
Supplementary Material

New Resistance Distances with Global Information on Large

Graphs

Abstract

The first part is the proofs of Theorems in Section 3. The second part of this supplementary

file shows heat maps of distances and their cluster structures for experiment in Sections 4.

1 Proofs

Theorem 3.3. For connected ε-neighborhood random geometric graphs constructed from a valid

region X in Rd (von Luxburg et al., 2014), the global part of E1(I2) (Eglobal1 (I2)) dominates the local

part (Elocal1 (I2)) almost surely (for any pair (xs, xt)) as n→∞. Concretely, the following statements

hold:

1. For unwighted graph wij = 1: limn→∞
Eglobal

1

Elocal
1

→∞ almost surely as n→∞ and ε→ 0.

2. For Euclidean weighted graph with wij = d(xi, xj):
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞ and

ε→ 0.

3. For Gaussian weighted graph with wij = exp(
d(xi,xj)2

δ2 ):
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞,

ε→ 0 and O(δ) > O( ε√
− ln(ε)

).

Proof of Theorem 3.3 We work with the assumption that every node is connected to at least

one another node.

Case 1: unweighted graph, wij = 1∀d(xi, xj) < ε.

O(Elocal1 ):

Elocal1 =
∑

i,(s,i)∈E

wsi|isi|+
∑

i,(t,i)∈E

wti|iti| = 2 (1)

because I2 = (ie)e∈E is an unit flow.

O(Eglobal1 ): We construct a set of parallel hyperplanes P1, P2, · · · that: (1) are orthogonal to the

line between s and t, (2) intersect with the line segment between s and t, and (3) of ε distance

apart from each others as in Figure 1. By this way of construction, any edge of the graph intersects

at most one hyperplane in the set. Let Ej denote the set of edges that intersect with plane Pj ,

then: Ej ⊂ E and Ej ∩ El = ∅ for any two different hyperplanes. Hence, ∪jEj ⊂ E, therefore,

E1(I2) ≥
∑
j

∑
e∈Ej |ie|.

Since any of these hyperplanes is an s− t cut of the graph,
∑
e∈Ej |ie| ≥ 1 because the total flow

on Ej would not be less than a min cut, which is of size 1.
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Figure 1: Parallel hyperplanes that partition the set of all edges into disjoint sets of s− t cuts.

The number of such hyperplanes is of order O(d(s,t)
ε ), then,

O(Eglobal1 + Elocal1 ) = O(E1) ≥ O(
d(s, t)

ε
) = O(

1

ε
). (2)

Hence, from (1) and (2), when limn→∞ ε = 0 then limn→∞Eglobal1 + Elocal1 =∞ and therefore,

lim
n→∞

Eglobal1 + Elocal1

Elocal1

= lim
n→∞

Eglobal1 + 2

2
=∞ (3)

In this case, Eglobal1 >> Elocal1 .

Case 2: Euclidean weighted graph, wij = d(xi, xj)∀d(xi, xj) < ε.

O(Elocal1 ): Elocal1 =
∑
i,(i,s)∈E wsi|isi|+

∑
i,(i,t)∈E wti|iti|. Let wmin = mine∈E we be the minimum

weight of all edges in the graph. Because I2 = (ie)e∈E is an unit flow, therefore

2wmin ≤ Elocal1 ≤ 2ε. (4)

O(Eglobal1 ): Since wij is Euclidean distance, triangle inequality applies. Therefore, all paths from

xs to xt, including the shortest path of length sp(xs, xt), are not shorter than d(xs, xt).

Since E1(I2(xs, xt)) ≥ sp(xs, xt),

E1(I2(xs, xt)) = Eglobal1 (I2(xs, xt)) + Elocal1 (I2(xs, xt)) ≥ d(xs, xt)(= O(1)). (5)

Hence, from (4) and (5), as long as ε→ 0, with probability 1:

lim
n→∞

Eglobal1

Elocal1

≥ lim
n→∞

d(xs, xt)− 2ε

2ε
=∞. (6)

Case 3: For Gaussian weighted graph, wij = exp(
d(xi,xj)2

δ2 ) being the distance corresponding to

a similarity graph (equivalent to similarity between xi and xj being exp(
−d(xi,xj)2

δ2 )).

O(Elocal1 ): In ε-neighborhood graph, ∀(i, j) ∈ E, d(xi, xj) < ε, therefore wsi, wtj < exp( ε
2

δ2 ). Then,

for unit flow (ie)e = I2(xs, xt),

Elocal1 =
∑

i,(i,s)∈E

wsi|isi|+
∑

i,(i,t)∈E

wti|iti|

<
∑

i,(i,s)∈E

exp(
ε2

δ2
)|isi|+

∑
i,(i,t)∈E

exp(
ε2

δ2
)|iti|

= 2 exp(
ε2

δ2
). (7)

O(Eglobal1 ): ∀(i, j) ∈ E, d(xi, xj), wij = exp(
d(xi,xj)2

δ2 ) ≥ 1. Therefore,

Eglobal1 ≥ sp(xs, xt)− Elocal1 ≥ d(xs, xt)

ε
− Elocal1 . (8)
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From (7) and (8), as limn→∞, if ε→ 0 and O(δ) > O( ε√
− ln(ε)

), we have:

Eglobal1

Elocal1

≥
1
ε

2 exp( ε
2

δ2 )
− 1.

ln(
1
ε

2 exp( ε
2

δ2 )
) = ln

1

ε
− ln(2 exp(

ε2

δ2
))

= − ln(ε)− ln(2)− ε2

δ2

Since O(δ) > O( ε√
− ln(ε)

), O(δ2) > O( ε2

− ln(ε) ) and O(− ln(ε)) > O( ε
2

δ2 ).

As limn→∞ ε = 0, limn→∞− ln(ε) =∞, therefore limn→∞− ln(ε)− ln(2)− ε2

δ2 =∞. Hence,

lim
n→∞

Eglobal1

Elocal1

=∞. (9)

Note that, it is advisable to set δ such that wij are not too small or too large to avoid computing

issues. One of the common practice is to have O(δ) = O(ε), which satisfies the condition of O(δ) >

O( ε√
− ln(ε)

) when ε→ 0.
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Theorem 3.4. For connected k-nearest neighbor (random geometric) graphs constructed from a

valid region X in Rd (von Luxburg et al., 2014), the global part of E1(I2) dominates the local part

almost surely as n→∞. Concretely, there exist constants c1, c2 that the following statements hold:

1. For unwighted graph wij = 1: limn→∞
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞, k > log(n) and
k
n → 0 with a probability of at least 1− c1n exp(−c2

√
nk) (converging to 1).

2. For Euclidean weighted graph with wij = d(xi, xj):
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞,

k > log(n) and k
n → 0 with a probability of at least 1− c1n exp(−c2

√
nk) (converging to 1).

3. For Gaussian weighted graph with wij = exp(
d(xi,xj)2

δ2 ):
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞,

k > log(n), k
n → 0 and O(δ) = ( kn )

1
d with a probability of at least 1 − c1n exp(−c2k · log(nk )

d
2 )

(converging to 1).

Recall the definition of k-nearest neighbor radii: Rk(x) = maxi,(i,s)∈E d(xs, xi) be the distance of

x to its k-nearest neighbor in X. Let B(x, η) be the ball centered at x with radius η. Hence, there are

only k points from the sampled n points lying in B(x,Rk(x)). Let pmin and pmax be the minimum

and maximum probability density in p.

We first prove a lemma that for a fixed point x, Rk(x)→ 0 with a high probability.

Lemma 1.1. For any fixed node x ∈ X in a random geometric knn graph, any ε0 as a function of

n satisfying O(( kn )
1
d ) < O(ε0) < O(1), then O(Rk(x)) < O(ε0) → 0 as n → ∞ with a probability at

least 1− c1 exp(−nγ(ε0)
2 ), converging to 1 when n, k →∞ and k

n → 0 for some constant c1.

Proof. In this case, we want ε0 to play the role of ε in Theorem 3.3. The difference is that, in this case,

ε0 neighborhoods contain all the neighbors of all points with a high enough probability (converging to

1), as opposed to the case of ε neighborhoods that contain all neighbors of all points with probability

1.

The volume of B(x, ε0) is cεd0 for constant c = π
d
2

Γ( d
2 +1)

. Let γ(ε0) =
∫
B(x,ε0)

p(x)dx denote the

probability mass of B(x, ε0), then

pmincε
d
0 ≤ γ(ε0) ≤ pmaxcεd0, (10)

or O(γ(ε0)) = O(εd0).

We prove that Rk(x) < ε0 with a probability converging to 1. This is equivalent to proving that

Rk(x) ≥ ε0 with a probability converging to 0. The probability of Rk(x) ≥ ε0 is the probability that

there are less than k points in X (with n points) lying inside of B(x, ε0) (with probability mass of

γ(ε0)).

The number of points lying inB(x, ε0) follows a binomial distributionB(n, γ(ε0)). Let F (k, n, γ(ε0))

be the cumulative distribution function of B(n, γ(ε0)). Let P (Rk(x) ≥ ε0) be the probability that

Rk(x) ≥ ε0, then, P (Rk(x) ≥ ε0) = F (k − 1, n, γ(ε0)) < F (k, n, γ(ε0)) (we prove k for simplicity).

Chernoff’s inequality for binomial distribution gives

F (k, n, γ(ε0)) ≤ exp(
−(nγ(ε0)− k)2

2nγ(ε0)
)

As n, k →∞, k
n → 0, O(nγ(ε0)) > O(k) by the way we choose ε0, hence,

O(exp(
−(nγ(ε0)− k)2

2nγ(ε0)
)) = O(exp(

−nγ(ε0)

2
).
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Because nγ(ε0) > k →∞, exp(−nγ(ε0)
2 )→ 0. Hence, there exists a constant c1 that Rk(x) < ε0 →

0 with a probability 1− F (k, n, γ(ε0)), which is at least 1− c1 exp(−nγ(ε0)
2 ).

Lemma 1.2. For all nodes in X in a random geometric knn graph, O(Rk(x)) < O(ε0)→ 0∀i = 1 · · ·n
as n → ∞ with a probability at least 1 − c1n exp(−c2nεd0) for some constant c1, c2, converging to 1

when n, k → ∞, k
n → 0 and O(ε0) > ( log(n)

n )
1
d . If k > log(n) then the last condition is already

included in the choice of ε0.

Proof. The Lemma 1.1 shows that for any fixed xi ∈ X, P (Rk(xi) ≥ ε0) ≤ c1 exp(−nγ(ε0)
2 ). Therefore,

from 10 the probability that there exists at least one xi such that Rk(xi) ≥ ε0∀i = 1 · · ·n satisfies

(for all i together)

P (Rk(xi) ≥ ε0) ≤ c1n exp(
−nγ(ε0)

2
) ≤ c1n exp(−c2nεd0) (11)

for some constant c2. Hence, the probability that Rk(xi) < ε0 for all i = 1 · · ·n, as n, k → ∞ and
k
n → 0, satisfies

P (Rk(xi) < ε0) ≥ 1− c1n exp(−c2nεd0)∀i. (12)

Now we show that c1n exp(−c2nεd0) → 0 as n, k → ∞ and k
n → 0 and O(ε0) > O( log(n)

n )
1
d . Since

O(εd0) > O( log(n)
n ), O(−c2nεd0) > O(log(n)), therefore,

c1n exp(−c2nεd0) = c1 exp(log(n)− c2nεd0)→ c1 exp(−∞) = 0.

As O(ε0) > O(( kn )
1
d ) by choice and k > log(n), then the last condition in the lemma is already

implied.

Proof of Theorem 3.4

In all cases, we choose different ε0 to make the formulations simple and intuitive, even though a

range of ε0 would work.

Case 1: unweighted graph, wij = 1 for xj is one of the k-nearest neighbors of xi.

O(Elocal1 ): For unit flow I2 = (ie)e∈E :

Elocal1 =
∑

i,(i,s)∈E

wsi|isi|+
∑

j,(j,t)∈E

wtj |itj | = 2. (13)

O(Eglobal1 ): Since E1(I2(xs, xt)) ≥ sp(xs, xt), we prove that O(sp(xs, xt)) > O(1) with a proba-

bility converging to 1 as n→∞.

In this case, we choose ε0 = ( kn )
1
2d . From Lemma 1.2, with a probability at least 1−c1n exp(−c2

√
nk),

all Rk(x) < ε0, or equivalently, d(xi, xj) < ε0 ∀(i, j) ∈ E. Therefore, O(sp(xs, xt)) ≥ O(d(xs,xt)
ε0

).

Since O(d(xs,xt)
ε0

) = O((nk )
1
2d ) → ∞. Hence, with a probability of at least 1 − c1n exp(−c2

√
nk), as

n→∞, k > log(n) and k
n → 0,

E1(I2(xs, xt))→∞ (14)

Therefore, from (20) and (14) with a probability of at least 1− c1n exp(−c2
√
nk) (converging to

1), as n→∞, k →∞ and k
n → 0,

Eglobal1

Elocal1

→∞. (15)

Case 2: Euclidean weighted graph, wij = d(xi, xj) for xj is one of the k-nearest neighbors of xi.

We also choose ε0 = ( kn )
1
2d as previous case.
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O(Elocal1 ): For unit flow I2 = (ie)e∈E :

Elocal1 (I2(xs, xt)) =
∑

i,(i,s)∈E

wsi|isi|+
∑

i,(i,t)∈E

wti|iti| ≤ max
i,(i,s)∈E

d(xs, xi) + max
j,(j,t)∈E

d(xt, xj). (16)

As n→∞, k > log(n) and k
n → 0, according to Lemma 1.2, c1n exp(−c2

√
nk)→ 0. Hence, with

a probability not smaller than 1− c1n exp(−c2
√
nk), Rk(x) < ε0∀x ∈ X or d(xi, xj) < ε0∀(i, j) ∈ E.

From (16),

Elocal1 < 2ε0 → 0. (17)

O(Eglobal1 ):

Elocal1 (I2(xs, xt)) + Eglobal1 (I2(xs, xt)) = E1(I2(xs, xt)) ≥ sp(xs, xt) ≥ d(xs, xt) ∈ O(1). (18)

From (17) and (18), we have, with a probability at least 1 − c1n exp(−c2
√
nk) (converging to 1)

as n→∞, k > log(n) and k
n → 0,

Eglobal1

Elocal1

→∞. (19)

Case 3: Gaussian weighted graph, wij = exp(
d(xi,xj)2

δ2 ) for xj is one of the k-nearest neighbors

of xi. Since d(xi, xj) ∈ O(( kn )
1
d ) for most of (xi, xj) pair, it is necessary to choose O(δ) = O(( kn )

1
d )

so that weights of most edges in the graph are of constant range, not going to ∞ nor 0.

We define some notations for simpler formulation. Let t = n
k , hence, t→∞.

We choose ε0 = ( kn )
1
d ·

√
log(t)
d+1 in this case to bound Elocal1 and Eglobal1 . In fact, we just need

O(ε0) > O(( kn )
1
d ) and still small enough according to some complicated formula. In this case, we

have to choose smaller ε0 compared to previous cases just to show that global energy dominates local

one.

With a probability of at least 1− c1n exp(−c2nεd0), then all Rk(x) < ε0, meaning that d(xi, xj) <

exp( ε
2

δ2 ). In this case, we bound Elocal1 and Eglobal1 as follows.

O(Elocal1 ): For unit flow I2 = (ie)e∈E :

Elocal1 (I2(xs, xt)) =
∑

i,(i,s)∈E

wsi|isi|+
∑

i,(i,t)∈E

wti|iti|

≤ max
i,(i,s)∈E

exp(
d(xs, xi)

2

δ2
) + max

j,(j,t)∈E
exp(

d(xt, xj)
2

δ2
)

≤ 2 exp(
ε20
δ2

). (20)

Therefore,

O(Elocal1 ) ≤ O(exp(
ε20
δ2

))

= O(exp(

√
log(t)

d+ 1

2

))

= O(t
1

d+1 ). (21)

O(Eglobal1 ): By the definition of Gaussian weighted graph, wij > 1∀(i, j) ∈ E. In case that

Rk(x) < ε0, meaning that d(xi, xj) < ε0∀(i, j) ∈ E (all edges are of length less than ε0), the number

of edges on any path between xs and xt must not smaller than d(xs,xt)
ε0

. Hence,

Eglobal1 + Elocal1 ≥ sp(xs, xt) ≥
d(xs, xt)

ε0
∈ O(

1

ε
). (22)
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Therefore,

O(Eglobal1 + Elocal1 ) ≥ O(
1

ε
)

= O(
t
1
d√

log(t)
d+1

)

= O(
t
1
d√

log(t)
)

= O(t
1
d · log(t)

−1
2 ). (23)

Putting (21) and (23) together, we have

O(
Eglobal1

Elocal1

) = O(
Eglobal1 + Elocal1

Elocal1

− 1)

≥ O(
t
1
d · log(t)

−1
2

t
1

d+1

− 1)

= O(
t

1
d(d+1)

log(t)
1
2

− 1)

=∞ (24)

because t
1

d(d+1) >> log(t)
1
2 as tα >> log(t)∀α > 0, t → ∞. Hence, Eglobal1 >> Elocal1 with a

probability of at least 1 − c1n exp(−c2nεd0). Replacing ε0, updating constant c2, we can have the

probability as 1− c1n exp(−c2k · log(nk )
d
2 ). According to Lemma 1.2, this probability also converges

to 1.
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Lemma 3.5. Let V (i) = L−1
.i denote the i-th column of L−1, respectively. Then,

V (s) − V (t) = L−1(es − et) (25)

is a possible potential assignment to the nodes of the network that makes the unit flow from xs to xt

on the network.

Proof. First, let V
′ ∈ Rn be the potential on nodes of the graph with unit potential difference between

xs and xt, namely

V ′s − V ′t = V ′T (es − et) = 1.

Kirchhoff’s voltage law: the potential assignment in the network minimizes the energy function

V ′TLV ′:

V ′ = arg min
x∈Rn

xTLx, s.t. xt(es − et) = 1. (26)

Lagrange multipliers method gives us

V ′ =
L−1(es − et)

(es − et)TL−1(es − et)
+ α1

with 1 is the vector of all 1 in Rn and any α ∈ R, and the energy

E′ =
1

(es − et)TL−1(es − et)
.

Using Ohm’s law E′ = V ′I ′ = I ′2Rst, then V ′ makes the total flow from xs to xt of I ′ as:

I ′ =
E′

V ′
=

1

(es − et)TL−1(es − et)
.

Second, showing V (s) − V (t) is a potential assignment on the graph to make an unit flow from xs to

xt by rescaling V ′ (also I ′). To have an unit flow (I = 1) from xs to xt then voltage arrangement in

the network, ignoring constant terms , can be

V ′ · 1

I ′
= L−1(es − et) = V (s) − V (t). (27)

This means that V (s) − V (t) is an valid potential assignment to the nodes of the network that

makes an unit flow from xs to xt, resulting in the flow I2(xs, xt) on the graph. This gives us the

embeddings of graph into edge space.
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Theorem 3.6. The following embedding f of the nodes of graph G into an Lp space:

f : X → R|E|

xs → f(xs) = {· · · ,
V

(s)
i − V (s)

j

r
(p−1)/p
ij

, · · · }T(i,j)∈E (28)

makes the p-norm of the space coincide with Rp: ‖f(xs)− f(xt)‖p = Rp(xs, xt).

Proof. We prove the theorem by explicitly constructing the embedding of the nodes in an Lp space.

For simplicity, denote V = V (s) − V (t) as the potential arrangement for an unit flow from s to t. We

rewrite Rpp = Ep(I2) in potential form using Lemma 3.4:

Rpp(xs, xt)

=
∑

e=(i,j)∈E

re|I2(xs, xt)e|p

=
∑

e=(i,j)∈E

re
|Vi − Vj |p

rpe

=
∑

e=(i,j)∈E

r1−p
e · |(L−1

is − L
−1
it )− (L−1

js − L
−1
jt )|p

=
∑

e=(i,j)∈E

|
L−1
is − L

−1
js

r
(p−1)/p
ij

−
L−1
it − L

−1
jt

r
(p−1)/p
ij

|p

=
∑

e=(i,j)∈E

|
V

(s)
i − V (s)

j

r
(p−1)/p
ij

− V
(t)
i − V (t)

t

r
(p−1)/p
ij

|p (29)

We could see that Rp is in the form of p-norm on an m dimensional space. There is a natural

embedding f of the nodes as follows, for any s:

f : X → R|E|

xs → f(xs) = {· · · ,
V

(s)
i − V (s)

j

r
(p−1)/p
ij

, · · · }T(i,j)∈E . (30)

Endowing this R|E| space with p-norm ‖ · ‖p, then using (29)

Rp(xs, xt) = ‖f(xs)− f(xt)‖p

Hence, Rp distance induces an embedding of nodes into the Lp space (R|E|, ‖ · ‖p). We call f an edge

space embedding as each dimension of the embedding space (of nodes) corresponds to an edge of the

graph. This makes Rp a metric induced by the p norm.
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2 Heat Maps of Distances

For subsection 4.2: Data size effect
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Figure 2: Heat maps of pairwise distances. The four columns are for the four distances. The rows

are for our generated data sets of different sizes ranging from 50 to 800.

We could observe that for (the square root of) resistance distances (R2), the two-blocked struc-

tures were clearly observed in small sized data sets. As the data sizes became larger, the structures

disappeared and became totally unrecognizable in the last row. On the other hand, the other dis-

tances (R1, Rp and R12) showed consistently the two-blocked structures for all data sizes. Shortest

path distances (sp), as expected, showed non-smooth distance both within and between clusters. This

meant that the resistance distance suffered from global information loss problem in large random geo-

metric graphs. Our proposed distances could retain global information and showed cluster structures

clearly.
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For subection 4.3: Dimensional effect
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Figure 3: The effect of space dimension in the distances. The rows are for different dimensions of

the space d = 5, 10, 15 and 20. As the dimension becomes larger, the resistance distance could not

recognize clusters. Our proposed distances are robust to the dimensions of the spaces.

We could observe similar behavior. As the dimension of the space increased, resistance distance

failed to show two-block structure due to the global information loss problem. Our proposed distances

(R1, R2, and R12) could still show two-block structures. Shortest path distances (sp), as expected,

showed non-smooth distance both within and between clusters. It meant that our proposed distances

could overcome the global information loss problem.
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