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Abstract

Algorithms for hyperparameter optimization
abound, all of which work well under di↵erent
and often unverifiable assumptions. Moti-
vated by the general challenge of sequentially
choosing which algorithm to use, we study
the more specific task of choosing among dis-
tributions to use for random hyperparameter
optimization. This work is naturally framed
in the extreme bandit setting, which deals
with sequentially choosing which distribution
from a collection to sample in order to min-
imize (maximize) the single best cost (re-
ward). Whereas the distributions in the stan-
dard bandit setting are primarily character-
ized by their means, a number of subtleties
arise when we care about the minimal cost
as opposed to the average cost. For example,
there may not be a well-defined “best” dis-
tribution as there is in the standard bandit
setting. The best distribution depends on the
rewards that have been obtained and on the
remaining time horizon. Whereas in the stan-
dard bandit setting, it is sensible to compare
policies with an oracle which plays the sin-
gle best arm, in the extreme bandit setting,
there are multiple sensible oracle models. We
define a sensible notion of “extreme regret”
in the extreme bandit setting, which parallels
the concept of regret in the standard bandit
setting. We then prove that no policy can
asymptotically achieve no extreme regret.

1 Introduction

Our motivation comes from hyperparameter optimiza-
tion and more generally from the challenge of mini-
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mizing a black-box objective f : ⌦ ! [0, 1] which we
can only evaluate pointwise. As an example, ! 2 ⌦
may parameterize the architecture of a convolutional
network, and f(!) may be the validation error when
the network with that architecture is trained on a par-
ticular data set. A number of approaches have been
applied to the optimization of f including Bayesian
optimization, covariance matrix adaptation, random
search, and a variety of other methods (for an incom-
plete list, see Bergstra and Bengio (2012); Bergstra
et al. (2011); Snoek et al. (2012); Hansen (2006); Wang
et al. (2013); Lagarias et al. (1998); Powell (2006);
Duchi et al. (2015)).

In some sense, random search is the benchmark of
choice. Whereas other approaches work well un-
der various and often unverifiable conditions (such as
smoothness or convexity of the objective), random
search has strong finite-sample guarantees that hold
without any assumptions on the function under con-
sideration. This guarantee is illustrated by the so-
called rule of 59,1 which states that the best of 59
random samples will be in the best 5 percent of all
samples with probability at least 0.95. More gener-
ally, any distribution over the set of hyperparameters
⌦ induces a distribution µ over the validation error in
[0, 1]. Let Fµ be the cumulative distribution function
of µ, and suppose that Fµ is continuous. Suppose that
x1, . . . , xT are independent and identically-distributed
samples from µ (obtained, for instance, by indepen-
dently sampling hyperparameters !t and evaluating
xt = f(!t) for 1  t  T ). The following is known.

Lemma 1. The distribution of the extreme cost
min{x1, . . . , xT } is easily described with quantiles. We
have P (Fµ(min{x1, . . . , xT })  ↵) = 1 � (1 � ↵)T .
More specifically, Fµ(min{x1, . . . , xT }) is a Beta(1, T )
random variable.

Proof. The event Fµ(min{x1, . . . , xT }) > ↵ happens
if and only if Fµ(xt) > ↵ for each t, which happens

1Though they are known, the rule of 59 and Lemma 1
do not appear in Bergstra and Bengio (2012), and they are
di�cult to find in the literature.

259



No Regret Bound for Extreme Bandits

with probability (1 � ↵)T . Di↵erentiating the result-
ing cumulative distribution function gives the density
function of a Beta(1, T ) random variable.

The generality of Lemma 1 comes at a price. The guar-
antee is given with respect to the distribution µ, but
there is no guarantee about µ itself. Di↵erent induced
distributions µ may arise from di↵erent parameteri-
zations of the hyperparameter space ⌦ (for example,
from the decision to put a uniform or a log-uniform
distribution over a coordinate of !), and the alloca-
tion of mass over [0, 1] may vary wildly based on these
choices.

Furthermore, the flip side of making no assumptions
on the underlying objective is that random search
fails to adapt to easy problems. When the objective
under consideration satisfies various regularity condi-
tions (as real-world objectives often do), more heavily-
engineered approaches will likely outperform random
search. That said, it is not clear how to know that a
given algorithm is outperforming random search with-
out also running random search. For this reason, the
benefits of a potentially faster algorithm are blunted
when one must also run the slow algorithm to verify
the performance of the fast algorithm.

Given the variety of existing hyperparameter optimiza-
tion algorithms, it would be desirable to devise a strat-
egy for sequentially choosing which algorithm to use
in a way that performs nearly as well as if we had
only used the single best algorithm. We consider the
simpler problem of choosing which of several distribu-
tions over hyperparameters to use for random search.
In Theorem 11, we show that even in this simplified
setting, no strategy guarantees performance that is
asymptotically as good as the single best distribution,
at least not without stronger assumptions.

We will frame our negative result in the extreme ban-
dit setting (Carpentier and Valko, 2014), also called
the max K-armed bandit setting (Cicirello and Smith,
2005). Prior work has focused on designing algorithms
that perform asymptotically as well as the single best
distribution under parametric (or semiparametric) as-
sumptions on the possible distributions (Cicirello and
Smith, 2005; Carpentier and Valko, 2014). Instead, we
focus on probing the di�culty of the problem, point-
ing out a number of subtleties that arise in this setting
that do not show up in the conventional bandit setting.

2 The Extreme Bandit Setting

Cicirello and Smith (2005) introduce the extreme ban-
dit problem (they call it the max K-armed bandit
problem) as follows. We are given a tuple of unknown

distributions (arms) µK
1 = (µ1, . . . , µK). The kth dis-

tribution generates sample xk,t at time t, for integer
t � 1, and all of the samples xk,t are independent.
A policy ⇡ is a function that, at each time t, chooses
the index kt of a distribution to sample based on the
previously observed samples. That is,

kt = ⇡( k1, . . . , kt�1| {z }
past arm choices

, xk1,1, . . . , xkt�1,t�1| {z }
past values

).

We would like to compare the performance of a policy
⇡ to that of an oracle policy ⇡⇤ that has access to
knowledge of the distributions µK

1 , so

k⇤
t = ⇡⇤(µ

K
1 , k⇤

1 , . . . , k⇤
t�1, xk⇤

1 ,1, . . . , xk⇤
t�1,t�1).

Both Cicirello and Smith (2005) and Carpentier and
Valko (2014) phrase their results in terms of the maxi-
mization of a reward rather than the minimization of a
cost. They define the “regret” of policy ⇡ with respect
to the oracle ⇡⇤ over a time horizon of T as

G⇡,⇡⇤
T = E


max
tT

xk⇤
t ,t

�
� E


max
tT

xkt,t

�
.

Under semiparametric assumptions on µK
1 , Carpentier

and Valko (2014) exhibit a policy ⇡ such that

G⇡,⇡⇤
T is o

✓
E

max
tT

xk⇤
t ,t

�◆
(1)

or equivalently,

lim
T!1

E [maxtT xkt,t]

E
⇥
maxtT xk⇤

t ,t

⇤ ! 1. (2)

The result in Equation 1 is superficially similar to re-
sults in the standard bandit setting. However, while
the condition in Equation 1 is sensible for the set-
ting considered by Carpentier and Valko (2014) (where
the distributions µK

1 have unbounded support), it is
particularly sensitive to the nature of the distribu-
tions. For instance, the result in Equation 1 is trivially
achieved when the distributions have bounded support
(for example, when the support is contained in [0, 1]
as in hyperparameter optimization). In this case, both
the numerator and denominator converge to the upper
bound of the support and G⇡,⇡⇤

T ! 0 (for any policy
that chooses each distribution infinitely often).

Furthermore, the condition in Equation 2 is asym-
metric with respect to maximization and minimiza-
tion. When performing minimization of a cost in-
stead of maximization of a reward (using distribu-
tions supported in [0, 1]), both E [mintT xkt,t] and
E
⇥
mintT xk⇤

t ,t

⇤
may approach 0, in which case the

ratio may exhibit radically di↵erent behavior. In Ex-
ample 2 and Example 3, we demonstrate some of the
peculiarities of this performance metric in the mini-
mization setting.
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Example 2. Suppose µ1 is a Bernoulli distribution
with mean parameter 0 < p < 1 and suppose that µ2

is a point mass on 1. Consider a policy ⇡ which
chooses µ2 at t = 1 and then chooses µ1 for all t > 1
and a policy ⇡⇤ which always chooses µ1. We have

lim
T!1

E [mintT xkt,t]

E
⇥
mintT xk⇤

t ,t

⇤ = lim
T!1

pT�1

pT
=

1

p
,

which remains bounded away from 1 even though the
policy ⇡ acted optimally at every time step after t = 1.

Example 3. Suppose µ1 is the uniform distribution
over [0, 1] and suppose that µ2 is a point mass on 1.
Consider a policy ⇡ which chooses µ2 at t = 1 and
then chooses µ1 for all t > 1 and a policy ⇡⇤ which
always chooses µ1. We have

lim
T!1

E [mintT xkt,t]

E
⇥
mintT xk⇤

t ,t

⇤ = lim
T!1

T�1

(T + 1)�1
! 1.

Note above that the minimum of T independent uni-
form random variables is a Beta(1, T ) random vari-
able, which has mean 1/(T + 1).

Despite the fact that the policy ⇡ acts optimally at
every time step other than t = 1 in both Example 2
and Example 3, the ratios of their expectations to that
of the oracle ⇡⇤ exhibit wildly di↵erent behaviors.

To avoid this sensitivity, we define “extreme regret” as
follows.

Definition 4. We define the extreme regret of the pol-
icy ⇡ with respect to the oracle policy ⇡⇤ over a time
horizon of T as

R⇡,⇡⇤
T =

1

T
min
T 0�1

⇢
T 0 : E


min
tT 0

xkt,t

�
 E


min
tT

xk⇤
t ,t

��
.

Note that R⇡,⇡⇤
T depends on the tuple of distributions

µK
1 , but we suppress this dependence in our notation.

Then R⇡,⇡⇤
T is essentially the ratio of the time horizons

T 0 to T over which the policy ⇡ and the oracle ⇡⇤ per-
form equally well. This definition is sensible regardless
of whether the samples are bounded or unbounded,
whether we care about minimization or maximization,
and regardless of how we scale or translate the distri-
butions. Note that in both Example 2 and Example 3,
we have R⇡,⇡⇤

T = T+1
T ! 1. Despite its apparent dif-

ference, as we discuss in Section 2.1, Definition 4 is
closely related to the notion of regret used in the stan-
dard bandit setting.

Definition 5. We say that policy ⇡ achieves “no
extreme regret” with respect to the oracle ⇡⇤ if
lim supT R⇡,⇡⇤

T  1 for all tuples of distributions µK
1 .

Definition 5 is fairly lenient. Had we defined “no ex-
treme regret” using the condition given in Equation 1,

our main result in Theorem 11 could have been made
even stronger, but we view that as undesirable as il-
lustrated by Example 2 and Example 3. Moreover,
the quantities in Definition 4 and Definition 5 closely
parallel quantities of interest in the standard bandit
setting, as we show in Section 2.1.

2.1 Analogy with the Standard Bandit
Setting

Definition 4 and Definition 5 parallel the intuition of
the standard bandit setting, which (when minimizing
a cost) studies the rate of convergence of

E
hPT

t=1 xkt,t

i
� mink E

hPT
t=1 xk,t

i

mink E
hPT

t=1 xk,t

i ! 0. (3)

Adding 1 to both sides, this is the same as studying
the rate of convergence of

E
hPT

t=1 xkt,t

i

T mink E[xk,t]
! 1.

Now, observe that we have

E
hPT

t=1 xkt,t

i

T mink E[xk,t]

⇡ 1

T
min
T 0�1

8
<
:T 0 :

E
hPT

t=1 xkt,t

i

mink E[xk,t]
 T 0

9
=
; (4)

=
1

T
min
T 0�1

8
<
:T 0 : E

"
TX

t=1

xkt,t

#
 min

k
E

"
T 0X

t=1

xk,t

#9=
; ,

which is essentially the ratio of the time horizons over
which the policy and the oracle perform equally well.
The two sides of the approximate equality in Equa-
tion 4 di↵er by at most 1/T . In the standard bandit
setting, the term “regret” often refers to the numera-
tor in Equation 3 and not the quantity in Equation 4.
However, as the above computation shows, the two
quantities are closely related, and they capture the
same phenomenon. We will phrase our results in terms
of the quantity R⇡,⇡⇤

T from Definition 4, which parallels
the quantity in Equation 4.

3 Oracle Models

In the standard multi-armed bandit setting, if an or-
acle with knowledge of the distributions of the arms
seeks to minimize the expected sum of the losses, it
should simply choose to play the arm with the low-
est mean. This is true regardless of the time horizon.
By analogy with the usual multi-armed bandit setting,
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Cicirello and Smith (2005) and Carpentier and Valko
(2014) both consider the oracle policy in Definition 6
that plays the single “best” arm.

Definition 6 (single-armed oracle). The single-armed
oracle is the oracle, which over a time horizon of T ,
plays the single best arm

arg min
k

E

min
tT

xk,t

�
.

The single-armed oracle provides a good benchmark
for comparison, but it is not the optimal oracle pol-
icy. When the time horizon is known in advance, the
optimal oracle policy is given in Definition 7.

Definition 7 (optimal oracle). The optimal oracle
over a time horizon of T plays the policy that solves

arg min
⇡

E

min
tT

xkt,t

�
.

When the time horizon is not known in advance, one
possible oracle strategy is a greedy strategy given in
Definition 8.

Definition 8 (greedy oracle). The greedy oracle
chooses the arm k⇤

t at time t that gives the maximal ex-
pected improvement over the current best value yt�1 =
minst�1 xk⇤

s ,s. That is,

k⇤
t = arg min

k
E
h
min{xk,t, yt�1} | xk⇤

1 ,1, . . . , xk⇤
t�1,t�1

i
.

Unlike the greedy oracle, both the single-armed oracle
and the optimal oracle require knowledge of the time
horizon. Indeed, as shown in Example 9, the notion
of a “best” arm is not well-defined outside of a spe-
cific time horizon. The best arm depends on the time
horizon. This point contrasts sharply with the usual
multi-armed bandit setting.

Example 9. Suppose we have an infinite collection of
arms µs indexed by 0 < s < 1. Let xs,t be a sample
from µs and suppose that P (xs,t = s) = s and P (xs,t =
1) = 1 � s. Then the optimal s is ⇥((log T )/T ).

We elaborate on Example 9 in Appendix A. One dif-
ference between the single-armed oracle and the op-
timal oracle is that the optimal oracle can adapt its
strategy based on the samples that it receives, whereas
the single-armed oracle is non-adaptive. Its strategy is
fixed ahead of time. Example 10 shows that the single-
armed oracle is not even the optimal non-adaptive ora-
cle. A mixed strategy may outperform any policy that
plays only a single arm.

Example 10. Consider a time horizon T = 2 and
consider two arms. Suppose that samples x1,t from µ1

deterministically equal 1/2 and that samples x2,t

from µ2 satisfy P (x2,t = 0) = 1/4 and P (x2,t = 1) =
3/4. Then

E min
1t2

x1,t =
1

2

E min
1t2

x2,t =
9

16

E min{x1,1, x2,2} =
3

8
.

This example shows that a fixed strategy that plays both
arms can outperform any policy that plays a single-
arm.

We described three di↵erent oracle models above. One
caveat is that in the event that there is a well-defined
best arm, that is, some arm k⇤ such that P (xk⇤,t 
↵) � P (xk,t  ↵) for all k and all 0  ↵  1,
then these three oracles all coincide and we need
not worry about which oracle to use for comparison.
This is roughly the case in prior work. Cicirello and
Smith (2005) and Carpentier and Valko (2014) make
(semi)parametric assumptions on the distributions of
the arms which essentially restrict the setting to have
a well-defined best arm.

Despite the fact that the single-armed oracle is not the
optimal oracle strategy, it is often a su�ciently strong
baseline for measuring the performance of our policies.
When we cannot even do as well as the single-armed
oracle, as will be the case in Theorem 11, then we
also cannot do as well as the optimal oracle. For the
remainder of the paper, we will compare to the single-
armed oracle. However, the results necessarily hold for
comparisons to the optimal oracle as well.

4 Main Result

Theorem 11 shows that no policy can be guaranteed
to perform asymptotically as well as the single best
distribution. That is, it is impossible to achieve “no
extreme regret” in the extreme bandit problem. This
result contrasts sharply with results in the standard
bandit setting, where it is possible to achieve no regret
under relatively mild conditions on the distributions
µK

1 = (µ1, . . . , µK).

Theorem 11. For any policy ⇡, there exist distribu-
tions µK

1 such that lim supT R⇡,⇡⇤
T � K, where ⇡⇤ is

the single-armed oracle.

We prove Theorem 11 in Section 4.3. The main com-
ponents of the proof are Lemma 13, which upper
bounds the performance of the single-armed oracle and
Lemma 15, which lower bounds the performance of the
policy ⇡.

This result shows that the extreme bandit problem
is fundamentally di↵erent from the standard multi-
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armed bandit problem, where a variety of policies per-
form asymptotically as well as the single best arm.
Indeed, in the standard bandit problem, the arms are
primarily characterized by their means, and so it suf-
fices to estimate the means of the arms and play the
best one. However, as discussed in Example 9, there is
no well-defined best arm in the extreme bandit prob-
lem. Our construction will create a situation where the
“best” arm periodically switches among the K distri-
butions so that the policy ⇡ often ends up choosing
the “wrong” arm.

For i � 1, let ↵i = (8K)�(i!)2. Our construction will
involve a sum of point masses at the values ↵i. It is
easily verified that the sequence ↵i satisfies the condi-
tions in Lemma 12.

Lemma 12. The sequence ↵i satisfies the following
properties.

(A)
P1

j=1 ↵j  1/2

(B) ↵i  1
4(1+i)

(C)
P1

j=i+1 ↵j  ↵i

iK

(D) ↵i  ↵i
i�12

�i.

Henceforth, we will not need the exact values of the se-
quence, we will only need the properties enumerated in
Lemma 12. For b = (b1, b2, . . .) 2 {1, . . . , K}1, define
the tuple of distributions µK

1 (b) = (µ1(b), . . . , µK(b))
via

µk(b) = �k(b)�1 +
1X

i=1

1l[bi = k]↵i �↵i

where

�k(b) = 1 �
1X

i=1

1l[bi = k]↵i.

Here, �c represents a point mass at c, 1l[⇠] is the {0, 1}-
indicator function of the event ⇠, and �k(b) is chosen
to make µk(b) a probability measure. Let MK be the
set of tuples of distributions that can be obtained in
this way. The value bi simply assigns the point mass
�↵i to one of the K distributions. We let D denote the
distribution over the set {1, . . . , K}1 defined so that
the bi’s are independent uniform random variables in
{1, . . . , K}.

Define the time horizon Ti = dlog(1/↵i)/↵ie. Instead
of controlling R⇡,⇡⇤

T for every T , we will control the
quantity specifically for the time horizons Ti. In our
construction, the bith arm in the tuple will be the best
arm over the time horizon Ti, and the other arms will
be substantially worse. We will show that, for a fixed
i, we can construct a tuple µK

1 so that the policy ⇡
takes roughly K times longer than the single-armed

oracle ⇡⇤ to obtain the value ↵i (that is, ⇡⇤ requires
roughly Ti samples and ⇡ requires roughly T 0

i ⇡ KTi

samples). Using the probabilistic method, we will then
show that we can find a tuple µK

1 so that the policy
takes roughly K times longer than the oracle to obtain
the value ↵i for infinitely many values of i.

4.1 Upper Bound on Oracle Performance

We begin by giving an upper bound on the perfor-
mance of the oracle policy that plays the single best
arm over the time horizon Ti. This bound holds uni-
formly over MK .

Lemma 13. Suppose that µK
1 (b) 2 MK . If ⇡⇤ is the

single-armed oracle from Definition 6, then

E

min
tTi

xk⇤,t

�
< 2↵i.

Proof. Recall that bi is the index of the distribution
that has a point mass at ↵i. We have

E

min
tTi

xk⇤,t

�
= min

k
E

min
tTi

xk,t

�
 E


min
tTi

xbi,t

�
.

The term on the right hand side can be rewritten as

E

1l


min
tTi

xbi,t  ↵i

�
min
tTi

xbi,t

�

+ E

1l


min
tTi

xbi,t > ↵i

�
min
tTi

xbi,t

�

 ↵iP


min
tTi

xbi,t  ↵i

�
+ P


min
tTi

xbi,t > ↵i

�

 ↵i + P


min
tTi

xbi,t > ↵i

�
.

The first inequality follows by upperbounding the term
mintTi

xbi,t by ↵i in the first term and by 1 in the
second term. The second inequality follows by up-
perbounding the first probability by 1. To finish the
lemma, note that

P


min
tTi

xbi,t > ↵i

�
 (1 � ↵i)

Ti < e�↵iTi  ↵i,

where the third inequality uses the definition Ti =
dlog(1/↵i)/↵ie.

4.2 Lower Bound on Performance of ⇡

Here, we give a lower bound on the performance of
any fixed policy ⇡, when averaged over a collection of
tuples of distributions.

Define the time horizon T 0
i = bciK log(1/↵i)/↵ic,

where ci = (1 � 1/i)/((1 + 1/i)2 + 2/i). The constant
ci is a correction term that converges to 1 as i ! 1.
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Its specific value is not meaningful. The goal of this
section is roughly to show that the performance of the
policy ⇡ over a time horizon of T 0

i is comparable to the
performance of the oracle policy over a time horizon
of Ti.

Throughout this section, we will fix an index i and
we fix bj for all j 6= i. Then we define the sequence

bk0
= (bk0

1 , bk0
2 , . . .) via bk0

j = bj for j 6= i and bk0
i = k0.

The K tuples µK
1 (bk0

) for di↵erent values of k0 are
identical in all respects except for the index of the
distribution that possesses the point mass �↵i

and the
amount of mass �k(bk0

) that the kth distribution in
the k0th tuple assigns to �1.

Define the tuple of distributions ⌘K
1 (b) =

(⌘1(b), . . . , ⌘K(b)) by ⌘k(b) = 1
K

PK
k0=1 µk(bk0

).

Let �k(b) := 1
K

PK
k0=1 �k(bk0

) denote the probability

that ⌘k(b) assigns to the value 1. The tuple ⌘K
1 (b) is

the average of the tuples µK
1 (bk0

) over the di↵erent
values of k0.

We begin with Lemma 14 which compares the proba-
bility that policy ⇡ obtains the value ↵i when averaged
over the tuples µK

1 (bk0
) with the probability that ⇡ ob-

tains the value ↵i in the tuple ⌘K
1 (b). This compar-

ison is helpful because each distribution in the tuple
⌘K
1 (b) assigns the same mass of ↵i/K to ↵i and so the

probability that ⇡ obtains ↵i when run on the tuple
⌘K
1 (b) does not depend on ⇡ (it is simply (1�↵i/K)T 0

i

where T 0
i is the time horizon). Of course, as stated,

we are actually concerned with the probability that ⇡
obtains a value less than or equal to ↵i, but because
of Lemma 12(C), the contribution of the smaller terms
will not be too great.

Lemma 14. We have

1

K

KX

k0=1

P


min
tT 0

i

xkt,t � ↵i�1

����µK
1 (bk0

)

�

� cP


min
tT 0

i

xkt,t � ↵i�1

���� ⌘K
1 (b)

�
,

where c = e�
2↵iT 0

i
iK . In our notation, we condition

on µK
1 (bk0

) to indicate the tuple of distributions being
used.

Proof. Define S(⇡, µK
1 , T ) to be the set of actions and

values that can be obtained by following policy ⇡ on
the tuple µK

1 for a time horizon of T . That is,

S(⇡, µK
1 , T )

=

⇢
(kt, xt)

T
t=1 :

kt = ⇡(k1, . . . , kt�1, x1, . . . , xt�1)
xt 2 supp(µkt)

�
,

where supp(µkt
) is the support of the distribution

µkt
. Then define S(⇡, µK

1 , T, i) to be the subset of

S(⇡, µK
1 , T ) such that all values are greater than or

equal to ↵i�1. That is,

S(⇡, µK
1 , T, i) =

�
(kt, xt)

T
t=1 2 S(⇡, µK

1 , T ) : xt � ↵i�1

 
.

Critically, note that

S(⇡, ⌘K
1 (b), T 0

i , i) = S(⇡, µK
1 (b1), T 0

i , i)

...

= S(⇡, µK
1 (bK), T 0

i , i).

(5)

Equation 5 holds because the supports of the tuples
µK

1 (bk0
) and ⌘K

1 (b) only di↵er on ↵i, but we are con-
sidering only values that are at least ↵i�1, so this dif-
ference does not a↵ect the sets. We shall refer to this
common set as S. We have

P


min
tT 0

i

xkt,t↵i�1

����µK
1 (bk0

)

�
(6)

=
X

S

0
@

i�1Y

j=1

↵
|{t : xt=↵j}|
j

KY

k=1

�k(bk0
)|{t : kt=k,xt=1}|

1
A .

(7)

It follows that

1

K

KX

k0=1

P


min
tT 0

i

xkt,t � ↵i�1

����µK
1 (bk0

)

�

= 1
K

PK
k0=1

P
S

⇣Qi�1
j=1 ↵

|{t : xt=↵j}|
j

QK
k=1 �k(bk0

)|{t : kt=k,xt=1}|
⌘

=
P

S

⇣Qi�1
j=1 ↵

|{t : xt=↵j}|
j

⇣
1
K

PK
k0=1

QK
k=1 �k(bk0

)|{t : kt=k,xt=1}|
⌘⌘

,

(8)
where the first equality uses Equation 6 and the second
equality simply rearranges the terms. We would like to
essentially apply Jensen’s inequality to say something
like

1
K

PK
k0=1

QK
k=1 �k(bk0

)|{t : kt=k,xt=1}| � QK
k=1 �k(b)|{t : kt=k,xt=1}|.

(9)
Unfortunately, despite the fact that �k is convex on
the relevant region,

QK
k=1 �k is not quite convex. How-

ever, it is nearly convex, and as we show in Lemma 17,

Equation 9 holds up to a correction factor of e�
2↵iT 0

i
iK .

Using this result in Equation 8 gives

1

K

KX

k0=1

P


min
tT 0

i

xkt,t � ↵i�1

����µK
1 (bk0

)

�

� e�
2↵iT 0

i
iK

P
S

⇣Qi�1
j=1 ↵

|{t : xt=↵j}|
j

QK
k=1 �k(b)|{t : kt=k,xt=1}|

⌘

= e�
2↵iT 0

i
iK P


min
tT 0

i

xkt,t � ↵i�1

���� ⌘K
1 (b)

�
.

the first inequality uses Lemma 17 and the last equality
holds for the same reason that Equation 6 holds.
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In Lemma 15, we turn the bound in Lemma 14 on the
probability of obtaining ↵i into a bound on the per-
formance of ⇡. Note that Lemma 15 holds uniformly
over the values of bj for j 6= i.

Lemma 15. We have

1

K

KX

k0=1

E

min
tT 0

i

xkt,t

����µK
1 (bk0

)

�
� 2↵i.

Proof. We have

1

K

KX

k0=1

E

min
tT 0

i

xkt,t

����µK
1 (bk0

)

�

� ↵i�1

K

KX

k0=1

P


min
tT 0

i

xkt,t � ↵i�1

����µK
1 (bk0

)

�

� ↵i�1e
� 2↵iT 0

i
iK P


min
tT 0

i

xkt,t � ↵i�1

���� ⌘K
1 (b)

�

(10)

The first inequality is Markov’s inequality. The second
inequality is Lemma 14. We have

P


min
tT 0

i

xkt,t � ↵i�1

���� ⌘K
1 (b)

�
�

0
@1 � ↵i

K
�

1X

j=i+1

↵j

1
A

T 0
i

�
✓

1 � ↵i(1 + 1
i )

K

◆T 0
i

� e�↵i(1+
1
i )2T 0

i /K

� ↵
(1+ 1

i )2ci

i .
(11)

The first inequality lower bounds the probability of
obtaining a value of ↵i or less at every iteration. The
second inequality uses Lemma 12(C). The third in-
equality uses Lemma 18 and Lemma 12(B). The fourth
inequality uses the definition T 0

i = bciK log(1/↵i)/↵ic.
Combining the Equation 10 and Equation 11 gives

1

K

KX

k0=1

E

min
tT 0

i

xkt,t

����µK
1 (bk0

)

�
� ↵i�1e

� 2↵iT 0
i

iK ↵
(1+ 1

i )2ci

i

� 2↵
1
i
i ↵

2ci
i

i ↵
(1+ 1

i )2ci

i

= 2↵i.

The second inequality uses Lemma 12(D) and the
definition of T 0

i . The third line uses the definition
ci = (1 � 1/i)/((1 + 1/i)2 + 2/i), which was chosen
to make the third line hold. This completes the proof
of the lemma.

Noting that Lemma 15 holds uniformly over the values
of bj for j 6= i, a direct consequence of Lemma 15 is
Corollary 16.

Corollary 16. We have

Pb⇠D

✓
E

min
tT 0

i

xkt,t

����µK
1 (b)

�
� 2↵i

◆
� 1

K
,

where D is the distribution over {1, . . . , K}1 defined
by sampling each component independently and uni-
formly at random from {1, . . . , K}. The outer proba-
bility is over b, and the inner expectation is over the
xkt,t.

4.3 Proof of Theorem 11

Here we synthesize the above results to prove Theo-
rem 11. Lemma 13 and Corollary 16 together imply
that

Pb⇠D

�
E
⇥
mintT 0

i
xkt,t

��µK
1 (b)

⇤
� 2↵i > E

⇥
mintTi

xk⇤,t

��µK
1 (b)

⇤�

� 1

K
,

which directly implies that P (R⇡,⇡⇤
Ti

� T 0
i/Ti) � 1/K.

Recall that for a sequence of events Ai, we have
P (infinitely many Ai happen) � lim supP (Ai). This
can be seen by applying Fatou’s lemma to the relevant
indicator functions. It follows that

Pb⇠D

✓
R⇡,⇡⇤

Ti
� T 0

i

Ti
for infinitely many i

◆
� 1

K
.

Recall the definitions

Ti = dlog(1/↵i)/↵ie T 0
i = bciK log(1/↵i)/↵ic.

Since ci ! 1, it follows that T 0
i/Ti ! K, and so there

exists a tuple µK
1 2 MK such that lim supT R⇡,⇡⇤

T � K,
proving the claim.

5 Related Work

Our setting is closely related to the multi-armed ban-
dit problem, which has been studied extensively. See
Bubeck and Cesa-Bianchi (2012) for a survey. Regret
is the most common measure of performance, though
some authors study “simple regret” (Bubeck et al.,
2011), where the goal is to identify the arm with the
lowest mean. However, these settings provide little
guidance on designing a policy to minimize the single
smallest cost. The extreme bandit problem, where we
care not about the average cost but about the single
minimal cost, has been significantly less studied.

The extreme bandit problem (also called the max K-
armed bandit problem) is introduced in Cicirello and
Smith (2005) and further developed in Streeter and
Smith (2006a,b). The problem is additionally studied
in Carpentier and Valko (2014), where the authors give
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an explicit algorithm and prove that it exhibits asymp-
totically no regret in the sense of Equation 1. How-
ever, all results in previous work have relied heavily on
strong parametric or semiparametric assumptions on
the distributions µK

1 under consideration. Motivated
by extreme value theory, Cicirello and Smith (2005)
assume that the distributions belong to the Gum-
bel family and Carpentier and Valko (2014) consider
distributions in the Fréchet family (or distributions
that are well approximated by the Fréchet family).
When the individual samples arise as the maxima of
a large number of independent, identically-distributed
random variables, then these assumptions may be re-
alistic. These assumptions dramatically simplify the
problem. As in the multi-armed bandit setting, where
every sample from a distribution provides information
about the mean of the distribution, in the parametric
setting, every sample provides information about the
parameters of the distribution. Once we have accu-
rately estimated each distribution, we can make sen-
sible choices about which distribution to choose. Our
work shows that some form of assumptions are neces-
sary to improve on the guarantees of the policy that
chooses each arm equally often.

We do not expect the parametric assumptions moti-
vated by extreme value theory to make sense in the
setting of hyperparameter optimization. However, the
question of what realistic assumptions are likely to
hold in practice for hyperparameter optimization is an
important question.

More recently, David and Shimkin (2015) consider a
PAC setting for the extreme bandit problem and prove
a lower bound on the sample complexity of algorithms
that return an answer within ✏ of the optimal attain-
able value with probability 1 � �.

The no free lunch theorems are another form of hard-
ness result in the optimization setting. Wolpert and
Macready (1997) show that in a discrete setting, all
optimization algorithms that never revisit the same
point perform equally well in expectation with respect
to the uniform distribution over all possible objectives.

6 Discussion

We have shown that a number of subtleties arise in
the extreme bandit setting that are not present in
the standard bandit setting. These include the fact
that there is no well-defined “best” arm and the fact
that strategies that play multiple arms can outper-
form oracle strategies that play a single arm. We have
shown that no policy can be guaranteed to perform
asymptotically as well as an oracle that plays the single
best arm for a given time horizon. This result should
not be construed to say that no policy can do bet-

ter in practice. Indeed, hyperparameter optimization
problems in the real world possess many nice struc-
tural properties. For instance, many hyperparameters
have a sweet spot outside of which the algorithm per-
forms poorly. This suggests that many black-box ob-
jectives for hyperparameter optimization may exhibit
coordinate-wise quasiconvexity. Crafting plausible as-
sumptions on the objectives and understanding how
they translate into conditions on the induced distri-
butions over algorithm performance is an important
problem.
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