Supplementary Materials: Accelerated Stochastic Gradient Descent for Minimizing Finite Sums

Atsushi Nitanda Tokyo Institute of Technology and NTT DATA Mathematical Systems Inc. Tokyo, Japan nitanda@msi.co.jp

1 Proof of the Proposition 1

We now prove the Proposition 1 that gives the condition of compactness of sublevel set.

Proof. Let $B^d(r)$ and $S^{d-1}(r)$ denote the ball and sphere of radius r, centered at the origin. By affine transformation, we can assume that X_* contains the origin O, $X_* \subset B^d(1)$, and $X_* \cap S^{d-1}(1) = \phi$. Then, we have that for $\forall x \in S^{d-1}(1)$,

$$(\nabla f(x), x) \ge f(x) - f(O) > 0,$$

where we use convexity for the first inequality and $O \in X_* \land x \notin X_*$ for the second inequality. We denote the minimum value of $(\nabla f(x), x)$ on $S^{d-1}(1)$ by α . Since $(\nabla f(x), x)$ is positive continuous, we have $\alpha > 0$. For $\forall r \ge 1$ and $\forall x \in S^{d-1}(r)$, we set $\hat{x} = x/r \in S^{d-1}(1)$, then it follows that

$$\begin{array}{rcl} f(x) & \geq & f(\hat{x}) + (\nabla f(\hat{x}), x - \hat{x}) \\ & \geq & f(\hat{x}) + (r - 1) (\nabla f(\hat{x}), \hat{x}) \\ & \geq & f_* + (r - 1) \alpha \end{array}$$

This inequality implies that if $r > 1 + \frac{c-f_*}{\alpha}$, then we have f(x) > c for $\forall x \in S^{d-1}(r)$. Therefore, sublevel set $\{x \in \mathbb{R}^d; f(x) \le c\}$ is a closed bounded set. \Box

2 Proof of the Lemma 1

To prove Lemma 1, the following lemma is required, which is also shown in [1].

Lemma A. Let $\{\xi_i\}_{i=1}^n$ be a set of vectors in \mathbb{R}^d and μ denote an average of $\{\xi_i\}_{i=1}^n$. Let I denote a uniform random variable representing a size b subset of $\{1, 2, \ldots, n\}$. Then, it follows that,

$$\mathbb{E}_{I} \left\| \frac{1}{b} \sum_{i \in I} \xi_{i} - \mu \right\|^{2} = \frac{n-b}{b(n-1)} \mathbb{E}_{i} \|\xi_{i} - \mu\|^{2}.$$

Proof. We denote a size b subset of $\{1, 2, ..., n\}$ by $S = \{i_1, ..., i_b\}$ and denote $\xi_i - \mu$ by $\tilde{\xi}_i$. Then,

$$\mathbb{E}_{I} \left\| \frac{1}{b} \sum_{i \in I} \xi_{i} - \mu \right\|^{2} = \frac{1}{C(n,b)} \sum_{S} \left\| \frac{1}{b} \sum_{j=1}^{b} \xi_{i_{j}} - \mu \right\|^{2}$$
$$= \frac{1}{b^{2}C(n,b)} \sum_{S} \left\| \sum_{j=1}^{b} \tilde{\xi}_{i_{j}} \right\|^{2}$$
$$= \frac{1}{b^{2}C(n,b)} \sum_{S} \left(\sum_{j=1}^{b} \|\tilde{\xi}_{i_{j}}\|^{2} + 2 \sum_{j,k,j < k} \tilde{\xi}_{i_{j}}^{T} \tilde{\xi}_{i_{k}} \right),$$

where $C(\cdot, \cdot)$ is a combination. By symmetry, an each $\tilde{\xi}_i$ appears $\frac{bC(n,b)}{n}$ times and an each pair $\tilde{\xi}_i^T \tilde{\xi}_j$ for i < j appears $\frac{C(b,2)C(n,b)}{C(n,2)}$ times in \sum_S . Therefore, we have

$$\mathbb{E}_{I} \left\| \frac{1}{b} \sum_{i \in I} \xi_{i} - \mu \right\|^{2} = \frac{1}{b^{2}C(n,b)} \left(\frac{bC(n,b)}{n} \sum_{i=1}^{n} \|\tilde{\xi}_{i}\|^{2} + \frac{2C(b,2)C(n,b)}{C(n,2)} \sum_{i,j,i < j} \tilde{\xi}_{i}^{T} \tilde{\xi}_{j} \right)$$
$$= \frac{1}{bn} \sum_{i=1}^{n} \|\tilde{\xi}_{i}\|^{2} + \frac{2(b-1)}{bn(n-1)} \sum_{i,j,i < j} \tilde{\xi}_{i}^{T} \tilde{\xi}_{j}.$$

Since, $0 = \|\sum_{i=1}^{n} \tilde{\xi}_i\|^2 = \sum_{i=1}^{n} \|\tilde{\xi}_i\|^2 + 2\sum_{i,j,i < j} \tilde{\xi}_i^T \tilde{\xi}_j$, we have

$$\mathbb{E}_{I} \left\| \frac{1}{b} \sum_{i \in I} \xi_{i} - \mu \right\|^{2} = \left(\frac{1}{bn} - \frac{b-1}{bn(n-1)} \right) \sum_{i=1}^{n} \|\tilde{\xi}_{i}\|^{2} = \frac{n-b}{b(n-1)} \frac{1}{n} \sum_{i=1}^{n} \|\tilde{\xi}_{i}\|^{2}.$$

This finishes the proof of Lemma.

We now prove the Lemma 1.

Proof of Lemma 1. We set $v_j^1 = \nabla f_j(x_k) - \nabla f_j(\tilde{x}) + \tilde{v}$. Using Lemma A and

$$v_k = \frac{1}{b} \sum_{j \in I_k} v_j^1,$$

conditional variance of v_k is as follows

$$\mathbb{E}_{I_k} \| v_k - \nabla f(x_k) \|^2 = \frac{1}{b} \frac{n-b}{n-1} \mathbb{E}_j \| v_j^1 - \nabla f(x_k) \|^2,$$

where expectation in right hand side is taken with respect to $j \in \{1, ..., n\}$. By Corollary 3 in [2], it follows that,

$$\mathbb{E}_{j} \|v_{j}^{1} - \nabla f(x_{k})\|^{2} \leq 4L(f(x_{k}) - f(x_{*}) + f(\tilde{x}) - f(x_{*})).$$

This completes the proof of Lemma 1.

Below is the proof of Lemma 3.

Proof of Lemma 3. It is clear that y_k is equal to $x_k - \eta v_k$. Since f(x) is L-smooth and $\eta = \frac{1}{L}$, we have,

$$\begin{aligned} f(y_k) &\leq f(x_k) + (\nabla f(x_k), y_k - x_k) + \frac{L}{2} \|y_k - x_k\|^2 \\ &= f(x_k) - \frac{1}{L} (\nabla f(x_k), v_k) + \frac{1}{2L} \|v_k\|^2. \end{aligned}$$

 v_k is an unbiased estimator of gradient $\nabla f(x_k)$, that is, $\mathbb{E}_{I_k}[v_k] = \nabla f(x_k)$. Hence, we have

 $\mathbb{E}_{I_k} \|v_k\|^2 = \|\nabla f(x_k)\|^2 + \mathbb{E}_{I_k} \|v_k - \nabla f(x_k)\|^2.$

Using above two expressions, we get

$$\mathbb{E}_{I_k}[f(y_k)] = f(x_k) - \frac{1}{L} \|\nabla f(x_k)\|^2 + \frac{1}{2L} \mathbb{E}_{I_k} \|v_k\|^2$$

= $f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 + \frac{1}{2L} \mathbb{E}_{I_k} \|v_k - \nabla f(x_k)\|^2.$

c		

4 Stochastic mirror descent analysis

We give the proof of Lemma 4.

Proof of Lemma 4. The following are basic properties of Bregman divergence.

$$(\nabla V_x(y), u - y) = V_x(u) - V_y(u) - V_x(y), \tag{1}$$

$$V_x(y) \ge \frac{1}{2} \|x - y\|^2.$$
⁽²⁾

Using (1) and (2), we have

$$\begin{aligned} \alpha_k(v_k, z_{k-1} - u) &= \alpha_k(v_k, z_{k-1} - z_k) + \alpha_k(v_k, z_k - u) \\ &= \alpha_k(v_k, z_{k-1} - z_k) - (\nabla V_{z_{k-1}}(z_k), z_k - u) \\ &= \alpha_k(v_k, z_{k-1} - z_k) + V_{z_{k-1}}(u) - V_{z_k}(u) - V_{z_{k-1}}(z_k) \\ &\leq \alpha_k(v_k, z_{k-1} - z_k) - \frac{1}{2} \|z_{k-1} - z_k\|^2 + V_{z_{k-1}}(u) - V_{z_k}(u) \\ &\leq \frac{1}{2} \alpha_k^2 \|v_k\|^2 + V_{z_{k-1}}(u) - V_{z_k}(u), \end{aligned}$$

where for the second equality we use stochastic mirror descent step, that is, $\alpha_k v_k + \nabla V_{z_{k-1}}(z_k) = 0$ and for the last inequality we use the Fenchel-Young inequality $\alpha_k(v_k, z_{k-1} - z_k) \leq \frac{1}{2}\alpha_k^2 ||v_k||^2 + \frac{1}{2}||z_{k-1} - z_k||^2$.

By taking expectation with respect to I_k and using $\mathbb{E}_{I_k} ||v_k||^2 = ||\nabla f(x_k)||^2 + \mathbb{E}_{I_k} ||v_k - \nabla f(x_k)||^2$, we have

$$\alpha_k(\nabla f(x_k), z_{k-1} - u) \le V_{z_{k-1}}(u) - \mathbb{E}_{I_k}[V_{z_k}(u)] + \frac{1}{2}\alpha_k^2 \|\nabla f(x_k)\|^2 + \frac{1}{2}\alpha_k^2 \mathbb{E}_{I_k} \|v_k - \nabla f(x_k)\|^2.$$

This finishes the proof of Lemma 4.

5 Proof of the Lemma 2

We now prove the Lemma 2 that is the key to the analysis of our method.

Proof. We denote $V_{z_k}(x_*)$ by V_k for simplicity. We get

$$\begin{split} &\alpha_{k+1}(\nabla f(x_{k+1}), z_k - x_*) \\ &\leq V_k - \mathbb{E}_{I_{k+1}}[V_{k+1}] + L\alpha_{k+1}^2(f(x_{k+1}) - \mathbb{E}_{I_{k+1}}[f(y_{k+1})]) + \alpha_{k+1}^2 \mathbb{E}_{I_{k+1}} \|v_{k+1} - \nabla f(x_{k+1})\|^2 \\ &\leq V_k - \mathbb{E}_{I_{k+1}}[V_{k+1}] + L\alpha_{k+1}^2(f(x_{k+1}) - \mathbb{E}_{I_{k+1}}[f(y_{k+1})]) \\ &\quad + 4L\alpha_{k+1}^2\delta_{k+1}(f(x_{k+1}) - f(x_*) + f(y_0) - f(x_*)) \\ &= V_k - \mathbb{E}_{I_{k+1}}[V_{k+1}] + (1 + 4\delta_{k+1})L\alpha_{k+1}^2(f(x_{k+1}) - f(x_*)) - L\alpha_{k+1}^2\mathbb{E}_{I_{k+1}}[f(y_{k+1}) - f(x_*)] \\ &\quad + 4L\alpha_{k+1}^2\delta_{k+1}(f(y_0) - f(x_*)), \end{split}$$

where for the first inequality we use Lemma 3 and 4 with $u = x_*$, for the second inequality we use Lemma 1.

By taking the expectation with respect to the history of random variables $I_1, I_2...$, we have,

$$\alpha_{k+1}\mathbb{E}[(\nabla f(x_{k+1}), z_k - x_*)] \leq \mathbb{E}[V_k - V_{k+1}] + (1 + 4\delta_{k+1})L\alpha_{k+1}^2\mathbb{E}[f(x_{k+1}) - f(x_*)] - L\alpha_{k+1}^2\mathbb{E}[f(y_{k+1}) - f(x_*)] + 4L\alpha_{k+1}^2\delta_{k+1}(f(y_0) - f(x_*)), \quad (3)$$

and we get

$$\sum_{k=0}^{m} \alpha_{k+1} \mathbb{E}[f(x_{k+1}) - f(x_*)] \leq \sum_{k=0}^{m} \alpha_{k+1} \mathbb{E}[(\nabla f(x_{k+1}), x_{k+1} - x_*)]$$

$$= \sum_{k=0}^{m} \alpha_{k+1} (\mathbb{E}[(\nabla f(x_{k+1}), x_{k+1} - z_k)] + \mathbb{E}[(\nabla f(x_{k+1}), z_k - x_*)])$$

$$= \sum_{k=0}^{m} \alpha_{k+1} \left(\frac{1 - \tau_k}{\tau_k} \mathbb{E}[(\nabla f(x_{k+1}), y_k - x_{k+1})] + \mathbb{E}[(\nabla f(x_{k+1}), z_k - x_*)] \right)$$

$$\leq \sum_{k=0}^{m} \left(\alpha_{k+1} \frac{1 - \tau_k}{\tau_k} \mathbb{E}[f(y_k) - f(x_{k+1})] + \alpha_{k+1} \mathbb{E}[(\nabla f(x_{k+1}), z_k - x_*)] \right). (4)$$

Using (3), (4), and $V_{z_{k+1}}(x_*) \ge 0$, we have

$$\sum_{k=0}^{m} \alpha_{k+1} \left(1 + \frac{1 - \tau_k}{\tau_k} - (1 + 4\delta_{k+1})L\alpha_{k+1} \right) \mathbb{E}[f(x_{k+1}) - f(x_*)]$$

$$\leq V_0 + \sum_{k=0}^{m} \alpha_{k+1} \frac{1 - \tau_k}{\tau_k} \mathbb{E}[f(y_k) - f(x_*)] - L \sum_{k=0}^{m} \alpha_{k+1}^2 \mathbb{E}[f(y_{k+1}) - f(x_*)]$$

$$+ 4L \sum_{k=0}^{m} \alpha_{k+1}^2 \delta_{k+1}(f(y_0) - f(x_*)).$$

This completes the proof of Lemma 2.

6 Modified AMSVRG for general convex problems

We now introduce a modified AMSVRG (described in Figure 1) that does not need the boundedness assumption for general convex problems. We set η , α_{k+1} , and τ_k as in (5). Let $b_{k+1} \in \mathbb{Z}_+$ be the

Figure 1: Modified AMSVRG

minimum values satisfying $4L\delta_{k+1}\alpha_{k+1} \leq p$ for small p (e.g. 1/4). Let $m_s = \left\lceil 4\sqrt{\frac{LV_{z_0}(x_*)}{\epsilon}} \right\rceil$. From Theorem 1, we get

$$\mathbb{E}[f(w_{s+1}) - f(x_*)] \le \epsilon + a(f(w_s) - f(x_*)),$$

where $a = \frac{5}{2}p$. Thus, it follows that,

$$\mathbb{E}[f(w_{s+1}) - f(x_*)] \leq \sum_{t=0}^{s} a^t \epsilon + a^{s+1} (f(w_0) - f(x_*))$$

$$\leq \frac{1}{1-a} \epsilon + a^{s+1} (f(w_0) - f(x_*)).$$

Hence, running the modified AMSVRG for $O\left(\log \frac{1}{\epsilon}\right)$ outer iterations achieves ϵ -accurate solution in expectation, and a complexity at each stage is

$$O\left(n + \sum_{k=0}^{m_s} b_{k+1}\right) \le O\left(n + \frac{nm_s^2}{n + m_s}\right)$$
$$= O\left(n + \frac{nL}{\epsilon n + \sqrt{\epsilon L}}\right) = O\left(n + \min\left\{\frac{L}{\epsilon}, n\sqrt{\frac{L}{\epsilon}}\right\}\right),$$

where we used the monotonicity of b_{k+1} with respect to k for the first inequality. Note that $V_{z_0}(x_*)$ is constant (i.e. $V_{w_0}(x_*)$), and O hides this term. From the above analysis, we derive the following theorem.

Theorem 1. Consider the modified AMSVRG under Assumptions 1. Let parameters be as above. Then the overall complexity for obtaining ϵ -accurate solution in expectation is

$$O\left(\left(n + \min\left\{\frac{L}{\epsilon}, n\sqrt{\frac{L}{\epsilon}}\right\}\right) \log\left(\frac{1}{\epsilon}\right)\right).$$

References

- [1] J. E. Freund. *Mathematical Statistics*. prentice Hall, 1962.
- [2] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. *arXiv:1403.4699*, 2014.