
Bayesian Nonparametric Kernel-Learning

Junier B. Oliva∗ Avinava Dubey∗ Andrew G. Wilson Barnabás Póczos
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Abstract

Kernel methods are ubiquitous tools in ma-
chine learning. However, there is often little
reason for the common practice of selecting a
kernel a priori. Even if a universal approxi-
mating kernel is selected, the quality of the fi-
nite sample estimator may be greatly affected
by the choice of kernel. Furthermore, when
directly applying kernel methods, one typi-
cally needs to compute a N×N Gram matrix
of pairwise kernel evaluations to work with a
dataset of N instances. The computation of
this Gram matrix precludes the direct appli-
cation of kernel methods on large datasets,
and makes kernel learning especially difficult.

In this paper we introduce Bayesian non-
parmetric kernel-learning (BaNK), a generic,
data-driven framework for scalable learning
of kernels. BaNK places a nonparametric
prior on the spectral distribution of random
frequencies allowing it to both learn ker-
nels and scale to large datasets. We show
that this framework can be used for large
scale regression and classification tasks. Fur-
thermore, we show that BaNK outperforms
several other scalable approaches for kernel
learning on a variety of real world datasets.

1 Introduction

Kernel methods such as support vector machines
(SVMs), kernel-ridge regression, kernel-PCA, and

∗ denotes equal contribution
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Gaussian processes (GPs) have become the corner-
stone of many machine learning approaches. However,
the choice of kernel, which profoundly affects perfor-
mance, has until recently received little attention. In
fact, finite sample estimates will be affected by the
kernel choice notwithstanding the use of an universal
approximating kernel. Indeed, the a priori choice of a
fixed kernel in kernel methods is typically ad-hoc and
not data-driven. Even when learning kernel hyper-
parameters, one is typically limited to an arbitrarily
chosen and restrictive family of kernel functions, ex-
ploring only a very small subset of reasonable possibil-
ities. Given that the choice of kernel is an important
free parameter in kernel methods, and generally there
are few a priori reasons for kernel selections, a prin-
cipled and data-driven method for learning kernels is
extremely useful.

Furthermore, kernel methods often do not scale to
datasets with a large number of instances due to the
need to compute and store an N × N Gram matrix,
K, for N training points. Moreover, kernel methods,
such as GPs, will often require manipulations of K
like solving linear systems and computing log determi-
nants, leading to a O(N3) time complexity. Consider-
ing that modern datasets are only increasing in size,
and complicated machine learning tasks require large
datasets, it is vital to mitigate the high computational
cost of kernel methods.

In order to provide a method that scales to large
datasets and adaptively learns the kernel to use in a
data-driven fashion, this paper presents the Bayesian
nonparametric kernel-learning (BaNK) framework.
BaNK is a novel approach that will use random fea-
tures to both provide a scalable solution and learn ker-
nels. This approach scales through random features
and places a Bayesian nonparametric distribution over
kernels, with support for any stationary kernels.

Random features have been recently shown to be
an effective way to scale kernel methods to large
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Figure 1: (a) Traditional random feature approach
where the distribution D of random features W is held
fixed. (b) BaNK framework where D is random.

datasets. Roughly speaking, random feature tech-
niques like random kitchen sinks (RKS) [Rahimi and
Recht, 2007] work as follows. Given a shift invari-
ant kernel K(x, x′) = k(x − x′), one constructs an
approximate primal space to estimate kernel evalu-
ations K(x, x′) as the dot product of finite vectors
ϕ(x)Tϕ(x′). The vectors ϕ are constructed with ran-
dom frequencies drawn from a distribution D that is
defined by K. Similarly, a distribution D from which
random frequencies are drawn from defines a kernel K
that the random frequencies approximate. It is this
last observation that is key for the BaNK framework.
BaNK will allow the distribution D to vary with the
given data, effectively learning the kernel. In partic-
ular, BaNK shall vary D with a graphical model ap-
proach where we treat D as a latent parameter and
place a prior on it (Figure 1). The prior on D, along
with the data generation model, will allow one to sam-
ple from a posterior over D in order to learn the cor-
responding kernel. We model D as a mixture of
Gaussians with a Dirichlet process prior, which allows
BaNK to learn a kernel from a rich, broad class. Fur-
thermore, with the use of random features, we are able
to efficiently sample the model parameters and work
over larger datasets. Moreover, by using Metropolis-
Hastings we sample from a proper posterior, thus the
kernels we learn are interpretable since the random fea-
tures are asymptotically guaranteed to come from the
underlying posterior distribution unlike greedy non-
convex optimization methods.

Outline The rest of this paper is structured as follows.
First we review the use of random features for kernel
approximation and show how such an approach can be
used for flexible and efficient kernel learning. Second,
we detail our graphical model framework both for su-
pervised regression and classification tasks. Third, we
expound on our inference method for sampling from
the model posterior. Forth, we illustrate the use and
performance of BaNK for both regression and classi-
fication on several datasets. Lastly, we cover related
works and give concluding remarks.

2 Model

2.1 Random Features for Kernel Estimation

Below we briefly review the method of random Fourier
features for the approximation of kernels [Rahimi and

Recht, 2007]. The details of the method will help mo-
tivate and explain our BaNK model. Henceforth, we
will only consider continuous shift-invariant kernels de-
fined over Rd: K(x, y) = k(x− y) where x, y ∈ Rd and
k is a positive definite function. The use of random
Fourier features for kernel approximation is a result
of Monte Carlo integration using Bochner’s theorem
[Rudin, 1990]. Bochner’s theorem states that a contin-
uous shift-invariant kernel K(x, y) = k(x−y) is a pos-
itive definite function if and only if k(t) is the Fourier
transform of a non-negative measure ρ(ω). Note fur-
ther, that if k(0) = 1, then ρ(ω) will be a normalized
density. That is, if we define ζω(x) ≡ exp(iωTx), then

k(x− y) =

∫

Rd
ρ(ω) exp

(
iωT (x− y)

)
dω

= Eω∼ρ[ζω(x)ζω(y)∗]. (1)

Hence, using Monte Carlo integration, we can approx-

imate K(x, y) = k(x− y) using ωj
iid∼ ρ:

k(x− y) ≈ 1

M

M∑

j=1

ζωj (x)ζωj (y)∗. (2)

In particular, if our kernel k is real-valued, then we
can discard the imaginary part of (2):

k(x− y) ≈ ϕ(x)Tϕ(y), ϕ(x) ≡ (3)

1√
M

[cos(ωT1 x), . . . , cos(ωTMx), sin(ωT1 x), . . . , sin(ωTMx)]T .

The great advantage of such an approximation is that
we may now estimate a function in the RKHS as
a linear operator in the random features: f(x) =∑m
i=1 αiK(xi, x) ≈ ∑m

i=1 αiϕ(xi)
Tϕ(x) = ψTϕ(x),

where ψ ≡∑m
i=1 αiϕ(xi). Thus we may work directly

in a primal space of ϕ(x) and avoid computing large
Gram matrices. To recap, using the approximation of
kernels with random features works as follows: choose
a kernel defined by k (with k(0) = 1), take its Fourier
transform, p(ω), which will be a pdf over Rd; draw M
i.i.d. samples from ρ(ω), {ωj}Mj=1; estimate the kernel

with K(x, y) ≈ ϕ(x)Tϕ(y) as in (3).

However, Bochner’s theorem also allows one to work
in the other direction. That is, we may start with a
distribution D with pdf ρ(ω) and take the character-
istic function (the inverse Fourier transformation) to
define a shift-invariant kernel k. For example, suppose
that ρ(ω) = N (ω|µ,Σ), where N (ω|µ,Σ) is the pdf
of N (µ,Σ). Taking its characteristic function we see
that k(t) = exp

(
iµT t− 1

2 t
TΣt

)
would be the corre-

sponding shift-invariant kernel. From the kernel learn-
ing perspective, Bochner’s theorem yields an object to
manipulate for the learning of one’s kernel: ρ(ω) the
distribution of random features.

We consider distributions that are mixtures of Gaus-
sians:
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ρ(ω) =

L∑

`=1

π`N (ω|µ`,Σ`)→

k(t) =

L∑

`=1

π` exp
(

iµT` t− 1
2
tTΣ`t

)
. (4)

This makes for very general kernels; for a discussion
on general properties of these kernels for finite L please
see [Wilson and Adams, 2013]. In fact, i) noting that
Gaussian mixture models are universal approximators
of densities and may hence approximate any spectral
distribution, and ii) using Plancherel’s Theorem to re-
late spectral accuracies to the original domain [Silver-
man, 1986, Yang et al., 2015] it follows that:

Proposition 2.1. The expression of ρ(ω) in (4) can
approximate any shift invariant kernel.

For our applications we only need real-valued kernels,
hence we use the real part of (4):

K(x, y) =
L∑

`=1

π` exp
(
− 1

2 (x− y)TΣ`(x− y)
)

cos
(
µT` (x− y)

)
(5)

≈ϕ(x)Tϕ(y), (6)

where ϕ(x) is as in (3). An application of the random
feature approximation bounds found in [Rahimi and
Recht, 2007, Le et al., 2013, Sutherland and Schneider,
2015] yields that:

Proposition 2.2. For compact X ⊂ Rd with finite
diameter, we have that

Pr

[
sup
x,y∈X

|K(x, y)− ϕ(x)Tϕ(y)| ≥ ε
]

= O

(
1

ε2
exp

( −Mε2

4(d+ 2)

))
.

Using the above, it may be seen that one can effectively
approximate shift-invariant kernels using random fea-
tures drawn from Gaussian mixtures. However, in or-
der to learn the kernel, one still needs a mechanism
to determine the Gaussian mixture to use. We take
a graphical model approach to determine the mixture
for ρ(ω) in a principled, data-driven fashion.

2.2 Graphical Model

As described above, one may vary and tune kernels
with the choice of density over random features, ρ(ω).
Thus, in our model, we take this distribution itself to
be a random latent parameter, in effect placing a prior
over all stationary kernels, resulting in a strictly more
general method than the traditional approach of using
a fixed RBF kernel.

Z j

π

α

Wj

Σk µk

ν0 Ψ0 µ0 κ0

ϕi Yi

β

Xi

µβ σ

n1

n2 n3

n4

M

∞

N

Figure 2: Plate diagram for the graphical model for
BaNK learning framework.

Roughly speaking, the BaNK model will consist of
three major parts: one, a prior for stochastically gen-
erating the random feature distribution ρ(ω); two, a
prior for the generation of the parameters of a linear
model in the primal space of random features; three,
a generative data model with noise to generate labels
given input covariates and the rest of the parameters.
First, the spectral distribution ρ(ω) is generated. As
previously mentioned, a robust and flexible choice of
ρ(ω) is a Gaussian mixture model; Since the number
of modes of ρ(ω) is not a priori known, we will assume
it to be infinite (ρ(ω) =

∑∞
k=1 πkN (ω|µk,Σk) where∑

k πk = 1 and πk > 0), but given a finite dataset the
model will realize only a finite number of Gaussians in
the mixture. We use a Dirichlet process (DP) prior on
the components of the Gaussian mixture (π).

The Dirichlet process is a distribution over discrete
probability measures (i.e., atoms), G =

∑∞
k=1 πkδπk ,

with countably infinite support, where the finite-
dimensional marginals are distributed according to a
finite Dirichlet distribution [Ferguson, 1973]. We sam-
ple the mixture weights from a stick breaking prior, i.e.
π ∼ GEM (α) where GEM is the stick breaking prior
[Sethuraman, 1994]. We also put a Normal-Inverse-
Wishart prior on the mean µk and variance Σk of each
of the Gaussian components.

Secondly, model parameters are generated. In Section
2.1 we discussed how functions in a kernel’s RKHS can
be approximated using a linear mapping in the random
features. Thus, we consider models that operate lin-
early in the random features using a vector β ∈ R2M .
As is standard in Bayesian regression and classifica-
tion models [Bishop and Tipping, 2003], we generate
β from a Normal prior, β ∼ N (µβ , σI).

Lastly, our observations are generated given a dataset
X := (x1, . . . , xN )T where each xi ∈ Rd. For example
in regression tasks we have:

y = g(x) + ε ε ∼ N (0, σεI), (7)

where g is βTϕ(x) and ϕ(x) is calculated using (3).
Thus y ∼ N (βTϕ(x), σε).
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The complete generative model is given below and the
corresponding plate diagram is shown in Figure 2.

1. Draw the mixture weights π over components of
the kernel: π ∼ GEM (α).

2. Draw the mixture components from Normal-
Inverse-Wishart distribution. I.e. draw Σk ∼
W−1(Ψ0, ν0), and µk ∼ N (µ0,

1
κ0

Σk) for k =
1, . . .∞.

3. For each random frequency index j = 1, . . . ,M

(a) Draw the component from which the fre-
quency vector is drawn. Zj ∼ Mult(π).

(b) Draw the corresponding random frequency
vector Wj ∼ N (ω|µZj ,ΣZj ).

4. Draw the weight vector, β ∼ N (µβ , σI).

5. For each data point index i = 1, . . . , N

(a) Define ϕ(Xi) as in (3).

(b) Draw the observation, e.g. for regression:
Yi ∼ N (ϕ(Xi)

Tβ, σεI).

We note that the only change when going from regres-
sion to classification is in the step 5(b) of the genera-
tive procedure. This time we draw Yi from a sigmoid.

5 For each data point index i = 1, . . . , N

(b) Draw the output binary label Yi ∼
σ(ϕ(Xi)

Tβ), where σ(x) = 1
1+exp(−x) .

3 Inference

We propose a MCMC based solution for inferring the
parameters of the mixture of Gaussian distribution
that defines ρ(ω). This includes finding the compo-
nent assignment vector Z and the mean and covari-
ance µk and Σk for each component. We will also
sample the random frequencies W while marginalizing
other parameters including π and β whenever possi-
ble. We will first describe the sampling equations for
Z, µk, Σk, which remain the same for both regression
and classification. Afterwards we describe inference
for W which depends on the specific application.

We want to sample from p(Z, µ,Σ,W |X,Y, rest),
where rest are all the hyper-parameter of our model
while other parameters including β and π have been
integrated out. We use Gibbs sampling and sample
each variable at a time given all other variables.

3.1 Sampling Zj

Recall that Zj indicates which component the ran-
dom frequency Wj is drawn from. We use the Chinese
restaurant process analogy to integrate out π, the com-
ponent priors. Let mk ≡

∑
l δ(Zl = k). The sampling

equation for Zj can be derived from [Neal, 1998] and
is shown below

P (Zj = k|µ,Σ,W,X, Y, rest) = (8)
{

m
−j
k

M−1+α
N (ωj |µk,Σk) m−jk > 0

α
M−1+α

∫
µ,Σ
N (ωj |µ,Σ)NIW (µ,Σ)dµdΣ m−jk = 0

where m−jk =
∑
l:l 6=j δ(Zl = k), Wj = ωj , m

−j
k = 0

corresponds to unseen mixture component and NIW
is the Normal-Inverse-Wishart prior on mean and vari-
ance.

3.2 Sampling µk and Σk

Given the component assignment Z and the random
frequencies W , the posterior distribution of the co-
variance of each Gaussian component in the mixture
is Inverse-Wishart, ie Σk ∼ W−1(Ψk, νk) where Ψk =

Ψ0 +
∑M
j:Zj=k

(Wj −W
k
)(Wj −W

k
)T + κ0mk

κ0+mk
(W

k −
µ0)(W

k − µ0)T , where W
k

= 1
mk

∑
j:Zj=k

Wj and
νk = ν0 + mk. Similarly, the posterior distribu-
tion of µk given, Σk, Z and W is a normal; i.e.

µk ∼ N (µk,
1
κk

Σk), where µk = κ0µ0+mkW
k

κ0+mk
and

κk = κ0 +mk. See [Gelman et al., 2003] for details.

3.3 Sampling W

We derive a Metropolis-Hasting (MH) sampler for
sampling W . The posterior distribution of the random
frequencies W given the assignment Z, the parameters
of the component µ and Σ, and the data, X and Y is
proportional to

P (W |Z, µ,Σ, Y,X, rest) ∝ P (W |Z, µ,Σ)P (Y |X,W, rest).
(9)

The first term in the LHS is a normal distribution
P (W |Z, µ,Σ) =

∏
j N (Wj |µZj ,ΣZj ). Since it is diffi-

cult to sample directly from the posterior, we use MH,
where the first factor of the RHS of (9) is used as a pro-
posal distribution; i.e. Q(W ) = P (W |Z, µ,Σ). Now,
the acceptance ratio for a newly proposed W ∗ is given
by

r = min

{
1,
P (Y |X,W ∗, rest)

P (Y |X,W, rest)

}
. (10)

Here the second term on RHS of (10) is a ratio of model
evidences and is calculated differently for regression
and classification.

3.3.1 Regression

For regression we make use for conjugacy between
prior of β, σε and the likelihood to get a closed form
solution for P (Y |X,W, rest). In this case we sample σε
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from Inverse−Gamma(a0, b0). The model evidence is
then:

P (Y |X,W, rest) =

∫

β,σε

P (Y |W,X, β, σε)P (β)P (σε)dβdσε

∝ Γ(an)

Γ(a0)

ba00

bann

√
|Λ0|
|Λn|

, (11)

where Λ0 = 1
σ2 I, Φ(X) = (ϕ(X1)T . . . ϕ(XN )T )T ,

Λn = Φ(X)TΦ(X) + Λ0, µn = Λ−1n (Λ0µβ + Φ(X)TY ),
an = a0+n

2 and bn = b0+ 1
2 (Y TY+µT0 Λ0µ0−µTnΛnµn).

For more details refer to [Minka, 1999].

It is worth noting that one may efficiently compute
ratio’s of model evidences if proposing a single Wj at
a time. That is, for each j ∈ {1, . . . ,M} we propose
W ∗j ∼ N (Wj |µZj ,ΣZj ) and calculate an acceptance
ratio of

rj = min

{
1,
P (Y |X,W ∗j ,W−j , rest)

P (Y |X,Wj ,W−j , rest)

}
(12)

where W−j = {W`} 6̀=j . This can be done efficiently
because computing P (Y |X,W ∗j ,W−j , rest) only re-

quires low-rank updates on Φ(X)TΦ(X), allowing for
fast Cholesky updates.

3.3.2 Classification

The aforementioned inference algorithm requires one
to analytically obtain the model evidence of the data
in terms of the model’s random frequencies (eq: 10,
12). However, a lack of conjugacy may make it in-
tractable to marginalize other parameters to obtain
the model evidence. For instance, the Gaussian prior
on β is not conjugate to a sigmoid. As a result it is
difficult to directly compute the model evidence for
a logistic regression model ie P (Y |X,W, rest) where
β has been integrated out. Thus, for such situations
where marginalization is intractable we must take a
different approach to computing acceptance ratios for
accepting random frequencies.

An approach one may take is to use a Laplace approx-
imation to estimate the evidence as

log(p(Y |X,W, rest)) ≈ log(p(Y |X,W, βMAP, rest))

+ log(p(βMAP)) +
N

2
log(2π)− 1

2
log(|A|) (13)

where βMAP = arg min
β

log(P (Y |X,W, β, rest)P (β))

and A = −∇2 log(P (Y |X,W, β, rest)P (β))|β=βMAP .

However, there are a few drawbacks to using a Laplace
approximation in this manner. First, due to approxi-
mation, one is no longer sampling from the true pos-
terior. Second, calculating βMAP when a closed form
solution is not available (as with logistic regression)
requires solving a costly 2M dimensional optimization
problem when computing acceptance ratios.

In order to address these drawbacks whilst still mix-
ing well we jointly sample the jth random frequency
Wj and the weight vector βcos

j and βsin
j correspond-

ing to features cos(WT
j x) and sin(WT

j x) respectively.
Specifically we sample from the joint distribution Wj

and β•j = {βcos, βsin} given by:

P (Wj , β
•
j |Z, µ,Σ, Y,X, rest) ∝ (14)

P (Wj |Z, µ,Σ)P (β•j |rest)P (Y |X,Wj , β
•
j ).

However, samples from (14) are not readily available,
so we use Metropolis Hastings with the proposal dis-
tribution being

Q = P (Wj |Zj , µ,Σ)Lap(β•j |X,Y,Wj , rest)

where Lap(β•j |X,Y,Wj , rest) is the Laplace approxi-
mation of the posterior of β•j , which requires only a
2-dimensional optimization:

Lap(β•j |X,Y,Wj , rest) ≈ P (β•j |rest)P (Y |X,Wj , β
•
j ). (15)

Hence, acceptance ratio for jointly sampling a new
{W ∗j , β•∗j } can be calculated as

min

{
1,
P (Y |X,W ∗j , β•∗j , rest)P (β•∗j )Lap(β•j |X,Y,Wj)

P (Y |X,Wj , β•j , rest)P (β•j )Lap(β•∗j |X,Y,W ∗j )

}
.

3.4 Runtime Complexity

We expound on the runtime complexity per iteration
for the inference algorithms detailed above. Suppose
that the L is the number of components considered, d
is the data dimension, M is the number of frequencies
and N is the number of data points. The runtime per
iteration for sampling component parameters for both
regression and classification is as follows: 1) sampling
component parameters µ`‘s and Σ`‘s (and maintaining
stats): O(Ld3); 2) sampling component assignments
Zj : O(MLd2).

For regression, sampling the random frequencies W us-
ing low rank update takes O(M(d2+dN+MN+M2)).
Thus, the total runtime per iteration is O(M2d2 +
M2N) = O(M2N) for large datasets where N �M >
d, and M ≥ L.

For classification, sampling Wj ’s is O (MN(d+ ε−2));
where the ε−2 term arises from performing the 2-
dimensional optimization required in (15) to ε preci-
sion [Cartis et al., 2010]. Treating ε as a constant, we
have a total runtime of O(MNd) for inference.

Hence, we see that inference is linear in N in either
case, and so our method allows one to perform kernel
learning in large datasets.

4 Experiments

We illustrate the use and performance of BaNK for
both regression and classification on synthetic and
real-world datasets below.
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4.1 Synthetic Data

We give a simple 1-d kernel learning illustration
with BaNK using synthetic data. We consider the

shift-invariant kernel k(t) = exp
(
− 1

2(22) t
2
)

( 1
2 +

1
2 cos( 3

4πt)); that is, the kernel whose random
frequency distribution is ρ(ω) = 1

2N (ω|0, 1
22 ) +

1
2N (ω| 34π, 1

22 ) (see Figure 3). We look to learn the
underlying kernel using 250 frequencies. We gener-
ated N = 1000 instances D = {Xi, Yi)}Ni=1 where

Xi
iid∼ N (0, 42), Yi ∼ N (ϕρ(Xi)

Tβ, 1), with ϕρ being
the random features from the kernel’s true spectral

distribution ωj
iid∼ ρ and β ∼ N (0, I). As explained

above, using BaNK one may estimate ρ by drawing
from the posterior. We plot one such draw in Figure
3(b). One can see that BaNK approximates the kernel
rather well even though the underlying spectral dis-
tribution is multi-model, and the kernel is not easily
decernable to the human eye based on the data plot
(Figure 3(a)).

−10 0 10
−30

−20

−10

0

10

X

Y

(a) Synthetic data

−5 0 5

0

0.5

1

 

 
BaNK

Distro

True

k

t

(b) Kernel Estimate

Figure 3: (a) Synthetic data used. (b) True k in
dashed red, k estimated with true spectral distribu-
tion ρ in cyan, and BaNK estimate in blue.

4.2 Regression

Below we run experiments with various real-world
datasets found in the UCI machine learning reposi-
tory (UCI MLR)1. We compare BaNK to a straight-
forward random feature approach with a fixed kernel
as well as other competitive random feature based ker-
nel learning methods. In particular we compare to the
following methods:

RKS For this method we take input covariates to be
random features ϕ(xi) as in (3). Here we take the

random frequencies ωj
iid∼ N (0, σ−2I). This corre-

sponds to approximating the RBF kernel: K(xi, xl) =
exp

(
− 1

2σ2 ‖xi − xl‖2
)
. Using these random features,

we regress responses with ridge regression.

MKL One of the most widely used approaches to
kernel-learning is multiple kernel learning (MKL)
[Bach et al., 2004, Lanckriet et al., 2004]. Here, one
attempts to learn a kernel using a non-negative linear
combination of a fixed bank of kernels. That is, MKL
attempts to learn a kernel K:

K(xi, xl) =

M∑

m=1

αmKm(xi, xl), where αm ≥ 0, (16)

1https://archive.ics.uci.edu/ml/index.html

and K1, . . . ,KM are predefined kernels. The kernel
weights αm would then be optimized according to one’s
loss. Note that (16) still requires the computation of a
N×N Gram matrix, in fact, it requires M such Gram
matrices. However, we extend MKL to use random
features and scale to larger datasets. If Km(xi, xl) ≈
ϕm(xi)

Tϕm(xl), then

K(xi, xl) ≈
M∑

m=1

αmϕm(xi)
Tϕm(xl) = ϕ̄(xi)

T ϕ̄(xl), (17)

where ϕ̄(xi) = [
√
α1ϕ1(xi)

T , . . . ,
√
αMϕM (xi)

T ]T .
Hence, it is possible to work directly over input co-
variates of ϕ̃(xi) = [ϕ1(xi)

T , . . . , ϕM (xi)
T ]T , the con-

catenation of the random features for each kernel
K1, . . . ,KM . We take our bank of kernels to be
Laplace, RBF, and Cauchy kernels at various scalings.
As with RKS, we regress responses through ridge re-
gression.

AlaC Very recently, independent work by Yang et al.
[2015] has considered an optimization approach, called
A la Carte, to learning a mixture of kernels. Here, an
unconstrained, unpenalized, and non-convex GP like-
lihood problem is posed for regression and optimized
over the parameters of a mixture model for random
frequencies2.

We perform 5-fold cross-validation (picking parame-
ters on validation sets and reporting back the error on
test sets). For AlaC we cross-validate the total num-
ber of mixture components and frequencies per compo-
nents for datasets with fewer than 100K instances; for
larger datasets we use the suggested hyper-parameters
in [Yang et al., 2015]. The total number of random fea-
tures was chosen to be 768 for RKS, MKL, and BaNK
methods. For better interpretability, we standardized
the output responses. In Table 1 we report the mean
squared error (MSE) ± standard errors. One may see
that BaNK performs better or as well as other meth-
ods on nearly all the datasets. Furthermore, it seems
like BaNK is better able to leverage larger datasets.
Lastly, we note that BaNK’s sampling based approach
with priors on mixture components seems more robust
to local minima and over-fitting and has the ability
to draw more frequencies from dominant components,
which explains better performance w.r.t. Alac (e.g.
for tom’s dataset, Table 1).

4.3 Classification

As previously mentioned, we may use the BaNK
framework to perform kernel learning in classification
tasks. Below we illustrate the use of BaNK for classifi-
cation and kernel learning on real-world datasets from

2Optimization was done using code provided by authors
of [Yang et al., 2015].
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Dataset N d RKS MKL AlaC BaNK
concrete 1030 8 0.1313± 0.0189 0.0942± 0.0100 0.0682± 0.00920.0682± 0.00920.0682± 0.0092* 0.1195± 0.0108
noise 1503 5 0.6974± 0.0244 0.3217± 0.02560.3217± 0.02560.3217± 0.0256* 0.3395± 0.04890.3395± 0.04890.3395± 0.0489 0.3359± 0.03540.3359± 0.03540.3359± 0.0354

prop 11934 16 0.0006± 3.6× 10−6 4.2× 10−5 ± 5.7× 10−6 0.0003± 0.0002 8.9× 10−6 ± 1.2× 10−68.9× 10−6 ± 1.2× 10−68.9× 10−6 ± 1.2× 10−6*
bike 17379 12 0.1832± 0.0049 0.1509± 0.0057 0.0467± 0.00160.0467± 0.00160.0467± 0.0016* 0.0496± 0.00220.0496± 0.00220.0496± 0.0022
tom’s 28179 96 0.0479± 0.0109 0.0891± 0.0100 0.6583± 0.0413 0.0083± 0.00180.0083± 0.00180.0083± 0.0018*
cte 53500 386 0.0886± 0.0014 0.0442± 0.0003 0.6223± 0.0053 0.0101± 0.00030.0101± 0.00030.0101± 0.0003*
music 515345 90 0.8333± 0.0028 0.8524± 0.0029 0.7318± 0.0705 0.7042± 0.00380.7042± 0.00380.7042± 0.0038*
twitter 583250 77 0.3837± 0.0397 0.4572± 0.0175 0.2223± 0.0358 0.0981± 0.02110.0981± 0.02110.0981± 0.0211*

Table 1: Regression MSE on UCI MLR. Asterisks denote the lowest MSE per dataset, methods in bold text were
not found to be statistically different from the lowest MSE using a paired t-test with p-value < 0.05.

the UCI MLR. We compare the accuracies BaNK mod-
els achieve to traditional scalable kernel methods for
classification; namely, we consider using the aforemen-
tioned RKS and MKL random features in a logistic
model.

Furthermore, we also compare to an optimization ap-
proach based on AlaC [Yang et al., 2015], which we
term random frequency optimization (RFO). Although
it is possible to write and differentiate a data likeli-
hood solely in terms of spectral density parameters
(through the kernel they induce) for GP regression, a
lack of conjugacy with a logistic likelihood and Gaus-
sian priors requires approximate inference for classifi-
cation. Thus, directly applying the approach of Yang
et al. [2015] will be troublesome. To mitigate this dif-
ficulty, we jointly optimize a logistic loss both in terms
of linear weights β and spectral parameters {ν,M, µ}.
Specifically, we minimize the following problem:

−
N∑

i=1

Yi




K∑

k=1

ν
2
k

D∑

j=1

(
β
cos
kj cos

(
ζijk

)
+ β

sin
kj sin

(
ζijk

))
+ β0





+ log


1 + exp




K∑

k=1

ν
2
k

D∑

j=1

(
β
cos
kj cos

(
ζijk

)
+ β

sin
kj sin

(
ζijk

))
+ β0








+
λ

2

(
‖βcos‖2 + ‖βsin‖2 + β

2
0

)
,

where ζijk = XT
i Mkwkj + XT

i µk and βcos ∈ RKD,
βsin ∈ RKD, β0 ∈ R, ν ∈ RK , Mk ∈ Rd×d, µk ∈ Rd
are optimized; wkj ∈ Rd are standard Gaussian vectors
that are drawn before optimizing and held fixed.

We again performed 5 fold cross validation and report
the mean prediction error on test sets in Table 2. The
results in Table 2 show that BaNK consistently per-
formed better or as well as the baselines.

4.4 Timing Experiments

We empirically investigate the linear scaling of the
BaNK method in terms of the number of instances N .
It is this linear dependence that allows BaNK to per-
form kernel learning in large datasets, where naive ker-
nel methods are generally Ω(N2). We hold the number
of random frequencies fixed at M = 384 and vary N to
study the empirical dependence of runtime on dataset
size for BaNK. We see the linear scaling is empirically
verified in Figures 4(b) and 4(c). Also, we observe
lower test errors as dataset sizes increase indicating
that BaNK is able to leverage more data to learn ef-
fective kernels and increase accuracy (Figure 4(a)).

Furthermore, we illustrate the scaling of our BaNK
method for regression and classification in terms of
the number of random frequencies, M . As discussed
in Section 3, the run-time complexity in large datasets
will be O(NM2) for regression and O(MNd) for classi-
fication. We empirically study the dependence ofM on
runtimes by varying M ∈ {24, 48, 96, 192, 384} and
recording the runtime of BaNK using fixed datasets.
Figures 4(f) and 4(e) show a quadratic growth in run-
time for regression and a linear growth for classifica-
tion. We see similar trends on other datasets. More-
over, we observe in Figure 4(d) an increase in perfor-
mance with diminishing returns as M increases. Thus,
we see that more frequencies aid kernel approximation
and accuracy, but performance stabilizes after enough
frequencies are chosen.

Lastly, we record the runtimes on each dataset (Figure
5) with the total number of random frequencies fixed
at M = 384 for all methods. While restricted methods
that consider only a fixed set of random frequencies
(RKS and MKL) perform fast, we see that BaNK’s

Dataset N d RKS MKL RFO BaNK
pima 768 8 0.332± 0.0201 0.4455± 0.0533 0.2592± 0.02140.2592± 0.02140.2592± 0.0214∗ 0.263± 0.01110.263± 0.01110.263± 0.0111
diabetic 1151 20 0.3312± 0.0083 0.3051± 0.0004 0.4263± 0.0007 0.279± 0.00220.279± 0.00220.279± 0.0022∗

eeg 14980 15 0.0706± 0.0019 0.0544± 0.00210.0544± 0.00210.0544± 0.0021∗ 0.2411± 0.1123 0.0686± 0.00120.0686± 0.00120.0686± 0.0012
space 58000 9 0.0022± 0.0004 0.0015± 0.00010.0015± 0.00010.0015± 0.0001 0.0018± 0.00007 0.0009± 0.00010.0009± 0.00010.0009± 0.0001∗

susy 100000 18 0.2009± 0.0002 0.201± 0.0001 0.2089± 0.00026 0.2005± 0.00010.2005± 0.00010.2005± 0.0001∗

skin 245053 3 0.1135± 0.113 0.2737± 0.105 0.0043± 0.001 0.0004± 0.00010.0004± 0.00010.0004± 0.0001∗

Table 2: Classification Prediction Error on UCI MLR. Asterisks denote the lowest error per dataset, while
the methods in bold were not found to be statistically different from the lowest error using a McNemar’s test
[Fagerland et al., 2013] with p-value < 0.05.
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Figure 4: Runtime experiments. In all figures we denote classification curves with a dashed red line and regression
curves with a solid blue line. Dataset names are shown in legends. Errors are prediction errors for classification
tasks and MSE for regression tasks. Figure (a) shows how error changes with number of instances N ; (b,c) shows
the effect of increase in number of instances on runtime; (d) shows how error changes with number of random
frequencies M ; (e,f) show the effect of number of frequencies on computational time.
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Figure 5: Runtimes for datasets.

runtime is comparable to other methods that learn the
random frequencies (AlaC and RFO) and can scale to
large datasets.

5 Related Work

Given the poor scaling of kernel methods on datasets
with many instances, several methods have looked at
approximations of kernels that bypass the computa-
tion of large Gram matrices. For example, Nystöm
based methods [Drineas and Mahoney, 2005] look to
give a fast to compute, low-rank approximation of the
Gram matrix. Other approaches for summarizing the
Gram matrix by the removal of elements or rows have
been explored in [Scholkopf et al., 2002, Blum, 2006,
Frieze et al., 2004, Shen et al., 2006]. Furthermore, ap-
proximations based on KD-trees have been explored in
[Shen et al., 2006]. In this paper, we work with kernel
approximations based on random features, called Ran-
dom Kitchen Sinks [Rahimi and Recht, 2007, 2009, Le
et al., 2013]. As previously discussed, random feature
approaches work using an empirical estimate of ker-
nels that stem by drawing features from the Fourier
transform of positive definite functions, which will be
a distribution if properly scaled.

Kernel learning methods have also received attention
due to the impact that kernel choice has on perfor-
mance. Indeed, even if one fixes a family of kernels
to use (e.g. RBF kernels) one still has to select the
parameters of the kernels. This is often done with
cross-validation or with methods like [Keerthi et al.,
2007, Chapelle et al., 2002]. A popular approach to

learning kernels in a more flexible class is multiple
kernel learning (MKL) [Bach et al., 2004, Lanckriet
et al., 2004]. As illustrated is Section 4.2, MKL learns
a kernel that is the non-negative linear combination
of a bank of fixed kernels. However, naively applying
MKL approaches would still require the computation
of several large Gram matrices; instead, as previously
discussed, one may combine random features to per-
form scalable MKL (see Lu et al. [2014] for an ap-
plication of such ideas). Very recently, independent
work [Yang et al., 2015] has explored an optimization
approach, A la carte, to learning parameters of mix-
ture of kernels, where one optimizes the parameters
generating random features in non-convex likelihood
problems. See also [Băzăvan et al., 2012] for another
optimization approach. Unfortunately, due to the non-
convex nature of the optimization problem being op-
timized, such approaches yield non-interpretable ker-
nels, whereas BaNK yield draws from a well defined
posterior. Wilson and Adams [2013] considers kernels
as in (4), but without inference over L, the number of
mixture components. Wilson [2012] mentions the pos-
sibility of putting a DP prior model on parameters,
but does so without empirical details.

6 Conclusion

In this paper we propose an efficient and general data-
driven framework, BaNK, for learning of kernels that
scales to large datasets. By representing the spectral
density using a non-parametric mixture of Gaussians,
we capture a large class of kernels that can be learned.
We provide a generative model for learning kernels
while performing regression and classification tasks,
and propose novel MCMC based sampling schemes to
infer parameters of the mixtures. We show that our
proposed framework outperforms other scalable kernel
learning methods on a variety of real world datasets in
both classification and regression task.
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