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1 Proof of the Proposition 1

We now prove the Proposition 1 that gives the condition of compactness of sublevel set.

Proof. Let Bd(r) and Sd−1(r) denote the ball and sphere of radius r, centered at the origin.
By affine transformation, we can assume that X∗ contains the origin O, X∗ ⊂ Bd(1), and
X∗ ∩ Sd−1(1) = φ. Then, we have that for ∀x ∈ Sd−1(1),

(∇f(x), x) ≥ f(x)− f(O) > 0,

where we use convexity for the first inequality and O ∈ X∗ ∧ x /∈ X∗ for the second inequality. We
denote the minimum value of (∇f(x), x) on Sd−1(1) by α. Since (∇f(x), x) is positive continuous,
we have α > 0. For ∀r ≥ 1 and ∀x ∈ Sd−1(r), we set x̂ = x/r ∈ Sd−1(1), then it follows that

f(x) ≥ f(x̂) + (∇f(x̂), x− x̂)

≥ f(x̂) + (r − 1)(∇f(x̂), x̂)
≥ f∗ + (r − 1)α

This inequality implies that if r > 1 + c−f∗
α

, then we have f(x) > c for ∀x ∈ Sd−1(r). Therefore,

sublevel set {x ∈ R
d; f(x) ≤ c} is a closed bounded set.

2 Proof of the Lemma 1

To prove Lemma 1, the following lemma is required, which is also shown in [1].

Lemma A. Let {ξi}ni=1 be a set of vectors in R
d and µ denote an average of {ξi}ni=1. Let I denote

a uniform random variable representing a size b subset of {1, 2, . . . , n}. Then, it follows that,
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Proof. We denote a size b subset of {1, 2, . . . , n} by S = {i1, . . . , ib} and denote ξi − µ by ξ̃i.
Then,
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where C(·, ·) is a combination. By symmetry, an each ξ̃i appears
bC(n,b)

n
times and an each pair

ξ̃Ti ξ̃j for i < j appears
C(b,2)C(n,b)

C(n,2) times in
∑

S . Therefore, we have
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This finishes the proof of Lemma.

We now prove the Lemma 1.

Proof of Lemma 1 . We set v1j = ∇fj(xk)−∇fj(x̃) + ṽ. Using Lemma A and

vk =
1

b

∑

j∈Ik

v1j ,

conditional variance of vk is as follows

EIk‖vk −∇f(xk)‖2 =
1

b

n− b

n− 1
Ej‖v1j −∇f(xk)‖2,

where expectation in right hand side is taken with respect to j ∈ {1, . . . , n}. By Corollary 3 in [2],
it follows that,

Ej‖v1j −∇f(xk)‖2 ≤ 4L(f(xk)− f(x∗) + f(x̃)− f(x∗)).

This completes the proof of Lemma 1.

3 Stochastic gradient descent analysis

Below is the proof of Lemma 3.

Proof of Lemma 3 . It is clear that yk is equal to xk − ηvk. Since f(x) is L-smooth and η = 1
L

, we
have,

f(yk) ≤ f(xk) + (∇f(xk), yk − xk) +
L

2
‖yk − xk‖2

= f(xk)−
1

L
(∇f(xk), vk) +

1

2L
‖vk‖2.

vk is an unbiased estimator of gradient ∇f(xk), that is, EIk [vk] = ∇f(xk). Hence, we have

EIk‖vk‖2 = ‖∇f(xk)‖2 + EIk‖vk −∇f(xk)‖2.
Using above two expressions, we get

EIk [f(yk)] = f(xk)−
1

L
‖∇f(xk)‖2 +

1

2L
EIk‖vk‖2

= f(xk)−
1

2L
‖∇f(xk)‖2 +

1

2L
EIk‖vk −∇f(xk)‖2.
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4 Stochastic mirror descent analysis

We give the proof of Lemma 4.

Proof of Lemma 4 . The following are basic properties of Bregman divergence.

(∇Vx(y), u− y) = Vx(u)− Vy(u)− Vx(y), (1)

Vx(y) ≥
1

2
‖x− y‖2. (2)

Using (1) and (2), we have

αk(vk, zk−1 − u) = αk(vk, zk−1 − zk) + αk(vk, zk − u)

= αk(vk, zk−1 − zk)− (∇Vzk−1
(zk), zk − u)

=
(1)

αk(vk, zk−1 − zk) + Vzk−1
(u)− Vzk(u)− Vzk−1

(zk)

≤
(2)

αk(vk, zk−1 − zk)−
1

2
‖zk−1 − zk‖2 + Vzk−1

(u)− Vzk(u)

≤ 1

2
α2
k‖vk‖2 + Vzk−1

(u)− Vzk(u),

where for the second equality we use stochastic mirror descent step, that is, αkvk+∇Vzk−1
(zk) = 0

and for the last inequality we use the Fenchel-Young inequality αk(vk, zk−1 − zk) ≤ 1
2α

2
k‖vk‖2 +

1
2‖zk−1 − zk‖2.

By taking expectation with respect to Ik and using EIk‖vk‖2 = ‖∇f(xk)‖2+EIk‖vk−∇f(xk)‖2,
we have

αk(∇f(xk), zk−1 − u) ≤ Vzk−1
(u)−EIk [Vzk(u)] +

1

2
α2
k‖∇f(xk)‖2 +

1

2
α2
kEIk‖vk −∇f(xk)‖2.

This finishes the proof of Lemma 4.

5 Proof of the Lemma 2

We now prove the Lemma 2 that is the key to the analysis of our method.

Proof. We denote Vzk(x∗) by Vk for simplicity. We get

αk+1(∇f(xk+1), zk − x∗)

≤ Vk − EIk+1
[Vk+1] + Lα2

k+1(f(xk+1)− EIk+1
[f(yk+1)]) + α2

k+1EIk+1
‖vk+1 −∇f(xk+1)‖2

≤ Vk − EIk+1
[Vk+1] + Lα2

k+1(f(xk+1)− EIk+1
[f(yk+1)])

+4Lα2
k+1δk+1(f(xk+1)− f(x∗) + f(y0)− f(x∗))

= Vk − EIk+1
[Vk+1] + (1 + 4δk+1)Lα

2
k+1(f(xk+1)− f(x∗))− Lα2

k+1EIk+1
[f(yk+1)− f(x∗)]

+4Lα2
k+1δk+1(f(y0)− f(x∗)),

where for the first inequality we use Lemma 3 and 4 with u = x∗, for the second inequality we use
Lemma 1.

By taking the expectation with respect to the history of random variables I1, I2 . . ., we have,

αk+1E[(∇f(xk+1), zk − x∗)] ≤ E[Vk − Vk+1] + (1 + 4δk+1)Lα
2
k+1E[f(xk+1)− f(x∗)]

−Lα2
k+1E[f(yk+1)− f(x∗)] + 4Lα2

k+1δk+1(f(y0)− f(x∗)), (3)
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and we get

m
∑

k=0

αk+1E[f(xk+1)− f(x∗)] ≤
m
∑

k=0

αk+1E[(∇f(xk+1), xk+1 − x∗)]
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(
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τk

E[(∇f(xk+1), yk − xk+1)] + E[(∇f(xk+1), zk − x∗)]

)

≤
m
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k=0

(

αk+1
1− τk
τk

E[f(yk)− f(xk+1)] + αk+1E[(∇f(xk+1), zk − x∗)]

)

.(4)

Using (3), (4), and Vzk+1
(x∗) ≥ 0, we have

m
∑

k=0

αk+1

(

1 +
1− τk
τk

− (1 + 4δk+1)Lαk+1

)

E[f(xk+1)− f(x∗)]

≤ V0 +

m
∑

k=0

αk+1
1− τk
τk

E[f(yk)− f(x∗)]− L

m
∑

k=0

α2
k+1E[f(yk+1)− f(x∗)]

+4L

m
∑

k=0

α2
k+1δk+1(f(y0)− f(x∗)).

This completes the proof of Lemma 2.

6 Modified AMSVRG for general convex problems

We now introduce a modified AMSVRG (described in Figure 1) that does not need the boundedness
assumption for general convex problems. We set η, αk+1, and τk as in (5). Let bk+1 ∈ Z+ be the

Algorithm 3(w0, (ms)s∈Z+
, η, (αk+1)k∈Z+

, (bk+1)k∈Z+
, (τk)k∈Z+

)

for s← 0, 1, . . .
y0 ← ws, z0 ← w0

ws+1 ← Algorithm1(y0, z0, ms, η, (αk+1)k∈Z+
, (bk+1)k∈Z+

, (τk)k∈Z+
)

end

Figure 1: Modified AMSVRG

minimum values satisfying 4Lδk+1αk+1 ≤ p for small p (e.g. 1/4). Let ms =

⌈

4

√

LVz0
(x∗)

ǫ

⌉

.

From Theorem 1, we get

E[f(ws+1)− f(x∗)] ≤ ǫ+ a(f(ws)− f(x∗)),

where a = 5
2p. Thus, it follows that,

E[f(ws+1)− f(x∗)] ≤
s
∑

t=0

atǫ+ as+1(f(w0)− f(x∗))

≤ 1

1− a
ǫ+ as+1(f(w0)− f(x∗)).
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Hence, running the modified AMSVRG for O
(

log 1
ǫ

)

outer iterations achieves ǫ-accurate solution
in expectation, and a complexity at each stage is

O

(

n+

ms
∑

k=0

bk+1

)

≤ O

(

n+
nm2

s

n+ms

)

= O

(

n+
nL

ǫn+
√
ǫL

)

= O

(

n+min

{

L

ǫ
, n

√

L

ǫ

})

,

where we used the monotonicity of bk+1 with respect to k for the first inequality. Note that Vz0(x∗)
is constant (i.e. Vw0

(x∗)), and O hides this term. From the above analysis, we derive the following
theorem.

Theorem 1. Consider the modified AMSVRG under Assumptions 1. Let parameters be as above.
Then the overall complexity for obtaining ǫ-accurate solution in expectation is

O

((

n+min

{

L

ǫ
, n

√

L

ǫ

})

log

(

1

ǫ

)

)

.
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