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6 Supplementary Materials

6.1 Proof of Theorem 3.1

Proof. Let m̃Xt|z1:T :=
l∑

i=1

w
(t+1)
i mXt|X̃i,z1:t

. We then have∥∥mXt|z1:T − m̂Xt|z1:T
∥∥
HX

≤
∥∥mXt|z1:T − m̃Xt|z1:T

∥∥
HX

+
∥∥m̃Xt|z1:T − m̂Xt|z1:T

∥∥
HX

.

(16)

We consider each of the two terms in equation (16). Let ∆mXt|z1:T := mXt|z1:T − m̃Xt|z1:T . For the first term,∥∥∆mXt|z1:T
∥∥2
HX

=

∥∥∥∥∥mXt|z1:T −
l∑

i=1

w
(t+1)
i mXt|X̃i,z1:t

∥∥∥∥∥
2

HX

=

l∑
i,j=1

w
(t+1)
i w

(t+1)
j ξt(X̃i, X̃j)

−2
l∑

i=1

w
(t+1)
i

∫
ξt(X̃i, x)dPXt+1|z1:T (x)

+

∫
ξt(x, x̃)dPXt+1|z1:T (x)dPXt+1|z1:T (x̃)

=
⟨
∆mXt+1|z1:T ⊗∆mXt+1|z1:T , ξt

⟩
HX⊗HX

≤
∥∥∆mXt+1|z1:T

∥∥2
HX

∥ξt∥HX⊗HX

Since ∥ξt∥HX⊗HX
< ∞, the first term decays with Op(l

−2αt+1). For the second term, we have∥∥m̃Xt|z1:T − m̂Xt|z1:T
∥∥2
HX

=

∥∥∥∥∥
l∑

i=1

w
(t+1)
i (mXt|X̃i,z1:t

− m̂Xt|X̃i,z1:t
)

∥∥∥∥∥
2

HX

=

∥∥∥∥∥
l∑

i=1

w
(t+1)
i ∆mXt|X̃i,z1:t

∥∥∥∥∥
2

HX

=
l∑

i,j=1

w
(t+1)
i w

(t+1)
j ∆ξt(X̃i, X̃j)

=
⟨
m̂Xt+1|z1:T ⊗ m̂Xt+1|z1:T ,∆ξt

⟩
HX⊗HX

≤
∥∥m̂Xt+1|z1:T

∥∥2
HX

∥∆ξt∥HX⊗HX
.

Since ∥m̂Xt+1|z1:T ∥HX → ∥mXt+1|z1:T ∥HX < ∞, the second term decays with Op(l
−2βt). These results lead to

the statement
∥∥mXt|z1:T − m̂Xt|z1:T

∥∥
HX

= Op(l
−αt), where αt = min{αt+1, βt}.

6.2 Experimental Setting & Video: Tracking a Single Object (Experiment 1)

State Space Model Setting: The target’s state at time t is described by xt = (xt, yt, ẋt, ẏt) with the object’s
position (xt, yt) and the velocity (ẋt, ẏt) in cartesian coordinates R2. The discretized dynamics is expressed with
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Figure 4: A supplementary video. This animation visualizes the sequential update of kernel means of the nKB-
filter [10] and the nKB-smoother (Algorithm 1) for a test sequence z1:240 in the clutter problem. The upper
three figures show the sequential update of kernel means mXt|z1:t (t = 1 : 240) of the nKB-filter. The lower three
figures show the estimated smoothing kernel means mXt|z1:240 (t = 1 : 240) of the nKB-smoother. For each, the
left figure shows the kernel mean projected to state x, the middle figure shows the kernel mean projected to
state y, and the right figure both. Each figure visualizes the following. (Left four figures) The black dot vertical
line shows the true target’s state (x, y). The magenta dot vertical line shows the (cluttered) observation (x̃, ỹ).
The kernel mean weights are shown with left vertical axis. The positive (negative) weight values are visualized
with blue (red) bars, respectively. The cyan curve shows the estimated kernel mean (estimated RKHS function)
mP (·) ∈ HX as a function of (·) with right vertical axis. The blue dot in the top of the mountain shows the
result of the mode estimation for the target’s state (x, y) with the objective function value. From the two middle
figures, it can be observed that the filtering estimation is bimodal for uncertainty, but smoothing estimation
correctly identifies the state by using the future measurements z112:240, so that the blue dot is on the black dot
vertical line.

a time-invariant linear equation:

xt+1 = Axt + qt, A :=


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , (17)

where qt is discrete Gaussian white process noise having moments

E[qt] = 0,

E[qtq
⊤
t ] :=


∆t3/3 0 ∆t2/2 0

0 ∆t3/3 0 ∆t2/2
∆t2/2 0 ∆t 0

0 ∆t2/2 0 ∆t

 q

with q > 0. The measurement process for the target is a mixture model:

p(zt|xt) = (1− ρ)N(zt|Hxt, R) + ρ
1

|S|
, (18)
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Figure 5: Performance of the nKB-filter and the nKB-smoother in different training and test data on the clutter
problem. This figure shows 8 (4× 2) experimental results. The upper-left two figures show the performance on
the dimension x and y when the training sample size is n = 956, respectively. The lower figures show the results
when the training sample size is increased to n = 956, 1195, 1434, 1673. It is observed that the performance is
increased. The right eight figures show results on different test data.

where 1 − ρ and ρ are probabilities of measurements from the actual target and clutter, respectively. The
measurement from the actual target is a Gaussian N(zt|Hxt, R) with the measurement model matrix H and
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noise covariance matrix R. The measurement from the clutter is uniform on the area S. We used the same
parameter setting as the RBMCDA’s demo used, i.e., the size of time step ∆t = 0.1, q = 0.1, ρ = 1/2,
S = [−5, 5]× [−4, 4], and

H =

(
1 0 0 0
0 1 0 0

)
, R =

(
0.05 0
0 0.05

)
.

nKB-smoother setting: We used Gaussian kernels kX (x1,x2) = e−||x1−x2||2/2σ2
X and kZ(z1, z2) =

e−||z1−z2||2/2σ2
Z for target’s states and measurements, respectively, where σX = σZ = 0.1. We set regular-

ization constants ϵn = δn = ϵ̃n = δ̃n = 0.001. Note ϵ̃n and δ̃n are new regularization constants introduced for
KB-smoother.

A supplementary video: We present an animation which shows results of the nKB-filter [10] and the nKB-
smoother (Algorithm 1) in the clutter problem. Please see a supplementary movie file (.mov). Figure 4 presents
a snapshot of the animation at time step t = 111.

Supplementary results: Figure 5 shows other results in different training and test data on the clutter problem.

6.3 Marginal Kernel Mean Computation on Tree Graphs

In this section, we present marginal kernel mean computation on general tree graphs by using the nKB-filter and
the nKB-smoother, as the extension of state space models.

6.3.1 The nKB-filter & nKB-smoother on N Branch Cases

For ease of understanding, we begin with the two branch case shown in Figure 6 (left). Let x := (x1:T , x̄t+1:T̄ ) be
hidden variables and z := (z1:T , z̄t+1:T̄ ) be measurement variables. The joint probability density function (pdf)
p(x, z) of Figure 6 (left) is given by11

p(x, z)=

(
T−1∏
i=0

p(xi+1|xi)

)(
T∏

i=1

p(zi|xi)

)
T̄−1∏

i=t

p(x̄i+1|x̄i)

 T̄∏
i=t+1

p(z̄i|x̄i)

 ,

where p(x1|x0) := p(x1) and x̄t := xt. For ease of presentation, we assume that the transition process

{p(xi+1|xi)}T−1
i=1 and {p(x̄i+1|x̄i)}T̄−1

i=t follow the same conditional pdf p(x′|x). We also assume that the mea-

surement process {p(zi|xi)}Ti=1 and {p(z̄i|x̄i)}T̄i=t+1 follow the same conditional pdf p(z|x). It is not difficult to
extend this to general inhomogenous cases, if there is a training sample for learning each of them. We assume
that there are training data {X̃i, X̃

′
i}li=1 and {Xi, Zi}ni=1 for p(x′|x) and p(z|x), respectively.

The objective here is to compute the kernel means {mXτ |z}Tτ=1 and {mX̄τ |z}
T̃
τ=t+1 of conditional distributions

{p(xτ |z)}Tτ=1 and {p(x̄τ |z)}T̄τ=t+1 given measurements z, respectively. We begin with giving an order to the
two branches. Wlog, we set (xt+1:T , zt+1:T ) > (x̄t+1:T̄ , z̄t+1:T̄ ). We have outputs of the nKB-filter and the
nKB-smoother on chain (x1:T , z1:T ) as

m̂Xt|z1:t =
n∑

i=1

α
(t)
i kX (·, Xi), t = 1, . . . , T,

m̂Xt|z1:T =
l∑

i=1

w
(t)
i kX (·, X̃i), t = 1, . . . , T − 1.

11For simplicity, we omitted illustrations of observable variables z in Figure 6.
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Figure 6: Marginal kernel mean computation on tree graphs using the nKB-filter and the nKB-smoother; (left)
the simple two branch case, (middle) general N branch case, and (right) a tree example.

By applying the nonparametric kernel sum rule12 (Section 2 or Song et al. [25]) to m̂Xt|z1:T , we have

m̂X̄t+1|z1:T = ÛX̄t+1|Xt
m̂Xt|z1:T =

l∑
i=1

η
(t+1)
i kX (·, X̃ ′

i),

where ÛX̄t+1|Xt
is the nKSR operator to obtain the estimator m̂X̄t+1|z1:T . Next, we apply the KB-filter to the

other chain (x̄t+1:T̄ , z̄t+1:T̄ ) with the initial belief m̂X̄t+1|z1:T , so that the outputs are

m̂X̄τ |z1:T ,z̄t+1:τ
=

n∑
i=1

ᾱ
(τ)
i kX (·, Xi), τ = t+ 1, . . . , T̄ .

Then, we apply the nKB-smoother to the chain (x1:t, z1:t)(x̄t+1:T̄ , z̄t+1:T̄ ) backward with the initial kernel mean
mX̄T̄ |z, so that the outputs are

m̂X̄τ |z =

l∑
i=1

w̄
(τ)
i kX (·, X̃i) τ = t+ 1, . . . , T̄ − 1.

m̂Xτ |z =

l∑
i=1

w̄
(τ)
i kX (·, X̃i) τ = 1, . . . , t.

The numbers written in Figure 6 (left) show the order of inference of KB-filter and KB-smoother. By induction,
the same applies to the N branch case in Figure 6 (middle). First, give an order to the N branches. Then,
apply KB-filter and KB-smoother to one branch by one branch. As an example, Figure 6 (right) shows the order
of KB-filter and KB-smoother in a tree graph. Thus, the marginal kernel mean computation on a general tree
graph is obtained.

12By the Markov property, the conditional pdf p(x̄t+1|z1:T ) has the sum rule expression:

p(x̄t+1|z1:T ) =

∫
p(x̃, z̃t+1:T̄ |z1:T )δ(x̃t+1 − x̄t+1)dz̃t+1:T̄ dx̃

=

∫
p(x̄t+1|xt)p(xt|z1:T )dxt,

where δ(x̃t+1 − x̄t+1) is the dirac’s delta function.


