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Abstract

Quasi-Monte Carlo (QMC) methods are be-
ing adopted in statistical applications due to
the increasingly challenging nature of numer-
ical integrals that are now routinely encoun-
tered. For integrands with d-dimensions and
derivatives of order α, an optimal QMC rule
converges at a best-possible rate O(N−α/d).
However, in applications the value of α can
be unknown and/or a rate-optimal QMC rule
can be unavailable. Standard practice is to
employ αL-optimal QMC where the lower
bound αL ≤ α is known, but in general this
does not exploit the full power of QMC. One
solution is to trade-off numerical integration
with functional approximation. This strat-
egy is explored herein and shown to be well-
suited to modern statistical computation. A
challenging application to robotic arm data
demonstrates a substantial variance reduc-
tion in predictions for mechanical torques.

1 Introduction

Consider a Lebesgue-integrable test function f : X →
R defined on a bounded measurable subspace X ⊆ Rd
(d ∈ N) with square integrable derivatives of order α >
0 in each variable. Our focus is numerical computation
of the integral I[f ] :=

∫
X f(x)dx. The Quasi-Monte

Carlo (QMC) approach is based on an approximation

Q[f ;x1:N ] :=
1

N

N∑

n=1

f(xn)

where the (possibly random) design points x1:N =
{x1, . . . ,xN} ⊂ X have low discrepancy; that is, the
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points are ‘well-spaced’ in a precise sense defined be-
low. This contrasts with the Monte Carlo (MC) ap-
proach whereby the design points are sampled inde-
pendently from a uniform distribution over X . MC
integration achieves a root mean square error (RMSE)
convergence rate of O(N−1/2) whereas QMC integra-
tion can in principle achieve a rate O(N−α/d) on spe-
cific geometric sequences {Nn}∞n=1 [24]. It is known
that this rate is best-possible [19] and explicit algo-
rithms to generate design points that attain this rate
are now available for many (but not all) values of α [6].
Challenging integration problems are common in con-
temporary statistics, for example when computing ex-
pectations, marginal probability densities or normalis-
ing constants, and QMC methods are therefore gaining
importance in statistical applications [12, 17, 35].

Contrary to the above theoretical considerations, rate-
optimal QMC is often not employed in practice. This
is mainly due to three reasons; either (R1) the smooth-
ness parameter α is unknown, (R2) there does not cur-
rently exist an explicit QMC rule that is rate-optimal
for functions of smoothness α, or (R3) it is simply
more convenient to employ a basic QMC rule based
on a weaker smoothness assumption αL < α, as imple-
mented in standard software. In each situation there
is a gap between theory and practice that, as we show
in this paper, can be bridged using functional approx-
imation.

Previous work on variance reduction techniques for
QMC includes [1], who considered modified impor-
tance sampling strategies, and [14], who considered
constructing control variates for QMC. Neither ap-
proach improved the asymptotic error rate, though in
some cases the QMC error was reduced by a constant
factor. Interestingly, [14] reports some quite negative
results for control variate strategies in this setting, be-
cause the objective being minimised by QMC is not
equivalent to the MC variance that is minimised by
control variates. [33] demonstrates variance reductions
in QMC are possible using additive approximations,
though again the asymptotics were unchanged.

This paper studies a general approach to variance re-
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duction for QMC rules, building on kernel methods
and recent work in the Monte Carlo setting due to
[22, 31]. The mathematics that underpins our work
comes from the functional approximation literature.
This takes the form of a ‘control functional’ ψ : X → R
that satisfies (i) ψ integrates to zero, (ii) f −ψ is more
amenable to QMC methods than f , in a precise sense.
The general approach that we explore is to replace the
integrand f by f−ψ and target the QMC objective di-
rectly. This can lead to accelerated asymptotics. The
main contribution of this paper is to explore this strat-
egy in the settings (R1-3) above. Theoretical analysis
of convergence rates is provided, along with empirical
results and a challenging application to robotics. We
begin by presenting some background on QMC the-
ory below, before describing the methodology in more
detail.

2 Background

QMC is naturally studied in reproducing kernel
Hilbert spaces (RKHS; [8]). Below we draw connec-
tions with kernel methods, that are themselves natu-
rally studied in RKHS.

Notation. We work in a Hilbert space H, consist-
ing of measurable functions f : X → R. For simplic-
ity of presentation we assume H includes the constant
functions. We follow the mainstream QMC literature
by taking X = [0, 1]d, equipped with the Euclidean

norm ‖x‖ := (
∑d
i=1 x

2
i )

1/2. Denote the scalar prod-
uct and norm on H by 〈·, ·〉H and ‖ · ‖H respectively.
Suppose further that H is a RKHS with kernel K :
[0, 1]d× [0, 1]d → R; that is, K satisfies (i) K(·,x) ∈ H
for all x ∈ [0, 1]d and (ii) f(x) = 〈f,K(·,x)〉H for all
f ∈ H and all x ∈ [0, 1]d. K is assumed to be non-
trivial, i.e. K 6= 0.

Quadrature Error Analysis. The quadrature
methods that we focus on aim to minimise the ‘worst
case’ integration error which, for design points x1:N

and Hilbert space H, is defined to be

eH(x1:N ) := sup
‖f‖H≤1

∣∣Q[f ;x1:N ]− I[f ]
∣∣ (1)

where the supremum is taken over all test functions
f belonging to the unit ball in H. It follows from
linearity that, for any function f ∈ H, the integration
error obeys

∣∣Q[f ;x1:N ]− I[f ]
∣∣ ≤ eH(x1:N )‖f‖H . (2)

The worst case error eH(x1:N ) is the usual target
of QMC innovation, with x1:N chosen to (approxi-
mately, asymptotically) minimise eH(x1:N ) [8]. Note
that Eqn. 1 is also the ‘maximum mean discrepancy’

(MMD), as studied extensively in the kernel methods
literature [4, 30].

Quadrature is naturally studied in RKHS because
there exists a closed-form expression for the worst case
error in terms of the kernel K, which facilitates the
principled selection of design points [8]:

eH(x1:N )2 =

∫ ∫

[0,1]d
K(x,y)dxdy

− 2

N

N∑

n=1

∫

[0,1]d
K(xn,y)dy

+
1

N2

N∑

m,n=1

K(xn,xm) (3)

The mainstream QMC literature supposes H is a
Sobolev space of known order α (defined below). In
this setting, O(N−α/d) is the best-possible rate for the
worst case error when x1:N are chosen deterministi-
cally and O(N−α/d−1/2) is the best-possible RMSE
when x1:N are allowed to be random [19]. We will re-
fer to QMC rules that achieve these optimal rates as
‘α-QMC rules’.

This paper focuses on improving performance in the
situation where a (sub-optimal) αL-QMC rule is used
to integrate a test function of smoothness α > αL. For
reasons (R1-3), this scenario is commonly encountered
in statistical applications. In contrast to QMC [8] (and
kernel methods that aim to minimise the MMD [2]),
the rate constant ‖f‖H is the primary target of our
methodology below.

3 Methodology

Control Functionals for QMC. The approach that
we pursue in this paper aims to construct a Lebesgue-
integrable functional ψ : [0, 1]d → R that satisfies

I[ψ] = 0. (4)

When x has the interpretation of a random variable,
ψ(x) is classically known as a ‘control variate’ [14].
When ψ itself is estimated, we follow [22] and refer to
the entire mapping ψ as a ‘control functional’ (CF). In
the CF approach to estimation, the test function f is
replaced by f − ψ; it is hoped that the latter is more
amenable to numerical integration. Clearly I[f −ψ] =
I[f ]. In this paper we construct a CF ψN based on
a tractable approximation fN to f . (The dependence
on N will be explained below.) It is required that the
integral I[fN ] is available in closed-form. We then set

ψN (x) = fN (x)− I[fN ] (5)

so that ψN satisfies Eqn. 4. For this to make sense
mathematically, it must be the case that fN ∈ H and
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this informs our method of approximation (the con-
stant function with value I[fN ] belongs to H by as-
sumption). Intuitively, a good CF ψN will provide a
close approximation to fluctuations of the test function
f , so that the functional difference f − ψN become
increasingly ‘flat’ and thus more amenable to QMC
methods. More precisely, motivated by Eqn. 2 we aim
to construct a CF such that ‖f −ψN‖H < ‖f‖H . This
connection with functional approximation offers the
possibility to leverage kernel methods for these prob-
lems, see e.g. [27, 31].

Control Functional Error Analysis. Consider par-
titioning x1:N into two sets u1:M and vM+1:N where
1 < M < N and M/N → c ∈ (0, 1) as N → ∞.
The first set u1:M , possibly non-random, will be used
in a preliminary step to construct an approximation
fM (·;u1:M ) to f . Then the second set vM+1:N , possi-
bly random, is used to evaluate the ‘CF estimator’

E[f ;u1:M ,vM+1:N ] := Q[f − ψN (·;u1:M );vM+1:N ]

= Q[f − fM (·;u1:M );vM+1:N ]

+I[fM (·;u1:M )]. (6)

We remark that if the points vn are ran-
dom and marginally distributed as U([0, 1]d) then
E[f ;u1:M ,vM+1:N ] will be an unbiased estimator for
I[f ]. Error analysis for the CF estimator is based on
the following:

Theorem 1. Given f, fM ∈ H, we have

|E[f ;u1:M ,vM+1:N ]− I[f ]|
≤ eH(vM+1:N )‖f − fM (·;u1:M )‖H . (7)

Proof. Since f, fM ∈ H we have that f − fM ∈ H.
The result then follows by applying the fundamental
inequality from Eqn. 2 to the function f − fM and
using linearity of the integral operator I.

Thus the CF methodology produces an estimator
E[f ;u1:M ,vM+1:N ] that has asymptotically zero error
relative to standard QMC estimators, providing that
it is possible to construct an approximation fM to f in
such a way that ‖f − fM (·;u1:M )‖H → 0 as M →∞.
The next sections establish convergence rates for func-
tional approximation using kernel methods.

Sobolev Spaces. To achieve consistent approxima-
tion ‖f − fM‖H → 0 it is necessary to impose regu-
larity conditions on H. Sobolev spaces are a general
setting in which to formulate such regularity assump-
tions; our main reference here is [27]. Firstly suppose
that k ∈ N0, k > d/2 and 1 ≤ p < ∞. For a multi-
index a ∈ Nd0 we write |a| = a1 + · · ·+ ad. Define the

‘p-Sobolev space of order k’ to be

W k,p := {f : [0, 1]d → R | Daf exists and

Daf ∈ Lp([0, 1]d),∀a ∈ Nd0 with |a| ≤ k}.
Here Daf denotes the weak (or ‘distributional’)
derivative of f ; the reader is referred to the above
reference for details. Clearly W k,p is a vector space
over R when addition and (scalar) multiplication are
defined point-wise. For the special case p = 2 we equip
W k,2 with the inner product

〈f, g〉k :=
∑

a∈Nd0 ,|a|≤k
I[DafDag]

and denote this inner-product space Hk :=
(W k,2, 〈·, ·〉k). Defined in this way, Hk is a Hilbert
space of functions whose (weak) derivatives exist up
to order k. Moreover Hk can be made into a RKHS
with an appropriate choice of kernel (see below). Our
results below apply also to Sobolev spaces with non-
integer k, but this construction is more technical and
we refer the reader to [27] for details.

Approximation in Sobolev Spaces. Our assump-
tions are naturally stated using Sobolev spaces: Given
two Hilbert spaces H, H ′, defined on the same ele-
ment set, with norms ‖ · ‖H , ‖ · ‖H′ , we say that H
and H ′ are ‘norm-equivalent’, written H ≡ H ′, when-
ever there exist positive constants c1, c2 such that
c1‖f‖H ≤ ‖f‖H′ ≤ c2‖f‖H for all f ∈ H.

Assumption 1: H ≡ HαL where αL > d/2.

Assumption 2: f ∈ Hα where α ≥ αL.

Assumption 1 is a technical requirement to ensure the
space H (where QMC is performed) admits consistent
functional approximation. Assumption 2 ensures that
the test function f is ‘smooth enough’ for αL-QMC
methods to converge at the αL-rate. This follows from
the fact that Sobolev spaces are nested, so that f ∈
Hα =⇒ f ∈ HαL .

For consistent approximation of f it is necessary to
base our approximation fM in a space H∗ of functions
that are ‘at least as smooth’ as f :

Assumption 3: H∗ ≡ HαU where αU ≥ α.

It follows again from the nested property that fM ∈
HαL and thus the functional difference f − fM exists
in HαL . The Sobolev spaces H∗ can be characterised
as RKHS via an appropriate reproducing kernel K∗,
such as the well-known Matérn kernel.

Finally an approximation fM to f is constructed based
on the points u1:M as follows:

fM (x;u1:M ) :=
M∑

n=1

βnK∗(x,u
n) (8)
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where the weights βn ∈ R are defined as the solution
to the linear system of interpolation equations

fM (un;u1:M ) = f(un), n = 1, . . . ,M. (9)

It is well-known that Eqn. 8 is the unique minimiser
of the H∗-norm under all functions in H∗ that satisfy
the linear system in Eqn. 9 [27]. In practice it may
be necessary to regularise the linear system in order to
facilitate inversion, but we do not go into details here,
see e.g. [27].

We note that I[fM ] will not have a closed-form ex-
pression when the Matérn kernel is employed and for
this technical reason we instead employ tensor prod-
ucts of polynomial kernels (these give rise to Sobolev
spaces of mixed dominating smoothness - full details
are provided at the end of this section).

Theory: Deterministic Case. We begin by con-
sidering the case where the design points vM+1:N are
chosen deterministically. Define the ‘fill distance’

h(u1:M ) := sup
x∈[0,1]d

min
n
‖x− un‖,

the ‘separation radius’

q(u1:M ) :=
1

2
min
j 6=k
‖uj − uk‖

and the ‘mesh ratio’ ρ(u1:M ) := h(u1:M )/q(u1:M ).
The set u1:M is called ‘quasi-uniform’ if ρ(u1:M ) → 1
as M →∞.

Theorem 2. Under Assumptions 1-3 the CF estima-
tor has error bounded by

|E[f ;u1:M ,vM+1:N ]− I[f ]|
≤ CeHαL (vM+1:N )h(u1:M )α−αLρ(u1:M )αU−αL‖f‖Hα

where C > 0 is a constant that depends on α, αL and
αU but not on f , vM+1:N and u1:M .

Proof. From [27] (Theorem 7.8) we have that the ker-
nel estimator in Eqn. 8 is consistent for the non-
parametric regression problem at a rate

‖f − fM (·;u1:M )‖HαL
≤ Ch(u1:M )α−αLρ(u1:M )αU−αL‖f‖Hα

where C depends only on α, αL, αU . Combining this
with Eqn. 7 completes the proof.

For quasi-uniform u1:M , there is no asymptotic
penalty from employing a kernel K∗ that imposes ‘too
much smoothness’ on the approximation fM , with
ρ→ 1. In this case h(u1:M ) = O(M−1/d) and, sinceM
and N are proportional, h(u1:M ) = O(N−1/d). How-
ever the rate constant C will increase when too much

smoothness is assumed so that, as a rule of thumb, we
should try to select αU as close as possible to α. Our
main result is stated below:

Corollary 1. When u1:M is quasi-uniform, CFs ac-
celerate αL-QMC by a factor O(N−(α−αL)/d).

Remark: The improvement due to CFs appears to be
mainly limited to low-dimensional integrals (d small),
but in fact CFs can in principle be extended to high-
dimensional integrals under additional tractability as-
sumptions, as discussed in Sec. 5.

Remark: Optimising the bound in Theorem 2 enables
us to obtain the optimal scaling

M

N
→ c∗ =

α− αL
α

,

see the Supplement for full details.

The overall convergence rate of the CF estimator de-
pends on how the design points vM+1:N are gener-
ated. For this there are many QMC methodologies
available, each leading to different convergence rates
for the worst case error eHαL (vM+1:N ); see [7] for a
recent survey of some of these approaches. Of partic-
ular interest in statistical applications is the case of
random design points which we discuss below.

Theory: Randomised Case. Modern QMC meth-
ods begin with a deterministic set/sequence of design
points (e.g. a Halton sequence or a Sobol sequence),
then apply a random transformation leading to a low
discrepancy set with high probability. Below we con-
sider three types of randomisation; shifting, folding
and scrambling.

Shifting: In ‘random shift’ QMC the design points
vM+1:N are translated by a common uniform random
vector ∆ ∈ [0, 1]d, so that vn 7→ vn + ∆ for each
n = M + 1, . . . , N . For convenience we write this
‘shifted’ set as vM+1:N + ∆. Applying Theorem 2 to
vM+1:N + ∆ and then marginalising over ∆ ∈ [0, 1]d

produces a RMSE bound for the CF estimator:

Corollary 2. Under Assumptions 1-3 the random
shift CF estimator has error bounded by

√
E|E[f ;u1:M ,vM+1:N + ∆]− I[f ]|2

≤ CeshHαL (vM+1:N )h(u1:M )α−αLρ(u1:M )αU−αL‖f‖Hα

where

(eshHαL (vM+1:N ))2 :=

∫

[0,1]d
eHαL (vM+1:N + ∆)2d∆

and C > 0 is a constant that does not depend on f ,
vM+1:N or u1:M .
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For quasi-uniform u1:M , CFs accelerate random shift
αL-QMC by a factor O(N−(α−αL)/d) (compare against
Sec. 5.2 of [7]).

Folding: A shifted and ‘folded’ QMC rule takes the
form

Qb(f ; z1:N + ∆) :=
1

N

N∑

n=1

f(b(zn + ∆))

where b is the ‘baker’s transformation’, given by
bi(t) = 1−|2ti−1|. This transformation reduces error
rates; for example, for f ∈ SH2([0, 1]d) (defined be-
low), folding and shifting a uniform lattice z1:N leads
to a RMSE O(N−2+ε) that is smaller than the RMSE
O(N−1+ε) for a shifted lattice (p. 59 of [7]). The CF
estimator here is

Eb[f ;u1:M ,vM+1:N + ∆]

:= I[fM (·;u1:M )] +Qb[f − fM (·;u1:M );vM+1:N + ∆].

For convenience we denote the shifted and folded de-
sign points by b(vM+1:N+∆). Applying Theorem 2 to
b(vM+1:N+∆) and then marginalising over ∆ ∈ [0, 1]d

produces:

Corollary 3. Under Assumptions 1-3 the shifted and
folded CF estimator has error bounded by

√
E|Eb[f ;u1:M ,vM+1:N + ∆]− I[f ]|2

≤ Cesh,bHαL (vM+1:N )h(u1:M )α−αLρ(u1:M )αU−αL‖f‖Hα

where

(esh,bHαL (vM+1:N ))2 :=

∫

[0,1]d
eHαL (b(vM+1:N + ∆))2d∆

and C > 0 is a constant independent of f , vM+1:N

and u1:M .

Again, for quasi-uniform u1:M , CFs accelerate shifted
and folded αL-QMC by a factor O(N−(α−αL)/d) (com-
pare against Sec. 5.9 of [7]).

Scrambling: An explicit α-QMC rule that applies for
all integer values of α was recently discovered by [6].
For simplicity focussing on d = 1, these random design
points achieve α-rates and, moreover, the RMSE is
controlled by a norm of the form ‖f‖Hα . When α
is known and is an integer, one may achieve optimal
rates and CFs provide no rate improvement. However,
when α /∈ N, CFs can be used to transform these sub-
optimal integrators into optimal integrators.

Choice of Kernel: The QMC+CF methodology has
some flexibility in terms of the choice of kernel K∗
that is used to construct the approximation fM . Our
main requirements here are: (i) K∗ imposes ‘enough

smoothness’ on fM in order to be able to faithfully
approximate f (Assumption 3). Moreover, K∗ should
be tunable to achieve a pre-specified minimum level
of smoothness. Below we make an explicit connection
between K∗ and the order of the associated ‘native’
Sobolev space that will allow us to satisfy this require-
ment. (ii) The functions K∗(·,y) can be integrated
analytically, so that I[fM ] is available in closed form.
This second requirement leads us to consider tensor
products of Sobolev spaces, as described below.

To construct analytically integrable functional approx-
imations we consider kernels that are given by poly-
nomials. Wendland’s compactly supported functions
[34] are defined via the recursion

ϕd,k = Ik[ϕbd/2c+k+1],

the base function ϕ`(r) = (1 − r)`+ with x+ :=
max{0, x}, and the integral operator

I[ϕ](r) =

∫ ∞

r

tϕ(t)dt

(r ≥ 0), so that

ϕd,k(r) =

{
(1− r)`+kpd,k(r), r ∈ [0, 1]
0, r > 1

where ` = bd/2c + k + 1 and pd,k is a polynomial of
degree k (see e.g. p.87 of [9] for explicit formulae).
Then the kernel K∗(x,y) = ϕd,k(‖x − y‖) has native
space Hd/2+k+1/2 (where the restriction d > 3 is in
principle required for the special case k = 0) (see e.g.
p.109 of [9]). With this kernel we can therefore guar-
antee a minimum level of smoothness. By rescaling,
the kernel’s support can be changed from the unit ball
(as above) to balls of smaller radius. This in turn en-
forces sparsity on the system of interpolation equations
that are the basis of the CF estimator and reduces the
computational cost of inverting this linear system.

Wendland’s kernel cannot be integrated analytically in
d ≥ 2 dimensions, violating requirement (ii). However
we can exploit recent work by [29] that shows the d-
dimensional tensor product space Hk([0, 1]) ⊗ · · · ⊗
Hk([0, 1]) is norm-equivalent to SHk = SHk([0, 1]d),
the Sobolev space with dominating mixed smoothness:

SHk := {f : [0, 1]d → R | Daf exists and

Daf ∈ Lp([0, 1]d),∀a ∈ Nd0 with ai ≤ k}.
(The distinction with Hk([0, 1]d) is that the multi-
index a is now constrained component-wise, ai ≤ k,
rather than |a| ≤ k.) In particular SHk([0, 1]d) ⊆
Hk([0, 1]d) so that functions in SHk are at least as
smooth as functions in Hk. We therefore propose to
employ the product kernel

K
(k)
∗ (x,y) =

d∏

i=1

ϕ1,k(|xi − yi|) (10)
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whose native space is SHk+1. The integral
∫

[0,1]d
K

(k)
∗ (x,y)dx

of tensor products of Wendland functions in Eqn. 10
can now be integrated analytically. This approach pro-
vides a convenient mechanism to control the degree of
smoothness that we impose on the approximation fM .

4 Experimental Results

Our methodology provides a variance reduction tech-
nique for QMC that is able to accelerate convergence
rates, yet is also practical. The first numerical study
below is a ‘proof-of-principle’ designed to validate this
specific claim in the empirical setting.

Simulation Study: For objective assessment we ex-
ploited the test package proposed by [11]. This pack-
age defines 6 function families, each of them charac-
terized by some peculiarity, such as oscillation, dis-
continuity or corner peaks, with the property that
their exact integrals are available. The ‘discontinu-
ous’ Genz function provides an example where smooth-
ness assumptions on the test function are violated.
We used the MATLAB implementation of [11] that
is freely available at http://people.sc.fsu.edu/

~jburkardt/m_src/testpack/testpack.html.

In the experiments below, we focus on the two QMC
rules that are most widely used in practice. In the
first experiment, the random QMC point set vM+1:N

was generated by truncating the Halton sequence,
scrambling the digits of the resulting points using the
reverse-radix algorithm [16] and applying a uniform
random shift. This QMC rule achieves the αL = 1 rate
on the subsequence Nn = 2n when the test function
has mixed partial derivatives of first order. To ensure
that these QMC rules were implemented faithfully, we
restricted attention to the case where M = N/2 so
that N −M was always a power of two. The train-
ing points u1:M were taken to be d-dimensional square
lattices in all experiments.

We considered the 6 Genz functions in d = 1, 2, 3, 4
dimensions. The performance of QMC with and with-
out CFs was compared, in each case ensuring that the
total number of evaluations of the integrand f was
equal for all methods. For CFs, the tensor-product
Wendland kernel with k = 1 was employed (i.e. ap-
proximation with functions fM ∈ H2, so αU = 2).
Results are presented in Fig. 1. (For clarity we chose
not present results for MC, since these were inferior to
QMC methods in all cases considered.) For the first 5
Genz functions it holds that f ∈ Hα with α = 2 and
theory (for the random case) guarantees an accelera-
tion of O(N−1/d); this is borne out in experimental

results. In the 6th, discontinuous case the QMC+CF
method does not out-perform QMC (at least in di-
mension d > 1), as the functional approximation fM
is poor due to violation of our continuity assump-
tion. In all cases the performance of QMC+CF ap-
proaches that of QMC as the dimension d increased. In
higher dimensions (d ≥ 5, not shown) the QMC+CF
and QMC estimators demonstrated effectively identi-
cal performance, in line with theory.

The experiments were then repeated with rougher
(k = 0) and smoother (k = 2) regression kernels. Re-
sults in the Supplement (Figs. S3-8) demonstrated a
slight improvement in the performance of QMC+CF
when k = 2, in line with theory, though generally es-
timates were robust to the choice of regression kernel.
To further assess the generality of these conclusions,
further experiments were performed using a different
QMC rule (truncated Sobol sequence with scrambling
due to [18]). Results in the Supplement showed that
the same conclusions can be drawn in each case. Taken
together, these results demonstrate that CFs can ac-
celerate QMC, at least in low-dimensional settings,
and thus complete our ‘proof-of-principle’. MATLAB
code to reproduce these results is provided.

Application to Robot Arm Data: To demonstrate
the benefits of our methodology we consider the prob-
lem of estimating the inverse dynamics of a seven
degrees-of-freedom robot arm. The task, as described
in [25], is to map from a 21-dimensional input space
(7 positions, 7 velocities, 7 accelerations) to the cor-
responding 7 joint torques. Following [25] we present
results below on just one of the mappings, from the 21
input variables to the first of the seven torques. The
dataset consists of 48,933 input-output pairs, of which
44, 484 were used as a training set and the remaining
4,449 were used as a test set. The inputs were linearly
rescaled to have mean zero and unit variance on the
training set. The outputs were centred to have mean
zero on the training set.

We consider a hierarchical model based on 21-
dimensional Gaussian process (GP) regression. De-
note by Yi ∈ R a measured response variable at
state zi ∈ R21, assumed to satisfy Yi = g(zi) +
εi where εi ∼ N(0, σ2) are independent for i =
1, . . . , n and σ > 0 will be assumed known. In or-
der to use training data (yi, zi)ni=1 to make predic-
tions regarding an unseen test point z∗, we place a
GP prior g ∼ GP(0, c(z, z′;θ)) where c(z, z′;θ) =
θ1 exp(− 1

2θ
−2
2 ‖z − z′‖22). Here θ = (θ1, θ2) are hyper-

parameters that control how training samples are
used to predict the response at a new test point.
A fully-Bayesian treatment aims to marginalise over
these hyper-parameters and we assign independent pri-
ors θ1 ∼ Γ(α, β), θ2 ∼ Γ(γ, δ) in the shape/scale

61



Chris. J. Oates, Mark Girolami

Num. Function Evaluations (N)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Oscillatory Test Function (Halton Set, k = 1)

2 3 4 ... 10 20 30 40 ... 100
10

−15

10
−10

10
−5

10
0

Num. Function Evaluations (N)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Product Peak Test Function (Halton Set, k = 1)

2 3 4 ... 10 20 30 40 ... 100
10

−15

10
−10

10
−5

10
0

Num. Function Evaluations (N)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Corner Peak Test Function (Halton Set, k = 1)

2 3 4 ... 10 20 30 40 ... 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Num. Function Evaluations (N)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Gaussian Test Function (Halton Set, k = 1)

2 3 4 ... 10 20 30 40 ... 100
10

−15

10
−10

10
−5

10
0

Num. Function Evaluations (N)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Continuous Test Function (Halton Set, k = 1)

2 3 4 ... 10 20 30 40 ... 100
10

−15

10
−10

10
−5

10
0

Num. Function Evaluations (N)

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Discontinuous Test Function (Halton Set, k = 1)

2 3 4 ... 10 20 30 40 ... 100
10

−15

10
−10

10
−5

10
0

10
5

Figure 1: Simulation study (Genz functions): Each panel represents one test function. Solid lines correspond
to standard QMC, dashed lines correspond to QMC+CF. # represents dimension d = 1, 4 represents d = 2,
� represents d = 3 and ∗ represents d = 4. Experiments were replicated with 10 random seeds and error bars
denote standard error of the replicate mean. QMC points were generated from a shifted and scrambled Halton
sequence. A Wendland regression kernel was used with k = 1.

parametrisation, which we write jointly as π(θ). Here
σ = 0.1, α = β = γ = δ = 2.

To predict the value of the response Y∗ corresponding
to an unseen state vector z∗, our estimator will be the
Bayesian posterior mean

Ŷ∗ := E[Y∗|y] =

∫
E[Y∗|y,θ]π(θ)dθ, (11)

where we implicitly condition on the covariates
z1, . . . ,zn, z∗. Phrasing in terms of our earlier nota-
tion, the test function is

f(x) = E[Y∗|y,Π−1(x)] = C∗,n(Cn + σ2In×n)−1y

where Π is the c.d.f for π, (Cn)i,j = c(zi, zj ;θ) and
(C∗,n)1,j = c(z∗, zj ;θ). Each evaluation of the in-
tegrand f(x) requires O(n3) operations due to the
matrix inversion and this entails a prohibitive level
of computation. A partial solution is provided by a
‘subset of regressors’ approximation

f(x) ≈ C∗,n′(Cn′,nCn,n′ + σ2Cn′)−1Cn′,ny (12)

where n′ < n denotes a subset of the full data; see
Sec. 8.3.1 of [25] for full details. However even Eqn.
12 still represents a substantial computational burden
in general. To facilitate the illustration below, which
investigates the sampling distribution of estimators,

we took a random subset of n = 1, 000 training points
and a subset of regressors approximation with n′ =
100. The total computational time needed to obtain
these results was 268 core-hours.

For each test point z∗ the sampling standard deviation
of Ŷ∗ was estimated from 10 independent realisations
of the QMC procedures. For CF we used a randomly-
shifted, scrambled Halton sequence (αL = 1) and
Wendland kernels with k = 1 (αU = 2), so that the-
ory predicts an acceleration factor of O(N−1/2). The
estimator standard deviations were estimated for all
4,449 test points (with N = 28) and the full results
are shown in Fig. 2. Note that each test point z∗ cor-
responds to a different test function f and thus these
results are quite objective, encompassing thousands of
different integration problems. For the vast major-
ity of integration problems, CF accelerated the stan-
dard QMC estimator. Here the computational time
to construct a functional approximation (inverting a
16 × 16 matrix) was negligible (3%) in comparison
to the cost of evaluating the function f once. The
total additional computational time associated with
the QMC+CF methodology was 2% greater than for
QMC, which is easily justified by the substantial vari-
ance reductions (∼ 103%) that are realised in this ap-
plication. Supplementary results (Fig. S9) compare
QMC+CF to MC+CF (standard MC sampling).
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Figure 2: Application to robot arm data. Left: Posterior predictive means were computed for the mechanical
torque experienced by one of the seven joints of the arm, for each of 4,449 joint configurations. Schematic
reproduced from [32]. Centre: Model hyper-parameters were integrated out; for this task we compared standard
QMC with the proposed QMC+CF approach (both implementations provided unbiased estimators). Right:
Examining the estimator sampling standard deviations, we see that, for all but a handful of the configurations,
QMC+CF was more accurate than QMC.

5 Discussion

QMC methods are becoming increasingly relevant in
modern statistics applications [12, 35] and it is surely
a priority to target the rate constants governing the
practical performance of these algorithms. CFs pro-
vide one route to achieve this goal, providing substan-
tial variance reductions in many of the examples we
considered. Indeed, CFs allow us to use a sub-optimal
QMC rule (e.g. as built into existing software pack-
ages) and yet, with minimal additional coding, obtain
a QMC+CF algorithm that attains optimal conver-
gence rates. The focus on unknown smoothness α dis-
tinguishes our work from previous literature on the
connection between integration and functional approx-
imation, e.g. [3, 13].

Functional approximation, and hence our QMC+CF
methodology, has a computational cost associated
with solution of a linear system. Whilst negligible in
our experiments, this cost could be reduced if neces-
sary using standard approximations and/or compactly
supported kernels. On the other hand, we note that
QMC is often used when f is expensive to evaluate
and in such situations it is likely that evaluation of
the integrand, rather than solution of a linear system,
will be the main computational bottleneck.

Our focus was on Sobolev spaces, but it is known that
a faster rate O(N−α+ε) is possible in the subspace
SHα([0, 1]d), for any ε > 0, and explicit point sets
are available (for integer α) [6]. An immediate exten-
sion is to establish optimal rates for CFs in this class
of functions. In a related direction, one can in princi-

ple obtain dimension-independent rates by imposing a
(strong) assumption of polynomial tractability on the
RKHS. This is achieved by generalising to weighted
Sobolev spaces, such that the integrand f ‘depends
only weakly on most of the components of x’. Further
details are provided in [7, 20] and form part of our
ongoing research.

The methods that we describe are immediately appli-
cable in a range of applications including marginalisa-
tion of hyper-parameters in classification [10], proba-
bilistic inference for differential equations [28, 5], com-
putation of model evidence [21] and approximation of
the partition function in social network models [26].
Finally we note that CFs generalise to other integra-
tion methods including Bayesian Quadrature [23, 4]
and related kernel-based quadrature rules [2], in which
the worst case error is also controlled by an RKHS
norm ‖f‖H ; this will be the focus of our ongoing re-
search.
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