Supplementary Materials: Accelerated Stochastic Gradient Descent for Minimizing Finite Sums

Atsushi Nitanda
Tokyo Institute of Technology and NTT DATA Mathematical Systems Inc. Tokyo, Japan
nitanda@msi.co.jp

1 Proof of the Proposition 1

We now prove the Proposition 1 that gives the condition of compactness of sublevel set.
Proof. Let $B^{d}(r)$ and $S^{d-1}(r)$ denote the ball and sphere of radius r, centered at the origin. By affine transformation, we can assume that X_{*} contains the origin $O, X_{*} \subset B^{d}(1)$, and $X_{*} \cap S^{d-1}(1)=\phi$. Then, we have that for $\forall x \in S^{d-1}(1)$,

$$
(\nabla f(x), x) \geq f(x)-f(O)>0
$$

where we use convexity for the first inequality and $O \in X_{*} \wedge x \notin X_{*}$ for the second inequality. We denote the minimum value of $(\nabla f(x), x)$ on $S^{d-1}(1)$ by α. Since $(\nabla f(x), x)$ is positive continuous, we have $\alpha>0$. For $\forall r \geq 1$ and $\forall x \in S^{d-1}(r)$, we set $\hat{x}=x / r \in S^{d-1}(1)$, then it follows that

$$
\begin{aligned}
f(x) & \geq f(\hat{x})+(\nabla f(\hat{x}), x-\hat{x}) \\
& \geq f(\hat{x})+(r-1)(\nabla f(\hat{x}), \hat{x}) \\
& \geq f_{*}+(r-1) \alpha
\end{aligned}
$$

This inequality implies that if $r>1+\frac{c-f_{*}}{\alpha}$, then we have $f(x)>c$ for $\forall x \in S^{d-1}(r)$. Therefore, sublevel set $\left\{x \in \mathbb{R}^{d} ; f(x) \leq c\right\}$ is a closed bounded set.

2 Proof of the Lemma 1

To prove Lemma 1 the following lemma is required, which is also shown in [1].
Lemma A. Let $\left\{\xi_{i}\right\}_{i=1}^{n}$ be a set of vectors in \mathbb{R}^{d} and μ denote an average of $\left\{\xi_{i}\right\}_{i=1}^{n}$. Let I denote a uniform random variable representing a size b subset of $\{1,2, \ldots, n\}$. Then, it follows that,

$$
\mathbb{E}_{I}\left\|\frac{1}{b} \sum_{i \in I} \xi_{i}-\mu\right\|^{2}=\frac{n-b}{b(n-1)} \mathbb{E}_{i}\left\|\xi_{i}-\mu\right\|^{2}
$$

Proof. We denote a size b subset of $\{1,2, \ldots, n\}$ by $S=\left\{i_{1}, \ldots, i_{b}\right\}$ and denote $\xi_{i}-\mu$ by $\tilde{\xi}_{i}$. Then,

$$
\begin{aligned}
\mathbb{E}_{I}\left\|\frac{1}{b} \sum_{i \in I} \xi_{i}-\mu\right\|^{2} & =\frac{1}{C(n, b)} \sum_{S}\left\|\frac{1}{b} \sum_{j=1}^{b} \xi_{i_{j}}-\mu\right\|^{2} \\
& =\frac{1}{b^{2} C(n, b)} \sum_{S}\left\|\sum_{j=1}^{b} \tilde{\xi}_{i_{j}}\right\|^{2} \\
& =\frac{1}{b^{2} C(n, b)} \sum_{S}\left(\sum_{j=1}^{b}\left\|\tilde{\xi}_{i_{j}}\right\|^{2}+2 \sum_{j, k, j<k} \tilde{\xi}_{i_{j}}^{T} \tilde{\xi}_{i_{k}}\right)
\end{aligned}
$$

where $C(\cdot, \cdot)$ is a combination. By symmetry, an each $\tilde{\xi}_{i}$ appears $\frac{b C(n, b)}{n}$ times and an each pair $\tilde{\xi}_{i}^{T} \tilde{\xi}_{j}$ for $i<j$ appears $\frac{C(b, 2) C(n, b)}{C(n, 2)}$ times in \sum_{S}. Therefore, we have

$$
\begin{aligned}
\mathbb{E}_{I}\left\|\frac{1}{b} \sum_{i \in I} \xi_{i}-\mu\right\|^{2} & =\frac{1}{b^{2} C(n, b)}\left(\frac{b C(n, b)}{n} \sum_{i=1}^{n}\left\|\tilde{\xi}_{i}\right\|^{2}+\frac{2 C(b, 2) C(n, b)}{C(n, 2)} \sum_{i, j, i<j} \tilde{\xi}_{i}^{T} \tilde{\xi}_{j}\right) \\
& =\frac{1}{b n} \sum_{i=1}^{n}\left\|\tilde{\xi}_{i}\right\|^{2}+\frac{2(b-1)}{b n(n-1)} \sum_{i, j, i<j} \tilde{\xi}_{i}^{T} \tilde{\xi}_{j} .
\end{aligned}
$$

Since, $0=\left\|\sum_{i=1}^{n} \tilde{\xi}_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|\tilde{\xi}_{i}\right\|^{2}+2 \sum_{i, j, i<j} \tilde{\xi}_{i}^{T} \tilde{\xi}_{j}$, we have

$$
\mathbb{E}_{I}\left\|\frac{1}{b} \sum_{i \in I} \xi_{i}-\mu\right\|^{2}=\left(\frac{1}{b n}-\frac{b-1}{b n(n-1)}\right) \sum_{i=1}^{n}\left\|\tilde{\xi}_{i}\right\|^{2}=\frac{n-b}{b(n-1)} \frac{1}{n} \sum_{i=1}^{n}\left\|\tilde{\xi}_{i}\right\|^{2}
$$

This finishes the proof of Lemma.
We now prove the Lemma 1
Proof of Lemma 1 . We set $v_{j}^{1}=\nabla f_{j}\left(x_{k}\right)-\nabla f_{j}(\tilde{x})+\tilde{v}$. Using Lemma A and

$$
v_{k}=\frac{1}{b} \sum_{j \in I_{k}} v_{j}^{1}
$$

conditional variance of v_{k} is as follows

$$
\mathbb{E}_{I_{k}}\left\|v_{k}-\nabla f\left(x_{k}\right)\right\|^{2}=\frac{1}{b} \frac{n-b}{n-1} \mathbb{E}_{j}\left\|v_{j}^{1}-\nabla f\left(x_{k}\right)\right\|^{2}
$$

where expectation in right hand side is taken with respect to $j \in\{1, \ldots, n\}$. By Corollary 3 in [2], it follows that,

$$
\mathbb{E}_{j}\left\|v_{j}^{1}-\nabla f\left(x_{k}\right)\right\|^{2} \leq 4 L\left(f\left(x_{k}\right)-f\left(x_{*}\right)+f(\tilde{x})-f\left(x_{*}\right)\right)
$$

This completes the proof of Lemma 1

3 Stochastic gradient descent analysis

Below is the proof of Lemma 3
Proof of Lemma 3. It is clear that y_{k} is equal to $x_{k}-\eta v_{k}$. Since $f(x)$ is L-smooth and $\eta=\frac{1}{L}$, we have,

$$
\begin{aligned}
f\left(y_{k}\right) & \leq f\left(x_{k}\right)+\left(\nabla f\left(x_{k}\right), y_{k}-x_{k}\right)+\frac{L}{2}\left\|y_{k}-x_{k}\right\|^{2} \\
& =f\left(x_{k}\right)-\frac{1}{L}\left(\nabla f\left(x_{k}\right), v_{k}\right)+\frac{1}{2 L}\left\|v_{k}\right\|^{2}
\end{aligned}
$$

v_{k} is an unbiased estimator of gradient $\nabla f\left(x_{k}\right)$, that is, $\mathbb{E}_{I_{k}}\left[v_{k}\right]=\nabla f\left(x_{k}\right)$. Hence, we have

$$
\mathbb{E}_{I_{k}}\left\|v_{k}\right\|^{2}=\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\mathbb{E}_{I_{k}}\left\|v_{k}-\nabla f\left(x_{k}\right)\right\|^{2} .
$$

Using above two expressions, we get

$$
\begin{aligned}
\mathbb{E}_{I_{k}}\left[f\left(y_{k}\right)\right] & =f\left(x_{k}\right)-\frac{1}{L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2 L} \mathbb{E}_{I_{k}}\left\|v_{k}\right\|^{2} \\
& =f\left(x_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2 L} \mathbb{E}_{I_{k}}\left\|v_{k}-\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

4 Stochastic mirror descent analysis

We give the proof of Lemma4

Proof of Lemma 4. The following are basic properties of Bregman divergence.

$$
\begin{align*}
& \left(\nabla V_{x}(y), u-y\right)=V_{x}(u)-V_{y}(u)-V_{x}(y) \tag{1}\\
& V_{x}(y) \geq \frac{1}{2}\|x-y\|^{2} \tag{2}
\end{align*}
$$

Using (1) and (2), we have

$$
\begin{aligned}
\alpha_{k}\left(v_{k}, z_{k-1}-u\right) & =\alpha_{k}\left(v_{k}, z_{k-1}-z_{k}\right)+\alpha_{k}\left(v_{k}, z_{k}-u\right) \\
& =\alpha_{k}\left(v_{k}, z_{k-1}-z_{k}\right)-\left(\nabla V_{z_{k-1}}\left(z_{k}\right), z_{k}-u\right) \\
& \overline{\overline{1}} \alpha_{k}\left(v_{k}, z_{k-1}-z_{k}\right)+V_{z_{k-1}}(u)-V_{z_{k}}(u)-V_{z_{k-1}}\left(z_{k}\right) \\
& \leq \alpha_{k}\left(v_{k}, z_{k-1}-z_{k}\right)-\frac{1}{2}\left\|z_{k-1}-z_{k}\right\|^{2}+V_{z_{k-1}}(u)-V_{z_{k}}(u) \\
& \leq \frac{1}{2} \alpha_{k}^{2}\left\|v_{k}\right\|^{2}+V_{z_{k-1}}(u)-V_{z_{k}}(u),
\end{aligned}
$$

where for the second equality we use stochastic mirror descent step, that is, $\alpha_{k} v_{k}+\nabla V_{z_{k-1}}\left(z_{k}\right)=0$ and for the last inequality we use the Fenchel-Young inequality $\alpha_{k}\left(v_{k}, z_{k-1}-z_{k}\right) \leq \frac{1}{2} \alpha_{k}^{2}\left\|v_{k}\right\|^{2}+$ $\frac{1}{2}\left\|z_{k-1}-z_{k}\right\|^{2}$.
By taking expectation with respect to I_{k} and using $\mathbb{E}_{I_{k}}\left\|v_{k}\right\|^{2}=\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\mathbb{E}_{I_{k}}\left\|v_{k}-\nabla f\left(x_{k}\right)\right\|^{2}$, we have
$\alpha_{k}\left(\nabla f\left(x_{k}\right), z_{k-1}-u\right) \leq V_{z_{k-1}}(u)-\mathbb{E}_{I_{k}}\left[V_{z_{k}}(u)\right]+\frac{1}{2} \alpha_{k}^{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}+\frac{1}{2} \alpha_{k}^{2} \mathbb{E}_{I_{k}}\left\|v_{k}-\nabla f\left(x_{k}\right)\right\|^{2}$.
This finishes the proof of Lemma 4 ,

5 Proof of the Lemma 2

We now prove the Lemma2 that is the key to the analysis of our method.

Proof. We denote $V_{z_{k}}\left(x_{*}\right)$ by V_{k} for simplicity. We get

$$
\begin{aligned}
& \alpha_{k+1}\left(\nabla f\left(x_{k+1}\right), z_{k}-x_{*}\right) \\
& \leq V_{k}-\mathbb{E}_{I_{k+1}}\left[V_{k+1}\right]+L \alpha_{k+1}^{2}\left(f\left(x_{k+1}\right)-\mathbb{E}_{I_{k+1}}\left[f\left(y_{k+1}\right)\right]\right)+\alpha_{k+1}^{2} \mathbb{E}_{I_{k+1}}\left\|v_{k+1}-\nabla f\left(x_{k+1}\right)\right\|^{2} \\
& \leq V_{k}-\mathbb{E}_{I_{k+1}}\left[V_{k+1}\right]+L \alpha_{k+1}^{2}\left(f\left(x_{k+1}\right)-\mathbb{E}_{I_{k+1}}\left[f\left(y_{k+1}\right)\right]\right) \\
& \quad+4 L \alpha_{k+1}^{2} \delta_{k+1}\left(f\left(x_{k+1}\right)-f\left(x_{*}\right)+f\left(y_{0}\right)-f\left(x_{*}\right)\right) \\
& =V_{k}-\mathbb{E}_{I_{k+1}}\left[V_{k+1}\right]+\left(1+4 \delta_{k+1}\right) L \alpha_{k+1}^{2}\left(f\left(x_{k+1}\right)-f\left(x_{*}\right)\right)-L \alpha_{k+1}^{2} \mathbb{E}_{I_{k+1}}\left[f\left(y_{k+1}\right)-f\left(x_{*}\right)\right] \\
& \quad+4 L \alpha_{k+1}^{2} \delta_{k+1}\left(f\left(y_{0}\right)-f\left(x_{*}\right)\right),
\end{aligned}
$$

where for the first inequality we use Lemma 3 and 4 with $u=x_{*}$, for the second inequality we use Lemma 1

By taking the expectation with respect to the history of random variables $I_{1}, I_{2} \ldots$, we have,

$$
\begin{gather*}
\alpha_{k+1} \mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), z_{k}-x_{*}\right)\right] \leq \mathbb{E}\left[V_{k}-V_{k+1}\right]+\left(1+4 \delta_{k+1}\right) L \alpha_{k+1}^{2} \mathbb{E}\left[f\left(x_{k+1}\right)-f\left(x_{*}\right)\right] \\
-L \alpha_{k+1}^{2} \mathbb{E}\left[f\left(y_{k+1}\right)-f\left(x_{*}\right)\right]+4 L \alpha_{k+1}^{2} \delta_{k+1}\left(f\left(y_{0}\right)-f\left(x_{*}\right)\right), \tag{3}
\end{gather*}
$$

and we get

$$
\begin{align*}
\sum_{k=0}^{m} \alpha_{k+1} \mathbb{E}\left[f\left(x_{k+1}\right)-f\left(x_{*}\right)\right] & \leq \sum_{k=0}^{m} \alpha_{k+1} \mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), x_{k+1}-x_{*}\right)\right] \\
& =\sum_{k=0}^{m} \alpha_{k+1}\left(\mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), x_{k+1}-z_{k}\right)\right]+\mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), z_{k}-x_{*}\right)\right]\right) \\
& =\sum_{k=0}^{m} \alpha_{k+1}\left(\frac{1-\tau_{k}}{\tau_{k}} \mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), y_{k}-x_{k+1}\right)\right]+\mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), z_{k}-x_{*}\right)\right]\right) \\
& \leq \sum_{k=0}^{m}\left(\alpha_{k+1} \frac{1-\tau_{k}}{\tau_{k}} \mathbb{E}\left[f\left(y_{k}\right)-f\left(x_{k+1}\right)\right]+\alpha_{k+1} \mathbb{E}\left[\left(\nabla f\left(x_{k+1}\right), z_{k}-x_{*}\right)\right]\right) .(\tag{4}
\end{align*}
$$

Using (3), (4), and $V_{z_{k+1}}\left(x_{*}\right) \geq 0$, we have

$$
\begin{aligned}
& \sum_{k=0}^{m} \alpha_{k+1}\left(1+\frac{1-\tau_{k}}{\tau_{k}}-\left(1+4 \delta_{k+1}\right) L \alpha_{k+1}\right) \mathbb{E}\left[f\left(x_{k+1}\right)-f\left(x_{*}\right)\right] \\
& \leq \\
& \quad V_{0}+\sum_{k=0}^{m} \alpha_{k+1} \frac{1-\tau_{k}}{\tau_{k}} \mathbb{E}\left[f\left(y_{k}\right)-f\left(x_{*}\right)\right]-L \sum_{k=0}^{m} \alpha_{k+1}^{2} \mathbb{E}\left[f\left(y_{k+1}\right)-f\left(x_{*}\right)\right] \\
& \\
& \quad+4 L \sum_{k=0}^{m} \alpha_{k+1}^{2} \delta_{k+1}\left(f\left(y_{0}\right)-f\left(x_{*}\right)\right)
\end{aligned}
$$

This completes the proof of Lemma 2

6 Modified AMSVRG for general convex problems

We now introduce a modified AMSVRG (described in Figure 1) that does not need the boundedness assumption for general convex problems. We set η, α_{k+1}, and τ_{k} as in (5). Let $b_{k+1} \in \mathbb{Z}_{+}$be the

```
Algorithm 3 \(\left(w_{0},\left(m_{s}\right)_{s \in \mathbb{Z}_{+}}, \eta,\left(\alpha_{k+1}\right)_{k \in \mathbb{Z}_{+}},\left(b_{k+1}\right)_{k \in \mathbb{Z}_{+}},\left(\tau_{k}\right)_{k \in \mathbb{Z}_{+}}\right)\)
for \(s \leftarrow 0,1, \ldots\)
    \(y_{0} \leftarrow w_{s}, \quad z_{0} \leftarrow w_{0}\)
    \(w_{s+1} \leftarrow \operatorname{Algorithm1}\left(y_{0}, z_{0}, m_{s}, \eta,\left(\alpha_{k+1}\right)_{k \in \mathbb{Z}_{+}},\left(b_{k+1}\right)_{k \in \mathbb{Z}_{+}},\left(\tau_{k}\right)_{k \in \mathbb{Z}_{+}}\right)\)
end
```

Figure 1: Modified AMSVRG
minimum values satisfying $4 L \delta_{k+1} \alpha_{k+1} \leq p$ for small $p(e . g .1 / 4)$. Let $m_{s}=\left\lceil 4 \sqrt{\frac{L V_{z_{0}}\left(x_{*}\right)}{\epsilon}}\right\rceil$. From Theorem 1 we get

$$
\mathbb{E}\left[f\left(w_{s+1}\right)-f\left(x_{*}\right)\right] \leq \epsilon+a\left(f\left(w_{s}\right)-f\left(x_{*}\right)\right)
$$

where $a=\frac{5}{2} p$. Thus, it follows that,

$$
\begin{aligned}
\mathbb{E}\left[f\left(w_{s+1}\right)-f\left(x_{*}\right)\right] & \leq \sum_{t=0}^{s} a^{t} \epsilon+a^{s+1}\left(f\left(w_{0}\right)-f\left(x_{*}\right)\right) \\
& \leq \frac{1}{1-a} \epsilon+a^{s+1}\left(f\left(w_{0}\right)-f\left(x_{*}\right)\right)
\end{aligned}
$$

Hence, running the modified AMSVRG for $O\left(\log \frac{1}{\epsilon}\right)$ outer iterations achieves ϵ-accurate solution in expectation, and a complexity at each stage is

$$
\begin{aligned}
& O\left(n+\sum_{k=0}^{m_{s}} b_{k+1}\right) \leq O\left(n+\frac{n m_{s}^{2}}{n+m_{s}}\right) \\
= & O\left(n+\frac{n L}{\epsilon n+\sqrt{\epsilon L}}\right)=O\left(n+\min \left\{\frac{L}{\epsilon}, n \sqrt{\frac{L}{\epsilon}}\right\}\right),
\end{aligned}
$$

where we used the monotonicity of b_{k+1} with respect to k for the first inequality. Note that $V_{z_{0}}\left(x_{*}\right)$ is constant (i.e. $V_{w_{0}}\left(x_{*}\right)$), and O hides this term. From the above analysis, we derive the following theorem.
Theorem 1. Consider the modified AMSVRG under Assumptions 1 Let parameters be as above. Then the overall complexity for obtaining ϵ-accurate solution in expectation is

$$
O\left(\left(n+\min \left\{\frac{L}{\epsilon}, n \sqrt{\frac{L}{\epsilon}}\right\}\right) \log \left(\frac{1}{\epsilon}\right)\right)
$$

References

[1] J. E. Freund. Mathematical Statistics. prentice Hall, 1962.
[2] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. arXiv:1403.4699, 2014.

