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Abstract

We propose an optimization method for mini-
mizing the finite sums of smooth convex func-
tions. Our method incorporates an acceler-
ated gradient descent (AGD) and a stochas-
tic variance reduction gradient (SVRG) in a
mini-batch setting. An important feature of
the method is that it can be directly applied
to general convex and optimal strongly con-
vex problems that is a weaker condition than
strong convexity. We show that our method
achieves a better overall complexity for the
general convex problems and linear conver-
gence for optimal strongly convex problems.
Moreover we prove the fast iteration com-
plexity of our method. Our experiments show
the effectiveness of our method.

1 Introduction

We consider the minimization problem:

minimize
x∈Rd

f(x)
def
=

1

n

n∑

i=1

fi(x), (1)

where f1, . . . , fn are smooth convex functions from Rd

to R. In machine learning, we often encounter opti-
mization problems of this type, i.e., empirical risk min-
imization. For example, given a sequence of training
examples (a1, b1), . . . , (an, bn), where ai ∈ Rd and bi ∈
R. If we set fi(x) =

1
2 (a

T
i x− bi)

2, then we obtain lin-
ear regression. If we set fi(x) = log(1+exp(−bixTai))
(bi ∈ {−1, 1}), then we obtain logistic regression. Each
fi(x) may include smooth regularization terms. In this
paper we make the following assumption.
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Assumption 1. Each convex function fi(x) is L-
smooth, i.e., there exists L > 0 such that for all
x, y ∈ Rd,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

Several papers recently proposed effective methods
(SAG [1, 2], SDCA [3, 4], SVRG [5], S2GD [6], Acc-
Prox-SDCA [7], Prox-SVRG [8], MISO [9], SAGA [10],
APCG [11], Acc-Prox-SVRG [12], mS2GD [13], SPDC
[14]) for solving strongly convex problems. These
methods attempt to reduce the variance of the stochas-
tic gradient and achieve the linear convergence rates
like a deterministic gradient descent.Moreover, be-
cause of the computational efficiency of each iteration,
the overall complexities (total number of processed ex-
amples to find an ǫ-accurate solution in expectation) of
these methods are less than those of the deterministic
and stochastic gradient descent methods.

However, many problems are not strongly convex. An
advantage of the SAG and SAGA is that they sup-
port general convex problems. Although we can ap-
ply any of these methods to non-strongly convex func-
tions by adding a slight L2-regularization, this modifi-
cation increases the difficulty of model selection. In the
general convex case, the overall complexities of SAG
and SAGA are O((n + L)/ǫ). This complexity is less
than that of the deterministic gradient descent, which
have a complexity of O(nL/ǫ), and is a trade-off with
O(n

√
L/ǫ) , which is the complexity of the AGD.

More recently, [15] showed that Prox-SVRG has linear
rate of convergence for optimal strongly convex prob-
lems defined as follows:

Assumption 2. Let C be a subset of Rd and X∗ de-
note the optimal set. We assume X∗ 6= φ. f(x) is µ-
optimal-strongly convex on C, i.e., there exists µ > 0
such that for all x ∈ C \X∗,

f∗ +
µ

2
‖x−ΠX∗(x)‖2 ≤ f(x),

where f∗ is the optimal value and ΠX∗ denotes the
projection onto X∗.
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Clearly, we can see that optimal strong convexity is
a weaker condition than strong convexity. Since f∗ +
L
2 ‖x − ΠX∗(x)‖2 ≥ f(x) by L-smoothness, we have
µ ≤ L. We denote the ratio between L and µ by κ and
we call it the condition number.

In this paper we propose a new method that incor-
porates the AGD and SVRG in a mini-batch setting
like Acc-Prox-SVRG [12]. The difference between our
method and Acc-Prox-SVRG is that our method in-
corporates [16], which is similar to Nesterov’s acceler-
ation [17], whereas Acc-Prox-SVRG incorporates [18].
An important feature of our method is that it can be
directly applied to general convex and optimal strongly
convex problems. We show that for general convex
problems, AMSVRG achieves an overall complexity of

Õ

(
n+min

{
L

ǫ
, n

√
L

ǫ

})
,

where the notation Õ hides constant and logarithmic
terms. This complexity is less than that of SAG,
SAGA, and AGD. In the optimal strongly convex case,
our method achieves an overall complexity

Õ
(
n+min

{
κ, n
√
κ
})

,

where κ is the condition number L/µ. Moreover, an

iteration complexity (the number of iterations needed
to find an ǫ-accurate solution in expectation) is

O

(√
κ log

(
1

ǫ

))
,

This iteration complexity is the same as that of de-
terministic acceleration methods, i.e., best iteration
complexity. Thus, our method converges quickly for
general convex and optimal strongly convex problems.

In Section 2, we discuss an optimal strongly convex
function. In Section 3, we review the recently proposed
accelerated gradient method [16] and the stochastic
variance reduction gradient [5]. In Section 4, we de-
scribe the general scheme of our method and prove an
important lemma that gives us a novel insight for con-
structing specific algorithms. Moreover, we derive an
algorithm that is applicable to general convex and op-
timal strongly convex problems and show its quickly
converging complexity. Our method is a multi-stage
scheme like SVRG, but it can be difficult to decide
when we should restart a stage. Thus, in Section 5, we
introduce some heuristics for determining the restart-
ing time. In Section 6, we present experiments that
show the effectiveness of our method.

2 Optimal Strongly Convex

The main differences between strong convexity and op-
timal strong convexity are that the latter condition ad-

Figure 1: Smoothed hinge loss function.

mits an infinite number of solutions and linear parts of
the function. Thus, optimal strongly convex is a very
large class.

Two quantities 1
2‖x−ΠX∗(x)‖2 and f(x)−f∗ are opti-

mality measures and continuous functions, so that the

ratio between these two values: µ(x) = 2(f(x)−f∗)
‖x−ΠX∗ (x)‖2 is

positive continuous on the complement ofX∗. Let C ⊂
Rd be a compact subset. Then, µ

def
= infx∈C\X∗ µ(x)

gives the optimal strong convexity parameter on C.
Since C \ U is also compact, where U is an arbitrary
small open neighborhood of X∗, µ(x) has positive min-
imum values on C \ U . This means that whether As-
sumption 2 is satisfied or not depend on the behavior
of f around the boundary of C ∩X∗. Therefore, many
problems belong to the class of optimal strongly con-
vex on compact set.

A smoothed hinge loss function (Fig. 1)

f(x) =





1
2 − x (x ≤ 0),
1
2 (1− x)2 (0 < x ≤ 1),
0 (1 < x),

is a simple example of optimal strongly function on a
bounded region. Let C = [−a, a] (a > 1) be a bounded
range. Since X∗ = [1,∞) and ΠX∗(x) = 1 for x /∈
X∗, we can easily see that optimal strong convexity
parameter on C for smoothed hinge loss is

µ = inf
x∈[−a,1)

µ(x) =
2f(−a)
|1 + a|2 =

1 + 2a

|1 + a|2 > 0.

Here, we checked the value of µ, but we can conclude
the positivity of µ by the fact that C = [−a, a] is
compact and f is quadratic around ∂(C ∩X∗) = {1}.
In our analyses, for optimal strongly convex problems
we assume that points generated by algorithm is con-
tained in C. For monotonic algorithms (generating de-
creasing sequence f(ws)s=1,2,...), we may consider the
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case where C is the sublevel set {x ∈ Rd; f(x) ≤ c}
and this assumption holds for sufficiently large c ≥ f∗.
Here, we give the condition of compactness of sublevel
set.

Proposition 1. Let f be C1 class convex function and
X∗ be the optimal set of f . If X∗ is compact, then for
c ≥ f∗, the sublevel set {x ∈ Rd; f(x) ≤ c} is also
compact.

Thus, by the above discussion, the monotonic algo-
rithm deals with many problems as optimal strongly
convex problems and potentially converge fast. We
propose such a method later.

3 Preparation

In this section, we review the recently proposed ac-
celerated gradient method and the stochastic variance
reduction gradient to introduce our new method.

3.1 Accelerated Gradient Descent

We first introduce some notations. In this section, ‖ ·‖
denotes the general norm on Rd. Let d(x) : Rd → R be
a distance generating function (i.e., 1-strongly convex
smooth function with respect to ‖·‖). Accordingly, we
define the Bregman divergence by

Vx(y) = d(y)− (d(x) + (∇d(x), y − x)) , ∀x, ∀y ∈ Rd,

where (, ) is the Euclidean inner product. The acceler-
ated method proposed in [16] uses a gradient step and
mirror descent steps and takes a linear combination of
these points. That is,

(Convex Combination)

xk+1 ← τkzk + (1− τk)yk,

(Gradient Descent)

yk+1 ← xk+1 − η∇f(xk+1),

(Mirror Descent)

zk+1 ← arg min
z∈Rd

{ αk+1(∇f(xk+1), z − zk) + Vzk(z) } .

Then, with appropriate parameters, f(yk) converge to
the optimal value as fast as the Nesterov’s acceler-
ated methods [17, 18] for non-strongly convex prob-
lems. Moreover, in the strongly convex case, we ob-
tain the same fast convergence as Nesterov’s methods
by restarting this entire procedure.

In the rest of the paper, we only consider the Euclidean
norm, i.e., ‖ · ‖ = ‖ · ‖2.

3.2 Stochastic Variance Reduction Gradient

To ensure the convergence of stochastic gradient de-
scent (SGD), the learning rate must decay to zero so

that we can reduce the variance effect of the stochastic
gradient. This slows down the convergence. Variance
reduction techniques [5, 6, 8, 13] such as SVRG have
been proposed to solve this problem. We review SVRG
in a mini-batch setting [12,13]. SVRG is a multi-stage
scheme. During each stage, this method performs m
SGD iterations using the following direction,

vk = ∇fIk(xk)−∇fIk(x̃) +∇f(x̃),

where x̃ is a starting point at stage, k is an iteration in-
dex, Ik = {i1, . . . , ib} is a uniformly randomly chosen

size b subset of {1, 2, . . . , n}, and fIk = 1
b

∑b
j=1 fij .

Note that vk is an unbiased estimator of gradient
∇f(xk): EIk [vk] = ∇f(xk), where EIk denotes the
expectation with respect to Ik. A bound on the vari-
ance of vk is given in the following lemma, which is
proved in the Supplementary Material.

Lemma 1. Suppose Assumption 1 holds, and let x∗ =
argmin
x∈Rd

f(x). Conditioned on xk, we have

EIk‖vk −∇f(xk)‖2

≤ 4L
n− b

b(n− 1)
(f(xk)− f∗ + f(x̃)− f∗) . (2)

Due to this lemma, SVRG with b = 1 achieves a com-
plexity of O((n+ κ) log 1

ǫ ).

4 Algorithms

We now introduce our Accelerated efficient Mini-
batch SVRG (AMSVRG) which incorporates AGD and
SVRG in a mini-batch setting. Our method is a multi-
stage scheme similar to SVRG. During each stage, this
method performs several APG-like [16] iterations com-
bining stochastic gradient descent (SGD) and stochas-
tic mirror descent (SMD) steps with SVRG direction
in a mini-batch setting. Each stage of AMSVRG is
described in Figure 2.

4.1 Convergence analysis of the single stage
of AMSVRG

Before we introduce the multi-stage scheme, we show
the convergence of single-stage version Algorithm 1.
The following lemma is the key to the analysis of our
method and gives us an insight on how to construct
algorithms.

Lemma 2. Consider Algorithm 1 in Figure 2 un-
der Assumption 1. We set δk = n−bk

bk(n−1) . Let x∗ ∈
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Algorithm 1(y0, z0, m, η, (αk+1)k∈Z+
, (bk+1)k∈Z+

, (τk)k∈Z+
)

ṽ ← 1
n

∑n
i=1∇fi(y0)

for k ← 0 to m
xk+1 ← (1− τk)yk + τkzk
Randomly pick subset Ik+1 ⊂ {1, 2, . . . , n} of size bk+1

vk+1 ← ∇fIk+1
(xk+1)−∇fIk+1

(y0) + ṽ
yk+1 ← argminy∈Rd

{
η(vk+1, y − xk+1) +

1
2‖y − xk+1‖2

}
(SGD step)

zk+1 ← argminz∈Rd { αk+1(vk+1, z − zk) + Vzk(z) } (SMD step)
end for
Option I-a: w ← ym+1,

Option I-b: w ← 1
m+1

∑m+1
k=1 xk,

Option II: If f(y1) < f(w), then w ← y1,
Return w

Figure 2: Each stage of AMSVRG

argminx∈Rd f(x). If η = 1
L , then we have,

m∑

k=0

αk+1

(
1

τk
− (1 + 4δk+1)Lαk+1

)
E[f(xk+1)− f∗)]

+Lα2
m+1E[f(ym+1)− f∗]

≤ Vz0(x∗) +
m∑

k=1

(
αk+1

1− τk
τk

− Lα2
k

)
E[f(yk)− f∗]

+

(
α1

1− τ0
τ0

+ 4L

m∑

k=0

α2
k+1δk+1

)
(f(y0)− f∗).

To prove Lemma 2, the following additional lemmas
are required.

Lemma 3. (Stochastic Gradient Descent). Suppose
Assumption 1 holds, and let η = 1

L . Conditioned on
xk, it follows that for k ≥ 1,

EIk [f(yk)] ≤

f(xk)−
1

2L
‖∇f(xk)‖2 +

1

2L
EIk‖vk −∇f(xk)‖2.(3)

Lemma 4. (Stochastic Mirror Descent). Conditioned
on xk, we have that for arbitrary u ∈ Rd,

αk(∇f(xk), zk−1 − u)

≤ Vzk−1
(u)− EIk [Vzk(u)] +

1

2
α2
k‖∇f(xk)‖2

+
1

2
α2
kEIk‖vk −∇f(xk)‖2. (4)

These lemmas are proved in the Supplementary Mate-
rial.

From now on we consider Algorithm 1 with Option I-a
and we set η, αk+1, and τk as follows: For k = 0, 1, . . .
we set

η =
1

L
, αk+1 =

1

4L
(k + 2),

1

τk
= Lαk+1 +

1

2
. (5)

Theorem 1. Consider Algorithm 1 with Option I-a
under Assumption 1. For p ∈

(
0, 1

2

]
, we choose bk+1 ∈

Z+ such that 4Lδk+1αk+1 ≤ p. Then, we have

E[f(w)− f∗] ≤ E[f(ym+1)− f∗]

≤ 16L

(m+ 2)2
Vz0(x∗) +

5

2
p(f(y0)− f∗).

Moreover, if m ≥ 4
√

LVz0
(x∗)

q(f(y0)−f∗)
for q > 0, then it

follows

E[f(w)−f∗] ≤ E[f(ym+1)−f∗] ≤
(
q +

5

2
p

)
(f(y0)−f∗).

Proof. Using Lemma 2 and

τ0 = 1,
1

τk
− (1 + 4δk+1)Lαk+1 ≥ 0,

αk+1
1− τk
τk

− Lα2
k = Lα2

k+1 −
1

2
αk+1 − Lα2

k

= − 1

16L
< 0,

we have

Lα2
m+1E[f(ym+1)− f∗]

≤ Vz0(x∗) + 4L

m∑

k=0

α2
k+1δk+1(f(y0)− f∗).

This proves the theorem because 4L
∑m

k=0 α
2
k+1δk+1 ≤

p
∑m

k=0 αk+1 ≤ 5p
32L (m+ 2)2.

Let bk+1,m ∈ Z+ be the minimum values satisfy-
ing the assumption of Theorem 1 for p = q = ǫ,

i.e., bk+1 =
⌈

n(k+2)
ǫ(n−1)+k+2

⌉
and m =

⌈
4
√

LVz0
(x∗)

ǫ(f(y0)−f∗)

⌉
.

Then, from Theorem 1, we have an upper bound on
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the overall complexity (total number of processed ex-
amples to obtain ǫ-accurate solution in expectation):

O

(
n+

m∑

k=0

bk+1

)
≤ O

(
n+m

nm

ǫn+m

)

= O

(
n+

nL

ǫ2n+
√
ǫL

)
,

where we used the monotonicity of bk+1 with respect
to k for the first inequality. Note that the notation O
also hides Vz0(x∗) and f(y0)− f∗.

4.2 Multi-Stage Scheme

In this subsection, we introduce and analyze
AMSVRG, as described in Figure 3.

If we run Algorithm 1 with Option II in AMSVRG,
it follows that f(w) ≤ f(y1). Since x1 = y0 =
z0, the step to obtain y1 corresponds to the deter-
ministic gradient descent from the starting point at
each stage. This means that AMSVRG (with Option
II) is monotonic that generates decreasing sequence
{f(ws)}s=0,1,.... Note that Option II requires compu-
tational cost for computing function values of O(n)
but the order of overall complexity does not change.

4.2.1 General Convex

We consider the convergence of AMSVRG for gen-
eral convex problems under the following bounded-
ness assumption which has been used in a several pa-
pers to analyze incremental and stochastic methods
(e.g., [19, 20]).

Assumption 3. (Boundedness) There is a compact
subset Ω ⊂ Rd such that the sequence {ws} generated
by AMSVRG is contained in Ω.

Note that, if we change the initialization of z0 ← ws to
z0 ← z : constant, the above method with this modifi-
cation will achieve the same convergence for general
convex problems without the boundedness assump-
tion (c.f. supplementary materials). However, for the
strongly convex case, this modified version is slower
than the above scheme. Therefore, we consider the
version described in Figure 3.

From Theorem 1, we can see that for small p and q (e.g.
p = 1/10, q = 1/4), the expected value of the objective
function is halved at every stage under the assump-
tions of Theorem 1. Hence, running AMSVRG for
O(log(1/ǫ)) outer iterations achieves an ǫ-accurate so-
lution in expectation. Here, we consider the complex-
ity at stage s to halve the expected objective value. Let
bk+1,ms ∈ Z+ be the minimum values satisfying the

assumption of Theorem 1, i.e., bk+1 =
⌈

n(k+2)
p(n−1)+k+2

⌉

and ms =
⌈
4
√

LVws (x∗)
q(f(ws)−f∗)

⌉
. If the initial objective

gap f(ws) − f∗ in stage s is larger than ǫ, then the
complexity at stage is

O

(
n+

ms∑

k=0

bk+1

)
≤ O

(
n+

nm2
s

n+ms

)

= O

(
n+

nL

n(f(ws)− f∗) +
√

(f(ws)− f∗)L

)

≤ O

(
n+

nL

ǫn+
√
ǫL

)
,

where we used the monotonicity of bk+1 with respect to
k for the first inequality. Note that by Assumption 3,
{Vws

(x∗)}s=1,2,... are uniformly bounded and notation
O also hides Vws

(x∗). The above analysis implies the
following theorem.

Theorem 2. Consider AMSVRG under Assumptions
1 and 3. We set η, αk+1, and τk as in (5). Let bk+1 =⌈

n(k+2)
p(n−1)+k+2

⌉
and ms =

⌈
4
√

LVws (x∗)
q(f(ws)−f∗)

⌉
, where p

and q are small values described above. Then, the over-
all complexity to run AMSVRG for O(log(1/ǫ)) outer
iterations or to obtain an ǫ-accurate solution is

O

((
n+

nL

ǫn+
√
ǫL

)
log

(
1

ǫ

))
.

4.2.2 Optimal Strongly Convex

Next, we consider the optimal strongly convex case.
We assume that f is a µ-optimal-strongly convex func-
tion on C ⊂ Rd. In this case, we choose the distance
generating function d(x) = 1

2‖x‖2, so that the Breg-
man divergence becomes Vx(y) = 1

2‖x − y‖2. Let
the parameters be the same as in Theorem 2 with
x∗ = ΠX∗(ws) at stage s. Then, the expected value of
the objective function is halved at every stage. More-
over, we assume that {ws}s=0,1,... ⊂ C. As mentioned
in Section 2, for monotonic methods, we may consider
the case where C is the sublevel set {x ∈ Rd; f(x) ≤ c}
and this assumption holds for sufficiently large level.
Since, by definition of optimal strong convexity, we

have ms =
⌈
4
√

L‖ws−ΠX∗ (ws)‖2

2q(f(ws)−f∗)

⌉
≤
⌈
4
√

κ
q

⌉
, the com-

plexity at each stage is

O

(
n+

ms∑

k=0

bk+1

)
≤ O

(
n+

nκ

n+
√
κ

)
.

Thus, we have the following theorem.

Theorem 3. Consider AMSVRG under Assumptions
1 and 2. Let parameters η, αk+1, τk,ms, and bk+1 be
the same as those in Theorem 2 with x∗ = ΠX∗(ws)
at stage s. If {ws}s=0,1,... ⊂ C, then the overall com-
plexity for obtaining ǫ-accurate solution in expectation
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Algorithm 2(w0, (ms)s∈Z+
, η, (αk+1)k∈Z+

, (bk+1)k∈Z+
, (τk)k∈Z+

)

for s← 0, 1, . . .
y0 ← ws, z0 ← ws

ws+1 ← Algorithm1(y0, z0, ms, η, (αk+1)k∈Z+
, (bk+1)k∈Z+

, (τk)k∈Z+
)

end

Figure 3: Accelerated efficient Mini-batch SVRG

is

O

((
n+

nκ

n+
√
κ

)
log

(
1

ǫ

))
,

and its iteration complexity is

O

(√
κ log

(
1

ǫ

))
.

Table 1 lists the overall complexities of the AGD, SAG,
SVRG, Acc-Prox-SVRG, Acc-SDCA, APCG, SPDC,
and AMSVRG. The notation Õ hides constant and
logarithmic terms. By simple calculations, we see that

nκ

n+
√
κ
=

1

2
H(κ, n

√
κ ),

nL

ǫn+
√
ǫL

=
1

2
H

(
L

ǫ
, n

√
L

ǫ

)
,

where H(·, ·) is the harmonic mean whose order is the
same as min{·, ·}. Thus, as shown in Table 1, the
complexity of AMSVRG is less than or equal to that of
other methods in general convex and optimal strongly
convex.

4.3 Fast Iteration Complexity and its
Benefits

We consider the optimal strongly convex case. It is
well known that for deterministic optimization prob-
lems, Nesterov’s acceleration achieves the best it-
erations complexity, while for stochastic optimiza-
tion problems, complexity reduction by acceleration is
slight due to the variance of stochastic gradient. There
are several observations: (i) acceleration + small mini-
batching may have the almost same convergence rate
as that of SGD as indicated by [21], (ii) acceleration
+ SVRG without mini-batching has the same itera-
tion complexity as SVRG by [12], (iii) Mini-batching
+ SVRG has the almost same iteration complexity
as deterministic gradient descent because SVRG is a
stochastic variant of it. On the other hand, by combin-
ing three techniques: acceleration, mini-batching, and
SVRG, AMSVRG achieves the same iteration com-
plexity as Nesterov’s acceleration, as shown in the pre-
vious subsection. These observations mean that we

may need not only SVRG but also mini-batching to
obtain sufficiently small variance for the acceleration
scheme. This feature of our acceleration scheme leads
to some advanteges: effective parallelization and bet-
ter performance for linear-model on a sparse dataset
without using sparse structure.

For strongly convex problems, AMSVRG is slower
than optimal methods: Acc-SDCA, APCG, and
SPDC. However, the gradient evaluations for the mini-
batch can be parallelized [25–27]. Let’s consider the
case where f is strongly convex and n ≥ √κ. Although
the overall complexity of AMSVRG is the same as that
of SAG and SVRG, AMSVRG has better iteration
complexity Õ(

√
κ) than the others thanks to Nesterov-

like acceleration. This means that mini-batch paral-
lelization scheme of AMSVRG leads to a significant
improvement. Let P be a number of processors and
P ≤ O(

√
κ): maximum mini-batch size. If we ignore

the communication delay, then the overall complex-
ity at each processor is at most Õ(n/P + κ/P ). If
we can use P = O(

√
κ), it is Õ(n/

√
κ +
√
κ). Hence

AMSVRG is very scalable with respect to P and po-
tentially becomes faster than some of optimal meth-
ods. Let’s consider SPDC [14] that is one of the op-
timal method for strongly convex and support mini-
batch setting. The complexity of SPDC at each pro-
cessor is Õ(n/P +

√
κn/P ), when P is equal to mini-

batch size (best choice for SPDC). Thus, if κ/P < n,
AMSVRG may be faster than SPDC.

Next, we discuss the performance of AMSVRG for lin-
ear model that takes a form of fi(x) = l(aTi x) on a
sparse dataset {ai}i=1,...,n. Since ∇fi(x) = l′(aTi x)ai,
some algorithms such as SGD and SVRG can be up-
dated efficiently by using sparsity of ai. It is unclear
whether AMSVRG can be also implemented efficiently,
but our acceleration scheme reduces the number of
dense computations, consequently, AMSVRG has the
same complexity as sparse implementation of SVRG,
without using sparse structure for problems with large
condition number. Let d0 be the maximum number of
non-zero elements of ai. Then, the overall complexity
including d and d0 of AMSVRG is as follows:

Õ (nd0 +m(bmd0 + d)) ≤ Õ

(
nd0 + κ

(
d0 +

d√
κ

))
,
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Table 1: Comparison of overall complexity.

Algorithm General Convex Optimal Strongly Convex Strongly Convex

AGD Õ
(
n
√

L
ǫ

)
Õ (n
√
κ) Õ (n

√
κ)

SAG Õ
(
n+L
ǫ

)
Õ
(
n+L
ǫ

)
Õ (max{n, κ})

SVRG — Õ (n+ κ) Õ (n+ κ)

Acc-SVRG — — Õ (n+min {κ, n
√
κ })

Acc-SDCA, APCG, SPDC — — Õ (n+min {κ, √nκ })

AMSVRG Õ
(
n+min

{
L
ǫ , n

√
L
ǫ

})
Õ (n+min {κ, n

√
κ }) Õ (n+min {κ, n

√
κ })

where we used m ≤ O(
√
κ) and bm ≤ O(m) = O(

√
κ).

Hence, if the condition number is sufficiently large:
d/d0 ≤

√
κ, the overall complexity is

Õ (d0(n+ κ)).

Therefore, AMSVRG efficiently performs on sparse
datasets without an implementation trick.

5 Restart Scheme

The parameters of AMSVRG are essentially η,ms, and
bk+1 (i.e., p) because the appropriate values of both
αk+1 and τk can be expressed by η = 1/L as in (5).
It may be difficult to choose an appropriate ms which
is the restart time for Algorithm 1. So, we propose
heuristics for determining the restart time.

First, we suppose that the number of components n
is sufficiently large such that the complexity of our
method becomes O(n). That is, for appropriate ms,
O(n) is an upper bound on

∑ms

k=0 bk+1 (which is the
complexity term). Therefore, we estimate the restart
time as the minimum index m ∈ Z+ that satisfies∑m

k=0 bk+1 ≥ n. This estimated value is upper bound
on ms (in terms of the order). In this paper, we call
this restart method R1.

Second, we propose an adaptive restart method us-
ing SVRG. In a strongly convex case, we can easily
see that if we restart the AGD for general convex
problems every

√
κ, then the method achieves a linear

convergence similar to that for strongly convex prob-
lems. The drawback of this restart method is that the
restarting time depends on an unknown parameter κ,
so several papers [22–24] have proposed effective adap-
tive restart methods. Moreover, [23] showed that this
technique also performs well for general convex prob-

lems. Inspired by their study, we propose an SVRG-
based adaptive restart method called R2. That is, if

(vk+1, yk+1 − yk) > 0,

then we return yk and start the next stage.

Third, we propose the restart method R3, which is a
combination of the above two ideas. When

∑m
k=0 bk+1

exceeds 10n, we restart Algorithm 1, and when

(vk+1, yk+1 − yk) > 0 ∧
m∑

k=0

bk+1 > n,

we return yk and restart Algorithm 1.

6 Numerical Experiments

In this section, we compare AMSVRG with SVRG and
SAGA. We ran an L2-regularized multi-class logistic
regularization on mnist and covtype and ran an L2-
regularized binary-class logistic regularization on rcv1.
The datasets and their descriptions can be found at the
LIBSVM website1. In these experiments, we vary reg-
ularization parameter λ in {0, 10−7, 10−6, 10−5}. We
ran AMSVRG using some values of η from [10−2, 5×
10] and p from [10−1, 10], and then we chose the best
η and p.

The results are shown in Figure 4. The horizontal axis
is the number of single-component gradient evalua-
tions. Our methods performed well and outperformed
the other methods in some cases. For mnist and cov-
type, AMSVRG R1 and R3 converged quickly, and for
rcv1, AMSVRG R2 worked very well. This tendency
was more remarkable when the regularization param-
eter λ was small.

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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λ mnist covtype rcv1

10−5

10−6

10−7

0

Figure 4: Comparison of algorithms applied to L2-regularized multi-class logistic regularization (left: mnist,
middle: covtype), and L2-regularized binary-class logistic regularization (right: rcv1).

7 Conclusion

We propose method that incorporates accelerated gra-
dient method and the SVRG in the increasing mini-
batch setting. We showed that our method achieves
a fast convergence complexity for general convex and
optimal strongly convex problems.
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