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Appendix

6 Proofs for Section 2

Lemma 1 (Duality Between Smoothness and Con-
vexity for Convex Functions). Let K be a convex set
and f : K → R be a convex function. Suppose f is
1-strongly convex at x0. Then f∗, the Legendre trans-
form of f , is 1-strongly smooth at y0 = ∇f(x0).

Proof. Notice first that for any pair of convex functions
f, g : K → R, the fact that f(x0) ≥ g(x0) for some
x0 ∈ K implies that f∗(y0) ≤ g∗(y0) for y0 = ∇f(x0).

Now, f being 1-strongly convex at x0 means that
f(x) ≥ h(x) = f(x0)+g⊤0 (x−x0)+ σ

2 ‖x−x0‖
2
2. Thus,

it suffices to show that h∗(y) = f∗(y0) + x⊤0 (y − y0) +
1
2‖y − y0‖

2
2, since x0 = ∇(h∗)(y0).

To see this, we can compute that

h∗(y) = max
x

y⊤x− h(x)

= y⊤(y − y0 + x0) − h(x)

(max attained at y0 + (x− x0) = ∇h(x) = y)

= y⊤(y − y0 + x0)

−

[
f(x0) + y⊤0 (x− x0) +

1

2
‖x− x0‖

2
2

]

=
1

2
‖y − y0‖

2
2 + y⊤x0 − f(x0)

= −f(x0) + x⊤0 y0 + x⊤0 (y − y0) +
1

2
‖y − y0‖

2
2

= f∗(y0) + x⊤0 (y − y0) +
1

2
‖y − y0‖

2
2

Theorem 2 (AO-FTRL-Gen). Let {rt} be a se-
quence of non-negative functions, and let g̃t be the
learner’s estimate of gt given the history of functions
f1, . . . , ft−1 and points x1, . . . , xt−1. Assume further
that the function h0:t : x 7→ g⊤1:tx + g̃⊤t+1x + r0:t(x) is
1-strongly convex with respect to some norm ‖ · ‖(t)

(i.e. r0:t is 1-strongly convex with respect to ‖ · ‖(t)).
Then, the following regret bound holds for AO-FTRL
(Algorithm 1):

T∑

t=1

ft(xt) − ft(x) ≤ r0:T−1(x) +

T∑

t=1

‖gt − g̃t‖
2
(t−1),∗

Proof. Recall that xt+1 = argminx x
⊤(g1:t + g̃t+1) +

r0:t(x), and let yt = argminx x
⊤g1:t + r0:t−1(x). Then

by convexity,

T∑

t=1

ft(xt) − ft(x) ≤

T∑

t=1

g⊤t (xt − x)

=

T∑

t=1

(gt − g̃t)
⊤(xt − yt)

+ g̃⊤t (xt − yt) + g⊤t (yt − x)

Now, we first show via induction that ∀x ∈ K, the
following holds:

T∑

t=1

g̃⊤t (xt − yt) + g⊤t yt ≤
T∑

t=1

g⊤t x+ r0:T−1(x).

For T = 1, the fact that rt ≥ 0, g̃1 = 0, and the
definition of yt imply the result.

Now suppose the result is true for time T . Then

T+1∑

t=1

g̃⊤t (xt − yt) + g⊤t yt

=

[
T∑

t=1

g̃⊤t (xt − yt) + g⊤t yt

]

+ g̃⊤T+1(xT+1 − yT+1) + g⊤T+1yT+1

≤

[
T∑

t=1

g⊤t xT+1 + r0:T−1(xT+1)

]

+ g̃⊤T+1(xT+1 − yT+1) + g⊤T+1yT+1

(by the induction hypothesis for x = xT+1)

≤
[
(g1:T + g̃T+1)

⊤
xT+1 + r0:T (xT+1)

]

+ g̃⊤T+1(−yT+1) + g⊤T+1yT+1

(since rt ≥ 0, ∀t)

≤
[
(g1:T + g̃T+1)

⊤
yT+1 + r0:T (yT+1)

]

+ g̃⊤T+1(−yT+1) + g⊤T+1yT+1

(by definition of xT+1)

≤ g⊤1:T+1y + r0:T (y), for any y.

(by definition of yT+1)

Thus, we have that
∑T

t=1 ft(xt)− ft(x) ≤ r0:T−1(x) +∑T
t=1(gt − g̃t)

⊤(xt − yt) and it suffices to bound∑T
t=1(gt− g̃t)

⊤(xt−yt). By duality again, one can im-
mediately get (gt− g̃t)

⊤(xt−yt) ≤ ‖gt− g̃t‖(t−1),∗‖xt−
yt‖(t−1). To bound ‖xt−yt‖(t) in terms of the gradient,
recall first that

xt = argmin
x

h0:t−1(x)

yt = argmin
x

h0:t−1(x) + (gt − ĝt)
⊤x.
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The fact that r0:t−1(x) is 1-strongly convex with re-
spect to the norm ‖ · ‖(t−1) implies that h0:t−1 is as
well. In particular, it is strongly convex at the points
xt and yt. But, this then implies that the conjugate
function is smooth at ∇(h0:t−1)(xt) and ∇(h0:t−1)(yt),
so that

‖∇(h∗0:t−1)(−(gt − g̃t))

−∇(h∗0:t−1)(0)‖(t) ≤ ‖gt − g̃t‖(t−1),∗

Since ∇(h∗0:t−1)(−(gt − g̃t)) = yt and ∇(h∗0:t−1)(0) =
xt, we have that ‖xt − yt‖(t−1) ≤ ‖gt − g̃t‖(t−1),∗.

Theorem 3 (CAO-FTRL-Prox). Let {rt} be a se-
quence of proximal non-negative functions, such that
argminx∈K rt(x) = xt, and let g̃t be the learner’s esti-
mate of gt given the history of functions f1, . . . , ft−1

and points x1, . . . , xt−1. Let {ψt}
∞
t=1 be a sequence of

non-negative convex functions, such that ψ1(x1) = 0.
Assume further that the function h0:t : x 7→ g⊤1:tx +
g̃⊤t+1x + r0:t(x) + ψ1:t+1(x) is 1-strongly convex with
respect to some norm ‖·‖(t). Then the following regret
bounds hold for CAO-FTRL (Algorithm 2):

T∑

t=1

ft(xt) − ft(x)

≤ ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖gt − g̃t‖
2
(t−1),∗

T∑

t=1

[ft(xt) + ψt(xt)] − [ft(x) + ψt(x)]

≤ r0:T (x) +

T∑

t=1

‖gt − g̃t‖
2
(t),∗ .

Proof. For the first regret bound, define the auxiliary
regularization functions r̃t(x) = rt(x)+ψt(x), and ap-
ply Theorem 2 to get

T∑

t=1

ft(xt) − ft(x)

≤ r̃0:T−1(x) +

T∑

t=1

‖gt − g̃t‖
2
(t−1),∗

= ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖gt − g̃t‖
2
(t−1),∗

Notice that while rt is proximal, r̃t, in general, is not,
and so we must apply the theorem with general reg-
ularizers instead of the one with proximal regularizers.

For the second regret bound, we can follow the pre-
scription of Theorem 1 while keeping track of the ad-
ditional composite terms:

Recall that xt+1 = argminx x
⊤(g1:t + g̃t+1) +

r0:t+1(x) + ψ1:t+1(x), and let yt = argminx x
⊤g1:t +

r0:t(x) + ψ1:t(x).

We can compute that:

T∑

t=1

ft(xt) + αtψ(xt) − [ft(x) + ψt(x)]

≤

T∑

t=1

g⊤t (xt − x) + ψt(xt) − ψt(x)

=

T∑

t=1

(gt − g̃t)
⊤(xt − yt)

+ g̃⊤t (xt − yt) + g⊤t (yt − x) + ψt(xt) − ψt(x)

Similar to before, we show via induction that ∀x ∈
K,

∑T
t=1 g̃

⊤
t (xt − yt) + g⊤t yt + ψt(xt) ≤ r0:T (x) +∑T

t=1 g
⊤
t x+ ψt(x).

For T = 1, the fact that rt ≥ 0, ĝ1 = 0, ψ1(x1) = 0,
and the definition of yt imply the result.
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Now suppose the result is true for time T . Then

T+1∑

t=1

g̃⊤t (xt − yt) + g⊤t yt + ψt(xt)

=

[
T∑

t=1

g̃⊤t (xt − yt) + g⊤t yt + ψt(xt)

]

+ g̃⊤T+1(xT+1 − yT+1) + g⊤T+1yT+1

+ ψT+1(xT+1)

≤

[
T∑

t=1

g⊤t xT+1 + r0:T (xT+1) + ψt(xT+1)

]

+ g̃⊤T+1(xT+1 − yT+1) + g⊤T+1yT+1

+ ψT+1(xT+1)

(by the induction hypothesis for x = xT+1)

≤ (g1:T + g̃T+1)
⊤
xT+1 + r0:T+1(xT+1) + ψt(xT+1)

+ g̃⊤T+1(−yT+1) + g⊤T+1yT+1

+ ψT+1(xT+1)

(since rt ≥ 0, ∀t)

≤ (g1:T + g̃T+1)
⊤
yT+1 + r0:T+1(yT+1) + ψt(yT+1)

+ g̃⊤T+1(−yT+1) + g⊤T+1yT+1

+ ψT+1(yT+1)

(by definition of xT+1)

≤ g⊤1:T+1y + r0:T+1(y) + ψ1:T+1(y), for any y

(by definition of yT+1)

Thus, we have that

T∑

t=1

ft(xt) + ψt(xt) − [ft(x) + ψt(x)]

≤ r0:T (x) +

T∑

t=1

(gt − g̃t)
⊤(xt − yt),

and we can bound the sum in the same way as be-
fore, since the strong convexity properties of h0:t are
retained due to the convexity of ψt.

Theorem 6 (CAO-FTRL-Gen). Let {rt} be a se-
quence of non-negative functions, and let g̃t be the
learner’s estimate of gt given the history of functions
f1, . . . , ft−1 and points x1, . . . , xt−1. Let {ψt}

∞
t=1 be

a sequence of non-negative convex functions such that
ψ1(x1) = 0. Assume further that the function h0:t :
x 7→ g⊤1:tx+g̃⊤t+1x+r0:t(x)+ψ1:t+1(x) is 1-strongly con-
vex with respect to some norm ‖·‖(t). Then, the follow-

ing regret bound holds for CAO-FTRL (Algorithm 2):

T∑

t=1

ft(xt) − ft(x)

≤ ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖gt − g̃t‖
2
(t−1),∗

T∑

t=1

ft(xt) + ψt(xt) − [ft(x) + ψt(x)]

≤ r0:T−1(x) +

T∑

t=1

‖gt − g̃t‖
2
(t),∗ .

Proof. For the first regret bound, define the auxiliary
regularization functions r̃t(x) = rt(x) + αtψ(x), and
apply Theorem 2 to get

T∑

t=1

ft(xt) − ft(x)

≤ r̃0:T−1(x) +

T∑

t=1

‖gt − ĝt‖
2
(t),∗

= ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖gt − ĝt‖
2
(t−1),∗

For the second bound, we can proceed as in the
original proof, but now keep track of the additional
composite terms.

Recall that xt+1 = argminx x
⊤(g1:t + g̃t+1) + r0:t(x) +

ψ1:t+1(x), and let yt = argminx x
⊤g1:t + r0:t−1(x) +

ψ1:t(x). Then

T∑

t=1

ft(xt) + ψt(xt) − ft(x) − ψt(x)

≤
T∑

t=1

g⊤t (xt − x) + ψt(xt) − ψt(x)

=

T∑

t=1

(gt − g̃t)
⊤(xt − yt) + g̃⊤t (xt − yt)

+ g⊤t (yt − x) + ψt(xt) − ψt(x)

Now, we show via induction that ∀x ∈ K,∑T
t=1 g̃

⊤
t (xt − yt) + g⊤t yt + αtψ(xt) ≤

∑T
t=1 g

⊤
t x +

ψt(x) + r0:T−1(x).

For T = 1, the fact that rt ≥ 0, ĝ1 = 0, ψ1(x1) = 0,
and the definition of yt imply the result.
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Now suppose the result is true for time T . Then

T+1∑

t=1

g̃⊤t (xt − yt) + g⊤t yt + ψt(xt)

=

[
T∑

t=1

g̃⊤t (xt − yt) + g⊤t yt + ψt(xt)

]

+ g̃⊤T+1(xT+1 − yT+1) + g⊤T+1yT+1

+ ψT+1(xT+1)

≤

[
T∑

t=1

g⊤t xT+1 + r0:T−1(xT+1) + ψt(xT+1)

]

+ g̃⊤T+1(xT+1 − yT+1) + g⊤T+1yT+1

+ ψT+1(xT+1)

(by the induction hypothesis for x = xT+1)

≤
[
(g1:T + g̃T+1)

⊤
xT+1 + r0:T (xT+1) + ψt(xT+1)

]

+ g̃⊤T+1(−yT+1) + g⊤T+1yT+1

+ ψT+1(xT+1)

(since rt ≥ 0, ∀t)

≤ g⊤1:T+1yT+1 + g̃⊤T+1yT+1 + r0:T (yT+1)

+ ψ1:T+1(yT+1)

+ g̃⊤T+1(−yT+1) + g⊤T+1yT+1

(by definition of xT+1)

≤ g⊤1:T+1y + r0:T (y) + ψ1:T+1(y), for any y

(by definition of yT+1)

Thus, we have that
∑T

t=1 ft(xt) + ψt(xt) − ft(x) −

ψt(x) ≤ r0:T−1(x) +
∑T

t=1(gt − g̃t)
⊤(xt − yt) and

the remainder follows as in the non-composite set-
ting since the strong convexity properties are retained.

7 Proofs for Section 2.2.1

The following lemma is central to the derivation of
regret bounds for many algorithms employing adaptive
regularization. Its proof, via induction, can be found
in Auer et al (2002).

Lemma 2. Let {aj}
∞
j=1 be a sequence of non-negative

numbers. Then
∑t

j=1
aj

Pj

k=1
ak

≤ 2
√∑t

j=1 aj .

Corollary 2 (AO-GD). Let K ⊂ ×n
i=1[−Ri, Ri]

be an n-dimensional rectangle, and denote ∆s,i =√∑s
a=1(ga,i − g̃a,i)2. Set

r0:t =
n∑

i=1

t∑

s=1

∆s,i−∆s−1,i

2Ri
(xi − xs,i)

2.

Then, if we use the martingale-type gradient prediction
g̃t+1 = gt, the following regret bound holds:

RegT (x) ≤ 4

n∑

i=1

Ri

√√√√
T∑

t=1

(gt,i − gt−1,i)2.

Moreover, this regret bound is nearly a posteriori opti-
mal over a family of quadratic regularizers :

max
i
Ri

n∑

i=1

√√√√
T∑

t=1

(gt,i − gt−1,i)2

= max
i
Ri

√√√√n inf
s<0,〈s,1〉≤n

T∑

t=1

‖gt − gt−1‖2
diag(s)−1

Proof. r0:t is 1-strongly convex with respect to the
norm:

‖x‖2
(t) =

n∑

i=1

√∑t
a=1(ga,i − g̃a,i)2

Ri
x2

i ,

which has corresponding dual norm:

‖x‖2
(t),∗ =

n∑

i=1

Ri√∑t
a=1(ga,i − g̃a,i)2

x2
i .

By the choice of this regularization, the prediction g̃t =
gt−1, and Theorem 3, the following holds:

RegT (A, x)

≤

n∑

i=1

T∑

s=1

√∑s
a=1(ga,i − g̃a,i)2 −

√∑s−1
a=1(ga,i − g̃a,i)2

2Ri

(xi − xs,i)
2

+

T∑

t=1

‖gt − gt−1‖
2
(t),∗

=

n∑

i=1

2Ri

√√√√
T∑

t=1

(gt,i − gt−1,i)2

+

n∑

i=1

T∑

t=1

Ri(gt,i − gt−1,i)
2

√∑t
a=1(ga,i − ga−1,i)2

≤

n∑

i=1

2Ri

√√√√
T∑

t=1

(gt,i − gt−1,i)2

+

n∑

i=1

2Ri

√√√√
T∑

t=1

(gt,i − gt−1,i)2

by Lemma 2
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The last statement follows from the fact that

inf
s<0,〈s,1,〉≤n

T∑

t=1

n∑

i=1

g2
t,i

si
=

1

n

(
n∑

i=1

‖g1:T , i‖2

)2

,

since the infimum on the left hand side is attained
when si ∝ ‖g1:T,i‖2.

8 Proofs for Section 3

Theorem 4 (CAOS-FTRL-Prox). Let {rt} be a se-
quence of proximal non-negative functions, such that
argminx∈K rt(x) = xt, and let g̃t be the learner’s
estimate of ĝt given the history of noisy gradients
ĝ1, . . . , ĝt−1 and points x1, . . . , xt−1. Let {ψt}

∞
t=1 be

a sequence of non-negative convex functions, such that
ψ1(x1) = 0. Assume further that the function

h0:t(x) = ĝ⊤1:tx+ g̃⊤t+1x+ r0:t(x) + ψ1:t+1(x)

is 1-strongly convex with respect to some norm ‖ · ‖(t).
Then, the update xt+1 = argminx h0:t(x) of Algo-
rithm 3 yields the following regret bounds:

E

[
T∑

t=1

ft(xt) − ft(x)

]

≤ E

[
ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖ĝt − g̃t‖
2
(t−1),∗

]

E

[
T∑

t=1

ft(xt) + ψt(xt) − ft(x) − αtψt(x)

]

≤ E

[
r0:T (x) +

T∑

t=1

‖ĝt − g̃t‖
2
(t),∗

]
.

Proof.

E

[
T∑

t=1

ft(xt) − ft(x)

]

≤

T∑

t=1

E
[
g⊤t (xt − x)

]

=
T∑

t=1

E
[
E[ĝt|ĝ1, . . . , ĝt−1, x1, . . . , xt]

⊤(xt − x)
]

=

T∑

t=1

E
[
E[ĝ⊤t (xt − x)|ĝ1, . . . , ĝt−1, x1, . . . , xt]

]

=

T∑

t=1

E
[
ĝ⊤t (xt − x)

]

This implies that upon taking an expectation, we can
freely upper bound the difference ft(xt)−ft(x) by the

noisy linearized estimate ĝ⊤t (xt − x). After that, we
can apply Algorithm 2 on the gradient estimates to
get the bounds:

E

[
T∑

t=1

ĝ⊤t (xt − x)

]

≤ E

[
ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖ĝt − g̃t‖
2
(t−1),∗

]

E

[
T∑

t=1

ĝ⊤t (xt − x) + ψt(xt) − ψt(x)

]

≤ E

[
r0:T (x) +

T∑

t=1

‖ĝt − g̃t‖
2
(t),∗

]

Theorem 7 (CAOS-FTRL-Gen). Let {rt} be a se-
quence of non-negative functions, and let g̃t be the
learner’s estimate of ĝt given the history of noisy gradi-
ents ĝ1, . . . , ĝt−1 and points x1, . . . , xt−1. Let {ψt}

∞
t=1

be a sequence of non-negative convex functions, such
that ψ1(x1) = 0. Assume furthermore that the func-
tion h0:t(x) = ĝ⊤1:tx + g̃⊤t+1x + r0:t(x) + ψ1:t+1(x) is
1-strongly convex with respect to some norm ‖ · ‖(t).
Then, the update xt+1 = argminx h0:t(x) of Algo-
rithm 3 yields the regret bounds:

E

[
T∑

t=1

ft(xt) − ft(x)

]

≤ E

[
ψ1:T−1(x) + r0:T−1(x) +

T∑

t=1

‖ĝt − g̃t‖
2
(t−1),∗

]

E

[
T∑

t=1

ft(xt) + ψt(xt) − ft(x) − ψt(x)

]

≤ E

[
r0:T−1(x) +

T∑

t=1

‖ĝt − g̃t‖
2
(t−1),∗

]

Proof. The argument is the same as for Theorem 4,
except that we now apply the bound of Theorem 6 at
the end.

9 Proofs for Section 3.2.1

Theorem 5 (CAO-RCD). Assume K ⊂
×n

i=1[−Ri, Ri]. Let it be a random variable sam-
pled according to the distribution pt, and let

ĝt =
(g⊤t eit

)eit

pt,it

, ˆ̃gt =
(g̃⊤t eit

)eit

pt,it

,
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be the estimated gradient and estimated gradient pre-

diction. Denote ∆s,i =
√∑s

a=1(ĝa,i − ˆ̃ga,i)2, and let

r0:t =

n∑

i=1

t∑

s=1

∆s,i − ∆s−1,i

2Ri
(xi − xs,i)

2

be the adaptive regularization. Then the regret of the
resulting algorithm is bounded by:

E

[
T∑

t=1

ft(xt) + αtψ(xt) − ft(x) − αtψ(x)

]

≤ 4

n∑

i=1

Ri

√√√√
T∑

t=1

E

[
(gt,i − g̃t,i)2

pt,i

]
.

Proof. We can first compute that

E [ĝt] = E

[
(g⊤t eit

)eit

pt,it

]
=

n∑

i=1

(g⊤t ei)ei

pt,i
pt,i = gt

and similarly for the gradient prediction g̃t.

Now, as in Corollary 2, the choice of regularization
ensures us a regret bound of the form:

E

[
T∑

t=1

ft(xt) + αtψ(xt) − ft(x) − αtψ(x)

]

≤ 4

n∑

i=1

RiE




√√√√
T∑

t=1

(ĝt,i − g̃t,i)2




Moreover, we can compute that:

E




√√√√
T∑

t=1

(ĝt,i − g̃t,i)2


 ≤

√√√√
E

[
T∑

t=1

Eit
[(ĝt,i − g̃t,i)2]

]

=

√√√√
T∑

t=1

E

[
(gt,i − g̃t,i)2

pt,i

]

10 Further Discussion for

Section 3.2.2

We present here Algorithm 5, a mini-batch version of
Algorithm 4, with an accompanying guarantee.

Corollary 6. Assume K ⊂ ×n
i=1[−Ri, Ri]. Let

∪l
j=1{Πj} = {1, . . . , n} be a partition of the

functions fi, and let eΠj
=

∑
i∈Πj

ei. De-

note ∆s,i =
√∑s

a=1(ĝa,i − g̃a,i)2, and let r0:t =

Algorithm 5 CAOS-Reg-ERM-Epoch-Mini-Batch

1: Input: scaling constant α > 0, composite term ψ,
r0 = 0, partitions ∪l

j=1{Πj} = {1, . . . ,m}.
2: Initialize: initial point x1 ∈ K, distribution p1

over {1, . . . , l}.
3: Sample j1 according to p1, and set t = 1.
4: for s = 1, . . . , k: do

5: Compute ḡj
s = ∇fj(x1) ∀j ∈ {1, . . . ,m}.

6: for a = 1, . . . , T/k: do

7: If T mod k = 0, compute gj = ∇fj(xt) ∀j.

8: Set ĝt =

P

j∈Πjt
gj

t

pt,jt

, and construct rt ≥ 0.

9: Sample jt+1 ∼ pt+1.

10: Set g̃t+1 =

P

j∈Πjt
ḡj

s

pt,jt

.

11: Update xt+1 = argminx∈K ĝ
⊤
1:tx + g̃⊤t+1x +

r0:t(x) + (t+ 1)αψ(x) and t = t+ 1.
12: end for

13: end for

∑n
i=1

∑t
s=1

∆s,i−∆s−1,i

2Ri
(xi −xs,i)

2 be the adaptive reg-
ularization.

Then the regret of Algorithm 5 is bounded by:

E

[
T∑

t=1

ft(xt) + αψ(xt) − ft(x) − αψ(x)

]

≤

n∑

i=1

4Ri

√√√√√
k∑

s=1

(s−1)(T/k)+T/k∑

t=(s−1)(T/k)+1

l∑

a=1

∣∣∣
∑

j∈Πj
gj

t,i − ḡj
s,i

∣∣∣
2

pt,a
.

Moreover, if ‖∇fj‖∞ ≤ Lj ∀j, then setting
pt,j = Li

P

m
j=1

Lj
yields a worst-case bound of:

8
∑n

i=1Ri

√
T
(∑m

j=1 Lj

)2

.

A similar approach to Regularized ERM was developed
independently by (Zhao and Zhang, 2014). However,
the one here improves upon that algorithm through the
incorporation of adaptive regularization, optimistic
gradient predictions, and the fact that we do not as-
sume higher regularity conditions such as strong con-
vexity for our loss functions.


