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Abstract

We consider one bit matrix completion un-
der rank constraint. We present an estimator
based on rank constrained maximum likeli-
hood estimation, and an e�cient greedy algo-
rithm to solve it approximately based on an
extension of conditional gradient descent. The
output of the proposed algorithm converges at
a linear rate to the underlying true low-rank
matrix up to the optimal statistical estima-
tion error rate, i.e., O(

p
rn log(n)/|⌦|), where

n is the dimension of the underlying matrix
and |⌦| is the number of observed entries. Our
work establishes the first computationally ef-
ficient approach with provable guarantee for
optimal estimation in one bit matrix comple-
tion. Our theory is supported by thorough
numerical results.

1 Introduction

Matrix completion [7, 20, 18] has received increasing
attention in the past decade, and it has wide applica-
tions in data mining and computer vision. For example,
in the recommendation system/collaborative filtering,
we aim to predict the unknown preference of a set of
users on a set of items, provided partial observed rat-
ings. The most popular methods for matrix completion
are based on empirical risk minimization with nuclear
norm penalty [20, 18]. Other types of estimators with
nonconvex penalties [12], max norm [5] and rank con-
straints [24, 26] have also been investigated. In some
applications, the observation matrix is in terms of sin-
gle bit, and thus standard matrix completion cannot
be applied. To overcome this problem, Davenport et al.
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[9] proposed one bit matrix completion, which recovers
a low rank matrix X 2 Rm⇥n from a set of |⌦| noisy
sign measurements. Particularly, they proposed a trace
norm constrained maximum likelihood estimator. They
showed that their estimator is minimax rate optimal
under the uniform sampling model. Later on, Cai and
Zhou [6] proposed a max norm [25] constrained maxi-
mum likelihood estimator for one bit matrix completion
under a general (e.g., non-uniform) sampling model.
They also proved that the estimation error bound is
rate optimal because it matches the minimax lower
bound established under the general sampling model.
It is also worth noting that one bit matrix completion
is relevant to one bit compressed sensing, which was
originally proposed by Boufounos and Baraniuk [3] and
has been widely studied in recent work [23, 28, 30].

While one bit matrix completion has been studied un-
der di↵erent constraints [9, 6, 2] in theory, existing
optimization algorithms for one bit matrix completion
remain heuristic and lack of provable guarantee. For
example, Cai and Zhou [6] proposed a simple first order
method which is a special case of the projected gradient
algorithm for solving the max norm constrained convex
program. The non-monotonic spectral projected gradi-
ent (SPG) algorithm was implemented in [9] to solve
the one bit matrix completion problem under nuclear
norm constraint. However, neither of the algorithms has
been proved to converge for one bit matrix completion.

In this paper, to overcome the limitations of existing
methods, we present a new estimator for one bit matrix
completion with rank constraint under uniform random
sampling model. Note that the resulting optimization
problem for our proposed estimator is non-convex and
in general NP hard. In order to obtain an approxi-
mate solution to the estimator, we propose a greedy
algorithm based on an extension of conditional gra-
dient descent [14, 10, 8, 4]. We rigorously prove the
statistical and computational error bounds for this rank
constrained maximum likelihood estimator. In particu-
lar, we show that the statistical estimation error bound
of proposed estimator is O(

p
rn log(n)/|⌦|), which at-
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tains the minimax lower bound [6] up to logarithmic
factor. In addition, we show that the output of the
proposed greedy algorithm converges to the true low-
rank matrix at a linear rate up to the statistical error.
Therefore, our proposed estimator and algorithm at-
tain both optimal statistical and computational rates
for one bit matrix completion. The numerical results
on both simulation and real world datasets show that
our proposed estimator consistently outperforms the
exiting estimators with max norm and nuclear norm
constraints.

The remainder of this paper is organized as follows. In
Section 2, we present an estimator for one bit matrix
completion with rank constraint. Also, an extension
of conditional gradient descent algorithm is proposed
to solve the optimization problem corresponding to
one bit matrix completion. Section 3 is devoted to the
main theory of the proposed estimator and algorithm.
Both statistical and optimization error bounds are es-
tablished. In Section 4, we outline the proof of some key
theoretical results. Numerical simulations are provided
in Section 5. We conclude the paper in Section 6.

Notation For a set ⌦, we denote by |⌦| the cardi-
nality of this set. For a vector x 2 Rm, we denote
by kxkp = (

Pm
i=1 |xi|p)1/p its `p norm, and denote by

kxk1 = maxi=1,...,d |xi| its `1 norm. The inner prod-
uct is denoted by h·, ·i. For a matrix X = (Xij) 2 Rm⇥n,

we use kXkF =
qPm

i=1

Pn
j=1 X2

ij to denote its Frobe-

nius norm and let kXk1 = maxi,j |Xij | be the elemen-
twise `1 norm. We use kXk2 = �1(X) to denote the
spectral norm, where �1(X) is the largest singular value

of matrix X. We use kXk⇤ =
Pd1

i=1 �i(X) to denote
the nuclear norm, where d1 = min(m, n).

2 The Proposed Estimator and
Algorithm

In this section, we introduce the probabilistic model
for one bit matrix completion, followed by the rank
constrained maximum likelihood estimator. We also
propose an algorithm for solving the corresponding
optimization problem.

2.1 Probabilistic Models

One bit matrix completion is a problem that recovers
the underlying low-rank matrix based on a subset of one
bit measurements. Instead of observing actual entries
from the underlying matrix X⇤ 2 Rm⇥n, the sign of a
random subset of the noisy entries of X⇤ is observed. In
this paper, without loss of generality, we assume m  n.
In addition, we consider one bit matrix completion un-
der uniform random sampling model. Given a low rank

matrix X⇤ 2 Rm⇥n with rank(X⇤) = r, a probability
mass function p(·) : R! [0, 1] and a subset of indices
⌦ ✓ (m⇥ n), we observe a subset of binary matrix Y
depending on X⇤ by the following probabilistic model:

Yij =

(
+1, with probability p(X⇤

ij),

�1, with probability 1� p(X⇤
ij),
8(ij) 2 ⌦.

(2.1)

If p(·) is the cumulative distribution function of �Zij ,
where Z = (Zij) 2 Rm⇥n is a noise matrix with i.i.d.
entries, we can rewrite the above the model as

Yij =

(
+1, if X⇤

ij + Zij > 0,

�1, if X⇤
ij + Zij < 0,

8(ij) 2 ⌦. (2.2)

There are many possible choices for the probability
mass function p(·). Here we give two widely used
examples: logistic function and probit function.
1. Logistic model: The logistic function is defined
as p(Xij) = eXij /(1 + eXij ), which is equivalent to
the fact that the i.i.d. noise Zij in (2.2) follows the
standard logistic distribution.
2. Probit model: The probability function in (2.1)
can be chosen as p(Xij) = �

�
Xij/�

�
, where �(·)

is the cumulative distribution function of standard
normal distribution N(0, 1). It is equivalent to the
fact that the i.i.d. noise Zij in (2.2) follows Gaussian
distribution N(0, �).

2.2 Constrained Maximum Likelihood
Estimator

Given the probabilistic model in (2.1) for one bit matrix
completion, we can estimate the underlying matrix
X⇤ by minimizing the negative log-likelihood function
under certain constraints. In particular, the negative
log-likelihood function is

f⌦(X) = �
X

(i,j)2⌦

⇢
1

(Yij=1)
log

�
p(Xij)

�
+

1
(Yij=�1)

log
�
1� p(Xij)

��
, (2.3)

where the probability mass function p(X) can be se-
lected as the examples we introduced before. Given
di↵erent probability mass functions, we will achieve
di↵erent likelihood functions, thus leading to di↵erent
optimization problems.

In this paper, instead of using trace norm or max norm
based convex relaxation for the rank [9, 6], we impose
an exact rank constraint for one bit matrix completion.
In addition, it is observed in [11] that if X⇤ is equal to
zero in nearly all rows or columns, then it is impossible
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to recovery X⇤ unless all of its entries are sampled.
In other words, there will always be some low-rank
matrices which are too spiky to be recovered without
sampling the whole matrix. In order to avoid the overly
spiky matrices in matrix completion, we add an infinity
norm constraint kX⇤k1  ↵ into our estimator, which
is known as spikiness condition [22]. It is argued that
the spikiness condition is much less restricted than
the incoherence condition imposed in exact low-rank
matrix completion [22, 17]. Thus, we consider the class
of low-rank matrices with exact rank constraint and
infinity norm constraint as follows

Crank(↵, r) =
�
X 2 Rm⇥n : kXk1  ↵, rank(X)  r

 
.

Given the above negative log-likelihood function and
the class of low-rank matrices, we present an estimator
for one bit matrix completion as follows

bX = argmin
X

f⌦(X) subject to X 2 Crank(↵, r).

(2.4)

Note that the rank constraint has been used for matrix
completion [26, 24] and applied to many applications
such as collaborative filtering and sensor network local-
ization [16].

From (2.3), we can find that if the probability mass
function p(X) is log-concave, the objective function
f⌦(X) will be a convex function. In fact, both of the
choices in the examples are log-concave functions. How-
ever, due to non-convexity of the set Crank(↵, r), the
problem in (2.4) is a non-convex optimization problem
and hard to solve. It is worth noting that a similar
estimator was also studied in [2], where a heuristic al-
gorithm was proposed to solve it without any provable
guarantee. In what follows, we will present an e�cient
greedy algorithm based on a variant of conditional gra-
dient descent for solving this problem with provable
guarantee.

Algorithm 1 One Bit Matrix Completion with Rank
Constraint via Conditional Gradient Descent

1: Inialize: X0 = 0
2: for t = 0 to T do
3: Vt  argminV2DhV,rf⌦(Xt)i
4: (lt, qt)  argminlt�0,qt�0 f⌦(ltX

t + qtV
t),

subject to kltXt + qtV
tk1  ↵

5: �
(t)
i  lt · �(t�1)

i , 8i < t, �
(t)
t  qt,A

t  Vt

6: Xt+1  Pt
i=0 �

(t)
i Ai

7: end for

Problems with rank constraints can be solved by var-
ious algorithms such as heuristic methods [19], pro-
jected gradient methods [15] and conditional gradient
descent [27, 29]. For the heuristic methods, most of

them do not have optimality guarantees, and for pro-
jected gradient method, the computation is slow when
the scale of problem is very large. Moreover, condi-
tional gradient methods in [27, 29] cannot be applied
directly to our problem since we imposed an infinity
norm constraint on Xt. In our paper, we propose an
extension of conditional gradient descent algorithm to
address the infinity norm constraint. The basic idea of
conditional gradient descent is first iteratively looking
for a search direction and then updating the current
iterate. The algorithm is outlined in Algorithm 1. By
this algorithm, we can guarantee the convergence to
the global optimum bX at a linear rate.

In detail, in step 3 of Algorithm 1, we start from lin-
earizing the negative log-likelihood function f⌦(·) and
finding a descent direction Vt by solving the following
subproblem

Vt = argmin
V2D

hV,rf⌦(Xt)i, (2.5)

where D is the set of rank-1 matrices with unit Frobe-
nius norm, i.e.,

D = {X : rank(X)  1, kXkF = 1}.

Notice that each rank-one matrix V with unit Frobenius
norm can be written as the product of two unit vectors,
V = uv> for some u 2 Rm and v 2 Rn with kuk2 =
kvk2 = 1. The subproblem in (2.5) can be equivalently
solved as follows:

(ut,vt) = argmin
kuk2=kvk2=1

u>rf⌦(Xt)v, (2.6)

and set Vt = utvt>. It is easy to show that the min-
imum value of (2.6) is ��t

1, where �t
1 is the largest

singular value of the matrix rf⌦(Xt). In particular,
suppose (ut

1,v
t
1) is a pair of left and right singular vec-

tors corresponding to the largest singular value �t
1 of

the matrix rf⌦(Xt). We can choose ut = �ut
1 and

vt = vt
1 and therefore Vt = �ut

1v
t>
1 . This subproblem

can be e�ciently solved by power method in O(mn)
time, where m, n is the dimension of the matrix. Note
that similar subproblem has been formulated and solved
in orthogonal rank-1 matrix pursuit [26] for standard
matrix completion.

In step 4 of Algorithm 1, we find the optimal step size
along the descent direction under the infinity norm
constraint. Here, we have to add the infinity norm
constraint in order to make sure every iterate satisfies
the condition kXk1  ↵. In particular, we aim at
finding lt and qt such that

Xt+1  ltX
t + qtV

t,

minimizes the negative log-likelihood function and sat-
isfies kltXt +qtV

tk1  ↵ simultaneously. This is a two
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dimensional optimization problem and can be solved
very e�ciently. It can be seen that, in Algorithm 1, the
iterate Xt+1 in each iteration is always belonging to
the class Crank(↵, r) when t  r. We will prove that Al-
gorithm 1 is guaranteed to obtain the global optimum
at a linear convergence rate in Section 3.

3 Main Theory

In this section, we are going to present the main theo-
retical results for the estimator proposed in Section 2.2.
Before we lay out the main theoretical results, we first
make several definitions and assumptions, which are
essential to our theory.

Definition 3.1. Define a sampling operator (·)⌦,
which observes an index subset ⌦ of the entries from
the underlying matrix M,

M⌦ =

(
Mij , if (i, j) 2 ⌦,

0, if (i, j) 62 ⌦.

We make the following assumption to obtain the lower
and upper bounds on the eigenvalues of the Hessian
for the objective function.

Assumption 3.2. Given the probability mass func-
tion p(x), there exist �↵, µ↵ and L↵ such that

�↵  min

✓
inf |x|↵

⇢
p02(x)

p2(x)
� p00(x)

p(x)

�
,

inf |x|↵

⇢
p02(x)

(1� p(x))2
+

p00(x)

1� p(x)

�◆
,

µ↵ � max

✓
sup|x|↵

⇢
p02(x)

p2(x)
� p00(x)

p(x)

�
,

sup|x|↵

⇢
p02(x)

(1� p(x))2
+

p00(x)

1� p(x)

�◆
,

L↵ � sup|x|↵

⇢ |p0(x)|
p(x)

�
1� p(x)

�
�

,

where ↵ is the upper bound of the absolute value for
every entry Xij .

Here L↵ reflects the steepness of function f⌦(·), µ↵

and �↵ control the quadratic lower and upper bound
on the second order Taylor expansion of f⌦(·). When
↵ is a fixed constant, and f⌦(·) is specified, L↵, µ↵

and �↵ are all fixed constants which do not depend on
the dimension. For instance, we have L↵ = 1, �↵ =
e↵/(1 + e↵)2 and µ↵ = 1/4 for the logistic model.

We are now ready to present an upper bound for our
proposed estimator in the following theorem.

Theorem 3.3 (Statistical error). Suppose Assump-
tion 3.2 holds and X⇤ 2 Crank(↵, r). A subset ⌦ of
entries of underlying matrix X⇤ is sampled, and the

binary matrix Y in (2.1) is generated based on the
log-concave probability mass function p(X). With prob-
ability at least 1� (C1 + 1)/n, the optimal solution of
(2.4) satisfies

kbX�X⇤kFp
mn

 C2 max(1, ↵)

s
rn log(n)

|⌦| ,

where C1, C2 are universal constants.

It is important to note that although we have a rank
constraint for the underlying matrix rank(X⇤)  r, the
theorem still holds as r increases.

Remark 3.4. Under uniform sampling model [9]
and general weighted sampling model [6], the esti-
mation error bound of nuclear norm and max norm
constrained estimators for one bit matrix comple-
tion is O(

p
rn log(n)/|⌦|). Davenport et al. [9], Cai

and Zhou [6] also proved the minimax lower bound
for one bit matrix completion, which is O(

p
rn/|⌦|).

From Theorem 3.3, our estimation error bound is
O(

p
rn log(n)/|⌦|), which matches the minimax lower

bound up to a logarithmic factor log(n). Thus our pro-
posed estimator is statistically optimal. Note that in
[2], the authors also considered a rank constrained esti-
mator. However, their theory only applies to a specific
sampling model corresponding to a d-regular bipartite
graph. The bipartite d-regular graph based sampling
operator is too restrictive, since, in practice, it is dif-
ficult to guarantee that every row of X⇤ has d entries
being observed. Moreover, their estimation error bound
is O(m3

p
r3n/|⌦|2), which does not match the minimax

lower bound and thus it is not optimal.

In Theorem 3.3, we have shown that our statistical
error bound attains the minimax lower bound, which
is the same as nuclear and max norm constrained es-
timators in [9] and [6]. Next, we will further analyze
the optimization error of Algorithm 1, which is used
to solve our proposed estimator in (2.4). We will show
that it is guaranteed to converge to the global optimum
at a linear convergence rate in the following theorem.

Theorem 3.5 (Optimization error). Let bX =Pt
i=0 �

⇤
i A

⇤
i be an optimal solution to the problem (2.4)

of minimizing the negative log-likelihood function, and
{Xt} is a sequence of iterates generated by Algorithm 1.
Denote s⇤ =

P
X2S⇤ �⇤

i . Then, for any t � 1, we have

f⌦(Xt+1)� f⌦(bX) 
✓

1�min

✓
1

2
,
2�↵(s⇤)2

µ↵D2k

◆◆t+1

·
�
f⌦(X0)� f⌦(bX)

�
,

k(Xt+1 � bX)⌦k2F 
2

�↵

✓
1�min

✓
1

2
,
2�↵(s⇤)2

µ↵D2k

◆◆t+1

·
�
f⌦(X0)� f⌦(bX)

�
,
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where µ↵ and �↵ are defined in Assumption 3.2, D =
maxV,X2D kX�Vk2F , and k is the number of non-zero
entries in {�⇤

i } .

Theorem 3.5 characterizes the optimization error
bounds for both the objective function value and the
iterate restricted on the observed entries. Note that in
both bounds, the last term f⌦(X0)�f⌦(bX) is a known
constant and the term (1�min{1/2, 2�↵(s⇤)2/µ↵D2k})
is strictly smaller than one. Thus, when t increases, the
bound decays to zero exponentially.

As a direct consequence of Theorem 3.3 and Theo-
rem 3.5, the following theorem summarizes the total
estimation error for the output of Algorithm 1.

Theorem 3.6. Suppose Assumption 3.2 holds and
X⇤ 2 Crank(↵, r). Given the binary matrix (2.1) for
one bit matrix completion and index subset ⌦ sampled
from uniform model with probability |⌦|/mn. {Xt} is
a sequence of iterates generated by Algorithm 1. For
any t � 1, with probability at least 1� (C1 + 1)/n, we
have

kXt+1 �X⇤kFp
mn

 C2 max(1, ↵)

s
rn log n

|⌦|
| {z }

statistical error

+ C3

s
1

|⌦|�↵
t+1

�
f⌦(X0)� f⌦(bX)

�

| {z }
optimization error

,

where  =
�
1 �min{1/2, (2�↵(s⇤)2)/(µ↵D2k)}

�
, and

C1, C2, C3 are universal constants.

4 Proof of The Main Theory

In this section, we present the sketched proof of The-
orem 3.3 in previous section. The proofs of the other
theorems are deferred in the supplemental material.

We begin with a lemma, which shows that the nega-
tive likelihood function f⌦(·), satisfies the restricted
strong convexity (RSC) condition and restricted strong
smoothness (RSS) condition over the set Crank(↵, r).

Lemma 4.1. Under Assumption 3.2, the negative like-
lihood function f⌦(X) in the one bit matrix completion
satisfies restricted strong convexity and smoothness
condition over the set Crank(↵, r):

f⌦(X) � f⌦(M) + hrf⌦(M),X�Mi+ �↵
2
k(X�M)⌦k2F ,

f⌦(X)  f⌦(M) + hrf⌦(M),X�Mi+ µ↵

2
k(X�M)⌦k2F ,

where �↵, µ↵ are defined in Assumption 3.2.

In view of Lemma 4.1, we obtain a lower bound for
the second order term in Taylor’s expansion of the

negative log-likelihood function. Since we want to get
the bound of statistical error kbX�X⇤kF , we still need
to obtain an upper bound for the first order term in
Taylor’s expansion. In what follows, we will show that
the bound holds with high probability.

Lemma 4.2. Suppose Assumption 3.2 holds. For any
M 2 Crank(↵, r), with probability at least 1� 1/n, we
have

krf⌦(M)k2  2L↵

r
3|⌦| log(n)

m
,

where L↵ is defined in Assumption 3.2.

In what follows, we will establish the relationship be-
tween the statistical error on the whole matrix and
the statistical error restricted on the observed entries
k(bX�X⇤)⌦kF . In order to show the relationship, we
need to introduce spikiness ratio and low-rank ratio,
which have been previously defined in in [22].

Definition 4.3. Let X 2 Rm⇥n, we define the spiki-
ness ratio ↵sp(X) = (

p
mnkXk1)/kXkF , and define

the low-rank ratio �ra(X) = kXk⇤/kXkF .

From this definition, we can observe that ↵sp(X) reflects
the spikiness of a certain matrix and the rank ratio �ra

is a tractable measurement of how close the underlying
matrix X is to a low-rank matrix. Based on these two
ratios and the notation d = (m + n)/2, we will present
another constraint set

C0(|⌦|, C0) =

⇢
� 2 Rm⇥n,� 6= 0|

↵sp(�)�ra(�)  1

C0

p
|⌦|/d log(d)

�
,

where |⌦| is the sample size and C0 is a constant. Note
that as the simple size |⌦| increases, this set allows
for matrices with larger values of spikiness. The follow-
ing lemma characterizes the relationship between the
Frobenius norm of a matrix and its Frobenius norm
restricted on a subset of entries, for any matrices belong
to the constraint set C0(|⌦|, C0).

Lemma 4.4. [22] There are universal constants
C, C0, C1 such that as long as |⌦| > Cd log(d), we have,
for all � 2 C0(|⌦|, C0),

k�⌦kFp
|⌦|

� 1

8

k�kFp
mn

⇢
1� 128↵sp(�)p

|⌦|

�
, (4.1)

with probability at least 1� C1/n.

Note that, this bound guarantees that the sampling
operator obtains a substantial component of any matrix
� 2 C0(|⌦|, C0), which is not overly spiky. In particular,
if 128↵sp(�)/

p
|⌦|  1/2, the bound in (4.1) implies

that k�⌦k2F /|⌦| � k�k2F /(256mn).

Now we are ready to prove Theorem 3.3.
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Proof of Theorem 3.3. According to the RSC condi-
tion in Lemma 4.1, we have

f⌦(bX)

� f⌦(X⇤) + hrf⌦(X⇤), bX�X⇤i+ �↵
2
k(bX�X⇤)⌦k2F

� f⌦(X⇤)� krf⌦(X⇤)k2 · kbX�X⇤k⇤ +
�↵
2
k(bX�X⇤)⌦k2F

� f⌦(X⇤)�
p

2rkrf⌦(X⇤)k2 · kbX�X⇤kF
+

�↵
2
k(bX�X⇤)⌦k2F ,

where the second inequality follows by Hölder’s inequal-
ity. By the definition of bX = argminX f⌦(X), we obtain

0 � f⌦(bX)� f⌦(X⇤)

� �
p

2rkrf⌦(X⇤)k2 · kbX�X⇤kF +
�↵
2
k(bX�X⇤)⌦k2F .

(4.2)

From Lemma 4.4, we have the relation between the
Frobenius norm of the observed entries and the Frobe-
nius norm based on the whole matrix over the con-
straint set C0(|⌦|, C0). Now apply Lemma 4.4 to (4.2),
and consider the following cases for this equation.

Case 1: Suppose bX�X⇤ /2 C0(|⌦|, C0), then according
to the definition of C0(|⌦|, c0) we have,

↵sp(bX�X⇤)�ra(bX�X⇤) � 1

C0

s
|⌦|

d log(d)
.

Based on the definition of ↵sp(bX�X⇤) and �ra(bX�X⇤),
we can rewrite the above inequality,

p
mn
kbX�X⇤k⇤ · kbX�X⇤k1

kbX�X⇤k2F
� 1

C0

s
|⌦|

d log(d)
.

By reorganizing the inequality, we can obtain

kbX�X⇤k2F

 pmnkbX�X⇤k⇤ · kbX�X⇤k1C0

s
d log(d)

|⌦|

 2
p

2mnr↵C0

s
d log(d)

|⌦| kbX�X⇤kF ,

where the last inequality holds as the fact that kbX�
X⇤k⇤ 

p
2rkbX�X⇤kF and the fact kbX�X⇤k1  2↵.

Thus, we can achieve the statistical error bound in Case
1 as follows,

kbX�X⇤kF  2
p

2↵C0n

s
rm log(n)

|⌦| , (4.3)

where we used the fact d = (m + n)/2 and m  n.

For the case bX�X⇤ 2 C0(|⌦|, C0), we will have another
two more sub cases.
Case 2.1: Suppose bX � X⇤ 2 C0(|⌦|, C0), and

128↵sp(bX�X⇤)/
p

|⌦| > 1/2, then we obtain

128↵sp(bX�X⇤)p
|⌦|

=
128
p

mnkbX�X⇤k1p
|⌦|kbX�X⇤kF

>
1

2
.

By rearranging the above inequality, we obtain the
bound

kbX�X⇤kF <
512
p

mn↵p
|⌦|

. (4.4)

Case 2.2: Suppose bX � X⇤ 2 C0(|⌦|, C0), and

128↵sp(bX � X⇤)/
p

|⌦|  1/2, taking this condition
into Lemma 4.4 yields

k(bX�X⇤)⌦kFp
|⌦|

� 1

16

kbX�X⇤kFp
mn

,

with probability at least 1�(C1+1)/n. By reorganizing
the inequality, we have

k(bX�X⇤)⌦kF �
p

|⌦|
16
p

mn
kbX�X⇤kF . (4.5)

Combining (4.2), (4.5) and Lemma 4.2, we achieve

0 � f⌦(bX)� f⌦(X⇤)

� �(2
p

2rL↵

p
3|⌦| log(n)/m)kbX�X⇤kF

+
|⌦|�↵
32mn

kbX�X⇤k2F
= kbX�X⇤kF

·
✓
� 2
p

2rL↵

r
3|⌦| log(n)

m
+

|⌦|�↵
32mn

kbX�X⇤kF
◆

.

We have to let kbX � X⇤kF 
(2
p

2rL↵

p
3|⌦| log(n)/m)/(|⌦|�↵/(32mn)) such

that f⌦(bX)� f⌦(X⇤)  0. As a conclusion for all the
cases, we have

kbX�X⇤kF  max

✓
2
p

2↵C0n

s
rm log(n)

|⌦| ,
512
p

mn↵p
|⌦|

,

64
p

6L↵n

s
rm log(n)

|⌦|

◆
, (4.6)

with probability at least 1� C1/n. Compare the three
terms in (4.6), we can see that both the first and the
third terms have the same order, which is slower than
the second term 512

p
mn↵/

p
|⌦|. As a result, we have

with probability at least 1� (C1 + 1)/n that

kbX�X⇤kF  C2 max(1, ↵)n

s
rm log(n)

|⌦| ,

where C2 is a universal constant. This completes the
proof.
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Figure 1: Simulation results for one bit matrix completion. The dimension of matrix is m⇥ n, and the rank is
r 2 {3, 5, 10}. Figure 1(a)- 1(c) correspond to the performance of our proposed estimator for di↵erent dimensions
under the same rank.

5 Experiments

In this section, we will evaluate the performance of our
proposed estimator for one bit matrix completion on
both synthetic and real datasets, and compare it with
nuclear norm constrained estimator [9] and max norm
constrained estimator [6].

5.1 Simulation

We begin by investigating the performance of our
proposed estimator over a range of di↵erent dimen-
sions of the underlying matrix X⇤. First, we construct
the underlying matrix by X⇤ = UV>, where both
U 2 Rm⇥r,V 2 Rn⇥r are generated randomly by uni-
form distribution [�1/2, 1/2], such that rank(X⇤) = r.
Then we scaled the underlying matrix by kX⇤k1 such
that the infinity-norm of X⇤ equals one. Here, we choose
to work with the Probit model under uniform sampling,
namely p(Xij) = �(Xij/�). In this experiment, we set
rank r 2 {3, 5, 10}, dimension m = n 2 {100, 200, 300}
and the noise at a moderate level � = 0.18. For every set-
tings, we repeat 20 trials and measure the performance
of the estimator using the squared Frobenius norm of
the estimation error normalized by the squared Frobe-
nius norm of underlying matrix, i.e., kbX�X⇤k2F /kX⇤k2F
over all trials. The numerical results are shown in Fig-
ure 1(a)-1(c). We can naturally observe that the nor-
malized error decreases as the percentage of observed
entries (|⌦|/mn) increases in every situation. Figure 1
also shows that with the same percentage of observed
entries, the normalized error kbX � X⇤k2F /kX⇤k2F de-
creases as the dimension m, n increases, which is con-
sistent with the convergence rate O(

p
(rn)/(|⌦|)) we

obtained in Section 3.

We also conducted experiments comparing the perfor-
mance of rank, max norm and nuclear norm constrained
estimators for one bit matrix completion by using the
same criterion as in [6] and [9]. We plot the normal-
ized error versus the percentage of observed entries
for three di↵erent ranks r 2 {5, 10, 15}, three di↵er-
ent matrix dimensions m = n 2 {100, 200, 300} and
versus a range of di↵erent values of noise level � on a
logarithmic scale. Each setting is repeated for 20 times.
According to Figure 2(a)-2(e), our proposed estimator
performs consistently better than both trace norm and
max norm based estimators, especially under the case
r = 10, m = n = 100. From Figure 2(f), when the noise
level � is really small, all of the performances of the
estimators are poor. However, rank constrained esti-
mator performs consistently better than the other two
methods except when the noise level equals 10�1.5. This
again verifies the advantage of our proposed estimator
and backs up our theory.

5.2 Real Data

In this experiment, we applied our proposed estima-
tor to collaborative filtering on real-world dataset, and
compare the performance with some existing meth-
ods, including nuclear norm and max norm constrained
one bit matrix completion, as well as standard ma-
trix completion method [1]. We use the MovieLens
(100k) dataset, which is available for download at
http://www.grouplens.org/node/73. This dataset
contains 100,000 movie ratings from 943 users on 1682
movies, and each rating occurs on a scale from 1 to 5.
We use the logistic model to generate one bit data from
the rating matrix. Our goal is to recover the underly-
ing rating matrix. We use 50%, 70% and 90% entries
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Figure 2: Plot for the performance of rank constraint, max norm and nuclear norm based methods under di↵erent
cases r 2 {5, 10, 15} and m = n 2 {100, 200, 300}. Figure 2(a)-2(e) plot the normalized error with respect to the
percentage of observed entries for di↵erent r 2 {5, 10, 15} and m = n 2 {100, 200, 300}. Figure 2(f) plots the
normalized error versus noise level on logarithm scale, where r = 10 and m = n = 200.

of the one bit data as training data, and use the rest
entries of the one bit data as test data. Each trail is
repeated 10 times. Here, we use mean absolute error
(MAE) to evaluate the performance of each estimator.

MAE is defined as MAE =
P

(i,j)2T |Xij � bXij |/|T |,
where Xij denotes the rating user i gives to the item

j, bXij denotes the predicted rating user i gives to the
item j and T is the index set for the testing dataset.
The results are shown in Table 1. From Table 1, we can
find that standard matrix completion method performs
worst in recovering the underlying rating matrix, since
it is not specifically designed for matrix recovery based
on one-bit information. Among the one bit matrix com-
pletion methods, our estimator consistently performs
better than nuclear norm and max norm constrained
estimators, which is consistent with the findings on the
simulation datasets and backup our theory.

6 Conclusions

In this paper, we proposed a unified framework for one
bit matrix completion with rank constraints under uni-
form random sampling model. We establish a unified
estimation error analysis for one bit matrix completion,

Table 1: Quantitative comparison of di↵erent estimators
on the MovieLens dataset in terms of MAE.

Method 50% train 70% train 90% train
Standard MC 4.41±0.65 3.76±0.57 2.83±0.48
Nuclear-norm 2.12±0.04 1.86±0.05 1.69±0.01
Max-norm 2.62±0.08 1.88±0.03 1.78±0.01
Ours 1.96±0.05 1.73±0.02 1.43±0.03

which integrates the statistical error of the estimator
and the optimization error of the algorithm. Exper-
iments on both synthetic datasets and real datasets
indicate that the proposed estimator performs better
than existing estimators, which is consistent to the
theoretical analysis.
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