MKL
(3) is applied on the three linear kernels, correponding to
the extracted features of CNN-M128, CNN-S and CNN-F.

617



References

[1] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan,
“Multiple kernel learning, conic duality, and the SMO
algorithm,” in ICML ’04. New York, New York,
USA: ACM Press, Jul. 2004, p. 6.

[2] M. Gönen and E. Alpaydin, “Multiple Kernel Learn-
ing Algorithms,” JMLR, vol. 12, pp. 2211–2268, Feb.
2011.

[3] C. S. Ong and A. J. Smola, “Machine learning using
hyperkernels,” in ICML 2003, 2003, pp. 568–575.

[4] R. Kondor and T. Jebara, “Gaussian and wishart hy-
perkernels,” in NIPS, 2006, pp. 729–736.

[5] Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu, “Sim-
ple and efficient multiple kernel learning by group
lasso,” in ICML 2010, 2010, pp. 1175–1182.

[6] C. Hinrichs, V. Singh, J. Peng, and S. Johnson, “Q-
mkl: Matrix-induced regularization in multi-kernel
learning with applications to neuroimaging,” in NIPS
2012, 2012, pp. 1421–1429.

[7] C. Jose, P. Goyal, P. Aggrwal, and M. Varma, “Lo-
cal deep kernel learning for efficient non-linear svm
prediction,” in ICML 2013, 2013, pp. 486–494.

[8] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grand-
valet, “SimpleMKL,” JMLR, vol. 9, pp. 2491–2521,
2008.

[9] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukher-
jee, “Choosing Multiple Parameters for Support Vec-
tor Machines,” Machine Learning, vol. 46, no. 1-3,
pp. 131–159, Jan. 2002.

[10] A. Jain, S. Vishwanathan, and M. Varma, “SPF-
GMKL,” in KDD ’12. New York, New York, USA:
ACM Press, Aug. 2012, p. 750.

[11] Z. Xu, R. Jin, and H. Yang, “Simple and efficient
multiple kernel learning by group lasso,” ICML-2010,
2010.

[12] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E.
Ghaoui, and M. I. Jordan, “Learning the Kernel Ma-
trix with Semidefinite Programming,” JMLR, vol. 5,
pp. 27–72, Dec. 2004.

[13] C. Cortes, M. Mohri, and A. Rostamizadeh, “Two-
Stage Learning Kernel Algorithms,” 2010.

[14] ——, “Learning non-linear combinations of kernels,”
NIPS 2009, 2009.

[15] E. J. Candes and T. Tao, “The Power of Convex Re-
laxation: Near-Optimal Matrix Completion,” p. 51,
Mar. 2009.

[16] Y. Koren, R. Bell, and C. Volinsky, “Matrix factor-
ization techniques for recommender systems,” Com-
puter, 2009.

[17] J.-F. Cai, E. J. Candès, and Z. Shen, “A Singular
Value Thresholding Algorithm for Matrix Comple-
tion,” SIAM J. Optim., vol. 20, no. 4, pp. 1956–1982,
Jan. 2010.

[18] B. Recht, M. Fazel, and P. Parrilo, “Guaranteed
minimum-rank solutions of linear matrix equations
via nuclear norm minimization,” SIAM review, 2010.

[19] K. Toh and S. Yun, “An accelerated proximal gradi-
ent algorithm for nuclear norm regularized linear least
squares problems,” Pacific Journal of Optimization,
2010.

[20] M. Jaggi and M. Sulovsk, “A simple algorithm for
nuclear norm regularized problems,” ICML, 2010.

[21] P. R. C. van den Berg, J. P. R. Christensen, “Harmonic
Analysis on Semigroups: Theory of Positive Definite
and Related Functions,” 1984.

[22] C. Chang and C. Lin, “LIBSVM: a library for sup-
port vector machines,” ACM Transactions on Intelli-
gent Systems and Technology, 2011.

[23] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and
Bregman iterative methods for matrix rank minimiza-
tion,” Mathematical Programming, 2011.

[24] B. Recht and C. Ré, “Parallel stochastic gradient al-
gorithms for large-scale matrix completion,” Mathe-
matical Programming Computation, vol. 5, no. 2, pp.
201–226, Apr. 2013.

[25] E. Hazan, “Sparse approximate solutions to semidef-
inite programs,” LATIN 2008: Theoretical Informat-
ics, 2008, 2008.

[26] S. Qiu and T. Lane, “A framework for multiple ker-
nel support vector regression and its applications to
siRNA efficacy prediction.” IEEE/ACM Trans. Com-
put. Biol. Bioinform., vol. 6, no. 2, pp. 190–9, Jan.
2009.

[27] Junfeng He, Shih-Fu Chang, and Lexing Xie, “Fast
kernel learning for spatial pyramid matching,” in
CVRP 2008. IEEE, Jun. 2008, pp. 1–7.

[28] M. Varma and B. Babu, “More generality in efficient
multiple kernel learning,” ICML 2009, 2009.

[29] M. Gönen and E. Alpaydin, “Localized multiple ker-
nel learning,” in ICML 2008. ACM, 2008, pp. 352–
359.

618



[30] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisser-
man, “Return of the devil in the details: Delving deep
into convolutional nets,” in BMVC, 2014.

[31] M. D. Zeiler and R. Fergus, “Visualizing and Under-
standing Convolutional Networks,” Nov. 2013.

[32] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-
gus, and Y. LeCun, “OverFeat: Integrated Recogni-
tion, Localization and Detection using Convolutional
Networks,” Dec. 2013.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neu-
ral networks,” in NIPS 2012, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds. Curran Asso-
ciates, Inc., 2012, pp. 1097–1105.

619


