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Abstract

The main contribution of this paper con-
sists in extending several non-stationary Re-
inforcement Learning (RL) algorithms and
their theoretical guarantees to the case of γ-
discounted zero-sum Markov Games (MGs).
As in the case of Markov Decision Pro-
cesses (MDPs), non-stationary algorithms
are shown to exhibit better performance
bounds compared to their stationary coun-
terparts. The obtained bounds are generi-
cally composed of three terms: 1) a depen-
dency over γ (discount factor), 2) a concen-
trability coefficient and 3) a propagation er-
ror term. This error, depending on the al-
gorithm, can be caused by a regression step,
a policy evaluation step or a best-response
evaluation step. As a second contribution,
we empirically demonstrate, on generic MGs
(called Garnets), that non-stationary algo-
rithms outperform their stationary counter-
parts. In addition, it is shown that their
performance mostly depends on the nature
of the propagation error. Indeed, algorithms
where the error is due to the evaluation of a
best-response are penalized (even if they ex-
hibit better concentrability coefficients and
dependencies on γ) compared to those suffer-
ing from a regression error.
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2016, Cadiz, Spain. JMLR: W&CP volume 41. Copyright
2016 by the authors.

1 Introduction

Because of its potential application to a wide range of
complex problems, Multi-Agent Reinforcement Learn-
ing (MARL) [6] has recently been the subject of in-
creased attention. Indeed, MARL aims at controlling
systems composed of distributed autonomous agents,
encompassing problems such as games (chess, check-
ers), human-computer interfaces design, load balanc-
ing in computer networks etc.. MARL extends, to a
multi-agent setting, the Reinforcement Learning (RL)
paradigm [4] in which single-agent control problems
(or games against nature) are modeled as Markov
Decision Processes (MDPs) [13]. Markov Games
(MGs) (also called Stochastic Games (SGs)) [17] ex-
tend MDPs to the multi-agent setting and model
MARL problems.

The focus of this work is on a special case of MGs,
namely γ-discounted two-player zero-sum MGs, where
the benefit of one agent is the loss of the other. In
this case, the solution takes the form of a Nash equi-
librium. As in the case of MDPs, Dynamic Program-
ming (DP) is a family of methods relying on a se-
quence of policy evaluation and improvement steps
that offers such solutions [5, 11]. When the scale of
the game becomes too large or when its dynamics is
unknown, DP becomes intractable or even inapplica-
ble. In these situations, Approximate Dynamic Pro-
gramming (ADP) [5, 8, 12] becomes more appropriate.
ADP is inspired by DP but uses approximations (dur-
ing the evaluation and/or the improvement step) at
each iteration. Approximation errors thus accumulate
over successive iterations.

Error propagation occurring in ADP has been first
studied in the MDP framework in L∞-norm [5]. How-
ever, the approximation steps in ADP are, in prac-
tice, implemented by Supervised Learning (SL) meth-
ods [7]. As SL errors (such as regression and classifi-
cation errors) are not usually controlled in L∞-norm
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but rather in Lp-norm, the bounds from [5] have been
extended to Lp-norm in [9, 10, 1]. It is well known,
for γ-discounted MDPs, that the way errors propagate
depends on 2γCε

(1−γ)2 . The final error is thus divided in

three terms, a dependency over γ (in this case 2γ
(1−γ)2 ),

a dependency over some concentrability coefficient (C)
and a dependency over an error ε. This error ε comes
from various sources: for the Value Iteration (VI) al-
gorithm the error ε comes from a supervised learning
problem for both MDPs and MGs. For the Policy It-
eration (PI) algorithm, the error comes from a policy
evaluation problem in the case of MDPs and from a full
control problem in the case of MGs (namely evaluation
of the best response of the opponent). Because γ is
often close to 1 in practice, reducing algorithms sensi-
tivity to γ is also crucial. Thus, various algorithms for
MDPs intend to improve one or several terms of this
error bound. The Conservative Policy Iteration (CPI)
algorithm improves the concentrability coefficient [16],
both Non-Stationary Value Iteration (NSVI) and Non-
Stationary Policy Iteration (NSPI) improve the depen-
dency over γ (from 1

(1−γ)2 to 1
(1−γ)(1−γm) where m is

the length of the non-stationary policy considered) and
Policy Search by Dynamic Programming (PSDP) im-
proves the dependency over both.

This paper introduces generalizations to MGs of NSPI,
NSVI and PSDP algorithms. CPI is not studied here
since its generalization to MGs appears trickier1. The
main contribution of the paper thus consists in general-
izing several non-stationary RL algorithms known for
γ-discounted MDPs to γ-discounted two-player zero-
sum MGs. In addition, we extend the performance
bounds of these algorithms to MGs. Thanks to those
bounds, the effect of using non-stationary strategies on
the error propagation control is demonstrated. How-
ever, analyses are conservative in the sense that they
consider a worst case propagation of error and a best
response of the opponent. Because such a theoretical
worst case analysis does not account for the nature
of the error, each algorithm is empirically tested on
generic SGs (Garnets). Experiments show that non-
stationary strategies always lead to improved average
performance and standard deviation compared to their
stationary counterparts. Finally, a comparison on ran-
domly generated MGs between non-stationarity-based
algorithms shows that, given a fixed budget of sam-
ples, NSVI outperforms all others schemes. Indeed,
even if the other algorithms exhibit better concentra-
bility coefficients and a better dependency w.r.t. γ, a
simple regression empirically produces smaller errors

1In MDPs, CPI exploits the fact that the value function
of some policy is a differentiable function of the (stochastic)
policy. In a SG, differentiability does not hold anymore in
general.

than evaluating a policy or a best response. There-
fore, as a second contribution, experiments suggest
that the nature of the error does matter when choos-
ing an algorithm, an issue that was ignored in previous
research [16].

The rest of this paper is organized as follows: first
standard notations for two-player zero-sum MGs are
provided in Section 2. Then extensions of NSVI, NSPI
and PSDP are described and analyzed in Section 3.
The dependency w.r.t. γ, the concentrability coeffi-
cient and the error of each approximation scheme are
discussed. Finally, results of experiments comparing
algorithms on generic MDPs and MGs, are reported
in Section 4. They highlight the importance of con-
trolling the error at each iteration.

2 Background

This section reviews standard notations for two-
players MGs. In MGs, unlike standard MDPs, players
simultaneously choose an action at each step of the
game. The joint action of both players generates a re-
ward and a move to a next state according to the game
dynamics.

A two-player zero-sum MG is a tuple
(S, (A1(s))s∈S , (A

2(s))s∈S , p, r, γ) in which S is
the state space, (A1(s))s∈S and (A2(s))s∈S are the
sets of actions available to each player in state s ∈ S,
p(s′|s, a1, a2) is the Markov transition kernel which
models the game dynamics, r(s, a1, a2) is the reward
function which represents the local benefit of doing
actions (a1, a2) in state s and γ is the discount factor.
A strategy μ (resp. ν) associates to each s ∈ S a
distribution over A1(s) (resp. A2(s)). We note μ(.|s)
(resp. ν(.|s)) such a distribution. In the following, μ
(resp ν) is thus the strategy of Player 1 (resp. Player
2). For any pair of stationary strategies μ and ν, let us
define the corresponding stochastic transition kernel
Pμ,ν(s

′|s) = Ea1∼μ(.|s),a2∼ν(.|s)[p(s′|s, a1, a2)] and the
reward function rμ,ν = Ea1∼μ(.|s),a2∼ν(.|s)[r(s, a1, a2)].
The value function vμ,ν(s), measuring the quality
of strategies μ and ν, is defined as the expected
cumulative γ-discounted reward starting from s when
players follow the pair of strategies (μ,ν).

vμ,ν(s) = E[

+∞∑
t=0

γtrμ,ν(st)|s0 = s, st+1 ∼ Pμ,ν(.|st)].

The value vμ,ν is the unique fixed point of the following
linear Bellman operator:

Tμ,νv = rμ,ν + γPμ,νv.

In a two-player zero-sum MG, Player 1’s goal is
to maximize his value whereas Player 2 tries to
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minimize it. In this setting, it is usual to define
the following non-linear Bellman operators [11, 12]:

Tμv = min
ν

Tμ,νv

T v = max
μ

Tμv

T̂νv = max
μ

Tμ,νv

T̂ v = min
ν

T̂νv
The value vμ = minν vμ,ν , fixed point of Tμ, is the
value Player 1 can expect while playing strategy μ and
when Player 2 plays optimally against it. Strategy
ν is an optimal counter strategy when vμ = vμ,ν .
Player 1 will try to maximize value vμ. In other words
she will try to find v∗ = maxμ vμ = maxμ minν vμ,ν
the fixed point of operator T . Von Neumann’s
minimax theorem [18] ensures that T = T̂ , thus
v∗ = maxμ minν vμ,ν = minν maxμ vμ,ν which means
that v∗ is the value both players will reach by playing
according to the Nash Equilibrium. We will also call
v∗ the optimal value of the game.

A non-stationary strategy of length M is a tuple
(μ0, μ1, ... , μM−1). The value (vμ0,μ1, ... ,μM−1

) of this
non-stationary strategy is the expected cumulative γ-
discounted reward the player gets when his adversary
plays the optimal counter strategy. Formally:

vμ0,μ1, ... ,μM−1
(s) =

min
(νt)t∈N

E[
+∞∑
t=0

γtrμi,νt
(st)|s0 = s, st+1 ∼ Pμi,νt

(.|st),
i = t mod(M)].

In other words, the strategy used in state s and at time
t will depend on t. Instead of always following a single
strategy the player will follow a cyclic strategy. At
time t = 0 the player will play μ0, at time t = 1 s/he
will play μ1 and at time t = Mj + i (∀i ∈ {0, ...,M −
1}, ∀j ∈ N) s/he will play strategy μi. This value is
the fixed point of the operator Tμ0

... TμM−1
(proof in

appendix A). Thus, we have:

vμ0,μ1, ... ,μM−1
= Tμ0

... TμM−1
vμ0,μ1, ... ,μM−1

. (1)

3 Algorithms

This section presents extensions to two-player zero-
sum MGs of three non-stationary algorithms, namely
PSDP, NSVI and NSPI, known for improving the error
bounds for MDPs. For MDPs, PSDP is known to have
the best concentrability coefficient [16], while NSVI
and NSPI have a reduced dependency over γ compared
to their stationary counterparts. Here, in addition to
defining the extensions of those algorithms, we also
prove theoretical guarantees of performance.

3.1 Value Iteration and Non-Stationary
Value Iteration

Formally, VI consists in repetitively applying the opti-
mal Bellman operator T starting from an initial value
v0 (usually set to 0). This process can be divided in
two steps. First, a greedy step where the strategy of
the maximizer is improved from μk−1 to μk. Then,
the algorithm updates the value function from vk−1 to
vk. Each of these two steps are prone to error, i.e.
to a greedy error ε′k and an evaluation error εk. For
simplicity, in the main body of this paper we only con-
sider an evaluation error (ε′k = 0). The general case is
considered in appendix B:

T vk−1 ≤ Tμk
vk−1 + ε′k, (approximate greedy step)

vk = Tμk
vk−1 + εk. (approximate evaluation step)

Because those errors propagate from one iteration to
the next, the final strategy may be far from optimal.
To measure the performance of such an algorithm, one
wants to bound (according to some norm) the distance
between the optimal value and the value of the final
strategy when the opponent is playing optimally. An
upper bound for this error propagation has been com-
puted in [11] in L∞-norm and in [12] in Lp-norm for
stationary strategies. Moreover, this bound has been
shown to be tight for MDPs in [15]. Since MDPs are
a subclass of MGs, the L∞-norm bound is also tight
for MGs.

The VI algorithm presented above produces a se-
quence of values v0, ... , vk and, implicitly, strate-
gies μ0, ... , μk. The non-stationary variation of VI
for MGs, NSVI, simply consists in playing the m last
strategies generated by VI for MGs. In the following,
we provide a bound in Lp-norm for NSVI in the frame-
work of zero-sum two-player MGs. To our knowledge,
this is an original result. The goal is to bound the
difference between the optimal value v∗ and the value
vk,m = vμk,μk−1, ... ,μk−m+1

of the m last strategies gen-
erated by VI. Usually, one is only able to control ε and
ε′ according to some norm ‖.‖pq′,σ and wants to con-
trol the difference of value functions according to some

other norm ‖.‖p,ρ where ‖f‖p,ρ =

(∑
s∈S

|f(s)|pρ(s)
) 1

p

.

The following theorem provides a performance guar-
antee in Lp-norm:

Theorem 1. Let ρ and σ be distributions over states.
Let p,q and q′ be positive reals such that 1

q + 1
q′ = 1,

then for a non-stationary strategy of size m and after
k iterations we have:

‖v∗ − vk,m‖p,ρ ≤
2γ(C1,k,0,m

q )
1
p

(1− γ)(1− γm)
sup

1≤j≤k−1
‖εj‖pq′,σ

+ o(γk),
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with:

Cl,k,d,m
q =

(1− γ)(1− γm)

γl − γk

k−1∑
i=l

∞∑
j=0

γi+jmcq(i+jm+d)

and where:

cq(j) = sup
μ1,ν1,...,μj ,νj

∥∥∥∥d(ρPμ1,ν1
...Pμj ,νj

)

dσ

∥∥∥∥
q,σ

.

Proof. The full proof is left in appendix B.

Remark 1. First, we can notice the full bound (ap-
pendix B) matches the bound on stationary strategies
in Lp-norm of [12] for the first and second terms. It
also matches the one in L∞-norm for non-stationary
policies of [15] in the case of MDPs.

Remark 2. From an implementation point of view,
this technique introduces an explicit trade-off between
memory and error. Indeed, m strategies have to be
stored instead of 1 to decrease the value function ap-
proximation error from 2γε

(1−γ)2 to 2γε
(1−γ)(1−γm) . More-

over, a benefit of the use of a non-stationary strategy
in VI is that it comes from a known algorithm and thus
needs very little implementation effort.

3.2 Policy Search by Dynamic Programming
(PSDP)

PSDP was first introduced in [3] for solving undis-
counted MDPs and undiscounted Partially Observable
MDPs (POMDPs), but a natural variant using non-
stationary strategies can be used for the discounted
case [16]. When applied to MDPs, this algorithm en-
joys the best concentrability coefficient among several
algorithms based on policy iteration, namely NSPI,
CPI, API and NSPI(m) (see [16] for more details).
In this section, we describe two extensions of PSDP
(PSDP1 and PSDP2) to two-player zero-sum MGs.
Both algorithms reduce to PSDP in the case of MDPs.

PSDP1: A first natural extension of PSDP in the
case of γ-discounted Markov games is the following.
At each step the algorithm returns a strategy μk for
the maximizer, such that T vσk−1

= Tμk
vσk−1

where
vσk−1

= Tμk−1
...Tμ0

0 + εk−1. Following any non-
stationary strategy that uses σk(= μk, ..., μ0) for the
k + 1 first steps, we have the following performance
guarantee:

Theorem 2. Let ρ and σ be distributions over states.
Let p,q and q′ be positive reals such that 1

q + 1
q′ = 1,

then we have:

‖v∗ − vk,k+1‖p,ρ ≤
2(C1,k,0

μ∗,q )
1
p

1− γ
sup

0≤j≤k
‖εj‖pq′,σ

+ o(γk),

with:

Cl,k,d
μ∗,q =

1− γ

γl − γk

k−1∑
i=l

γicμ∗,q(i+ d)

and where:

cμ∗,q(j) = sup
ν1,...,νj ,μj

∥∥∥∥d(ρPμ∗,ν1
...Pμ∗,νj−1

Pμj ,νj
)

dσ

∥∥∥∥
q,σ

.

Proof. The full proof is left in appendix C.2.

The concentrability coefficient of this algorithm is sim-
ilar to the one of its MDP counterpart: with respect
to the first player, it has the advantage of depending
mostly on the optimal strategy μ∗. However, estimat-
ing at each iteration Tμk−1

...Tμ0
0 requires solving a

control problem and thus might be computationally
prohibitive. Therefore, we introduce a second version
of PSDP for games, which does not require to solve a
control problem at each iteration.

PSDP2: This algorithm creates a sequence of strate-
gies ((μk, νk),...,(μ0, ν0)). At each step k the algo-
rithm returns a pair of strategies (μk, νk) such that
T vσk−1

= Tμk
vσk−1

and Tμk
vσk−1

= Tμk,νk
vσk−1

(where vσk−1
= Tμk−1,νk−1

...Tμ0,ν0
0 + εk). To ana-

lyze how the error propagates through iterations, we
will compare the value of the non-stationary strategy
μk,k+1 (=μk,...,μ0) against the value of best response
to the optimal strategy.

Theorem 3. Let ρ and σ be distributions over states.
Let p,q and q′ be positive reals such that 1

q + 1
q′ = 1,

then we have:

‖v∗ − vk,k+1‖p,ρ ≤
4(C1,k,0

q )
1
p

1− γ
sup

0≤j≤k
‖εj‖pq′,σ

+ o(γk),

with:

Cl,k,d
q =

1− γ

γl − γk

k−1∑
i=l

γicq(i+ d).

Proof. The full proof is left in appendix C.1.

Remark 3. The error term εk in PSDP1 is an error
due to solving a control problem, while the error term
εk in PSDP2 comes from a pure estimation error.

Remark 4. An issue with PSDP1 and PSDP2 is
the storage of all strategies from the very first itera-
tion. The algorithm PSDP1 needs to store k strate-
gies at iteration k while PSDP2 needs 2k at the same
stage. However PSDP2 alleviates a major constraint
of PSDP1: it doesn’t need an optimization subroutine
at each iteration. The price to pay for that simplic-
ity is to store 2k strategies and a worse concentrability
coefficient.
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Remark 5. One can notice that ∀j ∈ N cμ∗,q(j) ≤
cq(j) and thus Cl,k,d

μ∗,q ≤ Cl,k,d
q . Then the concentrability

coefficient of PSDP2 is worse than PSDP1’s. More-
over, Cl,k,d,m

q = (1 − γm)Cl,k,d
q + γmCl,k,d+m,m

q mean-

ing intuitively that Cl,k,d
q is Cl,k,d,m

q when m goes to

infinity. This also means that if Cl,k,d
q = ∞, then we

have Cl,k,d,m
q = ∞. In that sense, one can argue that

PSDP2 offers a better concentrability coefficient than
NSVI.

3.3 Non Stationary Policy Iteration
(NSPI(m))

Policy iteration (PI) is one of the most standard algo-
rithms used for solving MDPs. Its approximate version
has the same guarantees in terms of greedy error and
approximation error as VI. Like VI, there exists a non-
stationary version of policy iteration that was origi-
nally designed for MDPs in [15]. Instead of estimating
the value of the current policy at each iteration, it es-
timates the value of the non-stationary policy formed
by the last m policies. Generalized to SGs, NSPI(m)
estimates the value of the best response to the last m
strategies.

Doing so, the algorithm NSPI(m) tackles the mem-
ory issue of PSDP. It allows controling the size of
the stored non-stationary strategy. NSPI(m) proceeds
in two steps. First, it computes an approximation
vk of vμk,m

(vk = vμk,m
+ εk). Here, vμk,m

is the
value of the best response of the minimizer to strat-
egy μk,m = μk, ..., μk−m+1. Then it moves to a new
strategy μk+1 satisfying T vk = Tμk+1

vk.

Theorem 4. Let ρ and σ be distributions over states.
Let p,q and q′ be positive reals such that 1

q + 1
q′ = 1,

then for a non-stationary policy of size m and after k
iterations we have:

‖v∗ − vk,m‖p,ρ ≤
2γ(C1,k−m+2,0,m

q )
1
p

(1− γ)(1− γm)
sup

m≤j≤k−1
‖εj‖pq′,σ

+ o(γk).

Proof. The full proof is left in appendix D.

Remark 6. The NSPI dependency over γ and the con-
centrability coefficient involved in the NSPI bound are
the same as those found for NSVI. However, in the
MDP case the policy evaluation error is responsible for
the error εk and in the SG case the error comes from
solving a full control problem.

3.4 Summary

To sum up, both NSVI and NSPI enjoy a reduced de-
pendency over γ (i.e. 1

(1−γ)(1−γm) ) when considering

non-stationary strategies. They exhibit similar con-
centrability coefficients but the origin of the error is
different (a regression for NSVI and a policy evaluation
or a control problem for NSPI). PSDP1 and PSDP2
enjoys an even better dependency on γ (i.e. 1

1−γ ).
The concentrability coefficient of PSDP1 is better than
that of PSDP2 which is better than those of NSVI
and NSPI. However, the error involved in the analysis
of PSDP1 is caused by solving a full control problem
(which makes this algorithm impractical) while the er-
ror in PSDP2 comes from a simple regression.

4 Experiments

The previous section provided, for each new algorithm,
a performance bound that assumes a worst case error
propagation. Examples that suggest that the bound is
tight were provided in [15] for MDPs (but as a lower
bound, they also apply to SGs) in the case of L∞ anal-
ysis (p = ∞). Those specific examples are pathological
problems and, in practice, the bounds will generally
be conservative. Furthermore, our analysis the term
εk somehow hides the sources of errors that may vary
a lot among the different algorithms. To ensure these
techniques are relevant in practice and to go beyond
the theoretical analysis, we tested them on synthetic
MDPs and turn-based MGs, named Garnets [2].

Garnets for MDPs: A Garnet is originally an ab-
stract class of MDPs. It is generated according to three
parameters (NS ,NA,NB). Parameters NS and NA are
respectively the number of states and the number of
actions. ParameterNB is the branching factor defining
the number of possible next states for any state-action
pair. The procedure to generate the transition kernel
p(s′|s, a) is the following. First, one should draw a
partition of [0, 1] by drawing NB − 1 cutting points
uniformly over [0, 1] noted (pi)1≤i≤NB−1 and sorted in
increasing order (let us note p0 = 0 and pNB

= 1).
Then, one draws a subset {s1, ..., sNB

} of size NB of
the state space S. This can be done by drawing with-
out replacement NB states from the state space S.
Finally, one assigns p(s′i|s, a) according to the follow-
ing rule: ∀i ∈ {1, ..., NB}, p(si|s, a) = pi − pi−1. The
reward function r(s) depends on the experiment.

Garnet for two-player turn-based MGs We are
interested in a special kind of MGs, namely turn-based
games. Here, turn-based games are two-player zero-
sum MGs where, at each state, only one player has
the control on the game. The generating process for
this kind of Garnet is the same as the one for MDPs.
Then we will independently decide for each state which
player has the control over the state. The probability
of state s to be controlled by player 1 is 1

2 .
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Experiments In the two categories of Garnets de-
scribed previously we ran tests on Garnets of size
NS = 100, with NA ∈ {2, 5, 8} and NB ∈ {1, 2, 5}.
The experiment aims at analyzing the impact of the
use of non-stationary strategies considering different
amounts of samples at each iteration for each algo-
rithm. Here, the reward for each state-action couple
is null except for a given proportion (named the spar-
sity ∈ {0.05, 0.1, 0.5}) drawn according to a normal
distribution of mean 0 and of variance 1.

Algorithms are based on the state-actions value func-
tion:

Qμ,ν(s, a, b) = r(s, a, b) +
∑
s′∈S

p(s′|s, a, b)vμ,ν(s′).

The analysis of previous section still holds since one
can consider an equivalent (but larger) SG whose state
space is composed of state-action pairs. Moreover,
each evaluation step consists in approximating the
state-action(s) value function. We approximate the
value function by minimizing a L2 norm on a tabular
basis with a regularization also in L2 norm. All the
following considers simultaneous MGs. To retrieve al-
gorithms for MDPs, consider that the minimizer al-
ways has a single action. To retrieve algorithms for
turn-based MGs, consider that at each state only a
single player has more than one action.

Experiments are limited to finite states MGs. More-
over, Garnets have an erratic dynamic since next states
are drawn without replacement within the set of states,
thus the dynamic is not regular in any sens. Garnets
are thus tough to optimize. Experiments on simultane-
ous games are not provided due to difficulties encoun-
tered to optimize such games. We believe Garnets are
too hard to optimize when it comes to simultaneous
games.

In all presented graphs, the performance of a strategy
μ (which might be stationary or not) is measured as
‖v∗−vμ‖u,2

‖v∗‖u,2
where u is the uniform measure over the

state-action(s) space. The value vμ is computed ex-
actly with the policy iteration algorithm. In every
curve, the confidence interval is proportional to the
standard deviation. To compare algorithms on a fair
basis, their implementation relies on a sample-based
approximation involving an equivalent number of sam-
ples. In all tests, we could not notice a significant in-
fluence of NA. Moreover the sparsity only influences
the amount of samples needed to solve the MG.

NSVI The NSVI algorithm starts with a null Q-
functions Q0(s, a, b) where a and b are respectively
actions of player 1 and player 2. At each itera-
tion we draw uniformly over the state-actions space

(si, ai, bi) then we compute ri = r(si, ai, bi) and draw

s′i ∼ p(.|si, ai, bi) for i ∈ {1, ..., Nk}. Then we com-

pute qi = ri + γminb Ea∼μk(.|s′i)[Qk(s
′i, a, b)]. The

next state-actions value function Qk+1 is the best fit
over the training dataset {(si, ai, bi), qi}i∈{1,...,Nk}. In
all experiments on NSVI, all samples are refreshed af-
ter each iteration. The first advantage of using non-

Figure 1: Performance (y-axis) of the strategy at step
k (x-axis) for NSVI for a strategy of length 10 (right)
and length 1 (left). Results are averaged over 70
Garnets NS = 100 , NA = 5, NB = 1 (top) and
NB = 2 (bottom). All Garnets have a sparsity of
0.5 and γ = 0.9. Each step of the algorithm uses
2.25×NA ×NS samples.

stationary strategies in VI is the reduction of the stan-
dard deviation of the value vμk,...,μk−m+1

. Figure 1
shows the reduction of the variance when running a
non-stationary strategy. Intuitively one can think of
it as a way of averaging over the last m strategies the
resulting value. Moreover, the greater m is the more
the performance concentrates ( the parameterm is var-
ied in figure 1, 4, 5, 6 and 7). A second advantage is
the improvement of the average performance when NB

(the branching factor of the problem) is low. One the
negative, since we are mixing last m strategies, the
asymptotic performance is reached after more itera-
tions (see Figure 1).

PSDP2 In practice PSDP2 builds Nk rollout
{(sji , a

j
i , b

j
i , r

j
i )}i∈{0,...,k+1} at iteration k. Where

(sj0, a
j
0, b

j
0) are drawn uniformly over the state-actions

space and where sji+1 ∼ p(.|sji , a
j
i , b

j
i ), aji+1 ∼

μk−i(.|sji+1), bji+1 ∼ νk−i(.|sji+1) and rji+1 =

r(sji+1, a
j
i+1, b

j
i+1). Then we build the dataset

{(sj0, aj0, bj0),
k+1∑
i=0

γirji }j∈{0,...,Nk}. The state-actions

value function Qk+1 is the best fit over the training
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dataset. Strategies μk+1 and νk+1 are the exact min-
max strategies with respect to Qk+1.

From an implementation point of view, PSDP2 uses
(k + 2)×Nk samples at each iteration (parameter Nk

is varied in the figures 2 and 7). Furthermore, the
algorithm uses rollouts of increasing size. As a side ef-

fect, the variance of
k+1∑
i=0

γirji increases with iterations

for non-deterministic MDPs and MGs. This makes
the regression of Qk+1 less practical. To tackle this is-
sue, we use a procedure, named resampling, that con-
sists in averaging the cumulative γ-discounted reward
k+1∑
i=0

γirji over different rollouts launched from the same

state-actions triplet (sj0, a
j
0, b

j
0). In figure 2 the two top

Figure 2: Performance (y-axis) of the strategy of
length k + 1 at step k (x-axis) for PSDP2 without re-
sampling (left) with a 10 times resampling (right). Re-
sults are averaged over 70 Garnets NS = 100 , NA = 5,
NB = 1 (top) and NB = 2 (bottom). All Garnets have
a sparsity of 0.5 and γ = 0.9. Each step of the algo-
rithm uses 2.25×NA ×NS rollouts.

curves display the performance of PSDP2 with (on the
right) and without (on the left) resampling trajectories
on deterministic MGs. The two figures on the bottom
are however obtained on non-deterministic MGs. One
can notice a significant improvement of the algorithm
when using resampling on non-deterministic MGs il-
lustrating the variance issue raised in the foregoing
paragraph.

PSDP1 We do not provide experiments within the
PSDP1 scheme. Each iteration of PSDP1 consists in
solving a finite horizon control problem (i.e. approxi-
mating vσk

= Tμk
...Tμ00). The problem of estimating

vσk
reduces to solving a finite horizon MDP with non

stationary dynamics. To do so, one should either use

Fitted-Q iterations or PSDP for MDPs. In the first
case, one would not see the benefit of such a scheme
compared to the use NSVI. Indeed, each iterations of
PSDP1 would be as heavy in term of computation as
NSVI. In the second case, one would not see the bene-
fit compared PSDP2 since each iterations would be as
heavy as PSDP2.

NSPI(m) At iteration k, NSPI(m) approximates
the best response of the non-stationary strategy
μk, ..., μk−m+1. In the case of an MDP, this results
in evaluating a policy. The evaluation of a station-
ary policy is done by an approximate iteration of Tμ.
This procedure can be done by a procedure close to
Fitted-Q iteration in which the strategy μ is used at
each iteration instead of the greedy policy. The eval-
uation of the non-stationary policy μk, ..., μk−m+1 is
done by approximately applying in a cycle Tμk

, ...,
Tμk−m+1

. For MG, the subroutine will contain l × m
iterations. At iteration p ∈ {1, ..., l ×m} the subrou-
tine computes one step of Fitted-Q iteration consid-
ering the maximizer’s strategy is fixed and of value
μk−m+(p−1 mod(m))+1 and taking the greedy action for
the minimizer. In this subroutine the dataset is fixed
(it is only refreshed at each iteration of the overall
NSPI(m) procedure). The parameter l is chosen large
enough to achieve a given level of accuracy, that is
having γm×l below a given threshold. Note that for
small values of k (i.e. k < m) this implementation
of the algorithm finds an approximate best response
of the non-stationary strategy μk, ..., μ1 (of size k and
not m). As for VI, the use of non-stationary strategies
reduces the standard deviation of the performance as
m grows. Figure 3 shows also an improvement of the
average performance as m grows.

5 A Comparison

From the theoretical analysis, one may conclude that
PSDP1 is the best scheme to solve MGs. It’s depen-
dency over γ is the lowest among the analyzed algo-
rithms and it exhibits the best concentrability coeffi-
cient. However, from the implementation point of view
this scheme is a very cumbersome since it implies solv-
ing a finite horizon control problem of increasing size,
meaning using an algorithm like Fitted-Q or PSDP
as a subroutine at each iteration. PSDP2 tackles the
main issue of PSDP1. This algorithm doesn’t need to
solve a control problem as a subroutine but a simple
supervised learning step is enough. The price to pay
is a worst bound and the storage of 2× k instead of k
strategies.

As in PSDP1, the NSPI algorithm needs to solve a
control problem as a subroutine but it only considers
a constant number of strategies. Thus NSPI solves
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Figure 3: Performance (y-axis) of the strategy at step
k (x-axis) for NSPI for a strategy of length 10 (left)
and 30 (right). results are averaged over 70 Garnets
NS = 100 , NA = 8, NB = 1 (top) and NB = 2
(bottom). All Garnets have a sparsity of 0.5 and γ =
0.9. Each step of the algorithm uses 2.25 ×NA ×NS

samples.

the memory issue of PSDP1 and PSDP2. The depen-
dency to γ of the error bound is reduced from roughly
1

1−γ to 1
(1−γ)(1−γm) where m is the length of the non-

stationary strategy considered. Nevertheless, the er-
ror term of PSDP2 derives from a supervised learn-
ing problem while it comes from a control problem in
NSPI. Thus, controlling the error of PSDP2 might be
easier than controlling the error of NSPI.

The NSVI algorithm enjoys an error propagation
bound similar to the NSPI one. However the error of
NSVI derives from a simple supervised learning prob-
lem instead of a full control problem as for NSPI. Fig-
ure 4 compares NSPI and NSVI with the same number
of samples at each iteration. It clearly shows NSVI
performs better in average performance and regarding
the standard deviation of the performance. For turn-
based MGs the NSVI algorithm performs better than
NSPI on Garnets. Furthermore one iteration of NSPI
costs significantly more than an iteration of NSVI. Fig-
ure 4 also compares PSDP2 and NSVI. Even if PSDP2
uses k times more samples than NSVI at iteration k,
it barely achieves the same performance as NSVI (in
the case of a non-deterministic game this is not even
the case, see Figure 6 in the appendix).

6 Conclusion

This paper generalizes several algorithms using non-
stationary strategies to the setting of γ-discounted
zero-sum two-player MGs. The theoretical analysis

Figure 4: Performance (y-axis) of the strategy at step
k (x-axis) for NSVI, PSDP and NSPI. Results are av-
eraged over 70 Garnets NS = 100 , NA = 8, NB = 1.
All Garnets have a sparsity of 0.5 and γ = 0.9. Each
step of NSPI and NSVI uses 2.25×NA ×NS samples.
Each step of PSDP2 uses 2.25×NA ×NS rollouts.

shows a reduced dependency over γ of non-stationary
algorithms. For instance NSVI and NSPI have a de-
pendency of 2γ

(1−γ)(1−γm) instead of 2γ
(1−γ)2 for the cor-

responding stationary algorithm. PSDP2 has a depen-
dency of 2

(1−γ) over γ and it enjoys a better concen-

trability constant than NSPI and NSVI. The empirical
study shows the dependency over the error is the main
factor when comparing algorithms with the same bud-
get of samples. The nature of the error seems to be cru-
cial. NSVI outperforms NSPI since a simple regression
produces less error than a policy evaluation or even a
full control problem. NSVI outperforms PSDP2 since
it is more thrifty in terms of samples per iteration.

In some sense, running a non-stationary strategy in-
stead of a stationary one sounds like averaging over
last strategies. Several techniques are based on aver-
aging last policies, for instance CPI. But this generic
idea is not new. For example in optimization, when
using stochastic gradient descent one knows he has to
return the average of the sequence of parameter out-
putted by the algorithm instead of last one. From a
theoretical point of view, an interesting perspective for
this work would be to figure out whether or not there
is a general formulation of this intuitive idea. It would
be an interesting start to go beyond the worst case
analysis of each algorithm described in this paper.

From a practical point of view, trying to learn in large
scale games with algorithms producing non-stationary
strategies would be a nice perspective for this work es-
pecially in deterministic games like checkers or awalé.
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A Fixed Point

We want to show:

vμ0,μ1, ... ,μM−1
(s) = min

(νt)t∈N

E[

+∞∑
t=0

γtrμi,νt
(st)|s0 = s, st+1 ∼ Pμi,νt

(.|st), i = t [M ]].

Is the fixed point of operator Tμ0
... TμM−1

.

This property seems intuitive. However, it’s demonstration is non standard. First we build an MDP with a state
space of size M × |S|. Then we prove the value we are interested in is a sub-vector of the optimal value of the
large MDP. Finally we prove the sub-vector is a fixed point of Tμ0

... TμM−1
.

Let us define the following MDP with the same γ:
S̃ = S × {0, ...,M − 1}.
For (s, i) ∈ S̃ we have Ã((s, i)) = A(s)× {i}.

p̃((s′, i)|(s, j), (a2, j)) = δ{i=j+1[M ]}
∑

a1∈A1(s)

μj(a
1|s)p(s′|s, a1, a2) (2)

r̃((s, j), (a2, j)) =
∑

a1∈A1(s)

μj(a
1|s)r(s, a1, a2)

The Kernel and reward are defined as follow:

P̃ν̃((s
′, i)|(s, j)) = Ea2∼ν̃(.|(s,j))[p̃((s′, i)|(s, j), (a2, j))]

One should notice that (s′, i) ∼ P̃ν̃(.|(s, j)) then i = j + 1[M ] (obvious consequence of (2))

r̃ν̃((s, j)) = Ea2∼ν̃(.|(s,j))[r̃((s, j), (a2, j))]

Instead of trying to maximize we will try to minimize the cumulated γ-discounted reward. Let ṽ∗ be the optimal
value of that MDP:

ṽ∗(s̃) = min
(ν̃t)t∈N

E[
+∞∑
t=0

γtr̃ν̃t
(s̃t)|s0 = s̃, s̃t+1 ∼ P̃ν̃t

(.|s̃t)]

then:

ṽ∗((s, 0)) = min
(ν̃t)t∈N

E[

+∞∑
t=0

γtr̃ν̃t
(s̃t)|s0 = (s, 0), s̃t+1 ∼ P̃ν̃t

(.|s̃t)],

= min
(ν̃t)t∈N

E[

+∞∑
t=0

γtr̃ν̃t((st, i))|s0 = (s, 0), s̃t+1 ∼ P̃ν̃t(.|(st, i)), i = t [M ]],

= min
(ν̃t)t∈N

E[

+∞∑
t=0

γtr̃ν̃t
((st, i))|s0 = (s, 0), st+1 ∼ Pμi,νt

(.|st), i = t [M ], νt(.|s) = ν̃t(.|(s, j))],

= min
(ν̃t)t∈N

E[

+∞∑
t=0

γtrμi,νt
(st)|s0 = (s, 0), st+1 ∼ Pμi,νt

(.|st), i = t [M ], νt(.|s) = ν̃t(.|(s, j))],

= min
(νt)t∈N

E[

+∞∑
t=0

γtrμi,νt(st)|s0 = s, st+1 ∼ Pμi,νt(.|st), i = t [M ]],

= vμ0,μ1, ... ,μM−1
(s). (3)

Let ṽ be a value function and let ṽi, i ∈ {0, ...,M − 1} be the restriction to S × {i} of ṽ.
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From (2) we also have: Bν̃ ṽ = r̃ν̃ + P̃ν̃ ṽ =

⎛
⎜⎜⎜⎜⎜⎝

Tμ0,ν0 ṽ1
Tμ1,ν1 ṽ2

...
TμM−2,νM−2 ṽM−1

TμM−1,νM−1 ṽ0

⎞
⎟⎟⎟⎟⎟⎠ where νj(.|s) ∼ ν̃(.|(s, j)) thus, we have:

Bṽ = minν̃(r̃ν̃ + P̃ν̃ ṽ) =

⎛
⎜⎜⎜⎜⎜⎝

Tμ0
ṽ1

Tμ1
ṽ2
...

TμM−2
ṽM−1

TμM−1
ṽ0

⎞
⎟⎟⎟⎟⎟⎠

But from basic property of dynamic programming we have:

BM ṽ∗ = ṽ∗

and finally, from the definition of B and from (3) we have:

(Tμ0 ... TμM−1
ṽ0)((s, 0)) = ṽ0((s, 0)) = vμ0,μ1, ... ,μM−1

(s)

B NSVI

First, let us define a (somehow abusive) simplifying notation. Γn will represents any products of n discounted
transition kernels. Then, Γn represents the class {γPμ1,ν1 . ... .γPμn,νn , with μi, νi random strategies}. For
example, the following property holds aΓibΓj + cΓk = abΓi+j + cΓk.

NSVI with a greedy and an evaluation error:

T vk−1 ≤ Tμk
vk−1 + ε′k, (approximate greedy step)

vk = Tμk
vk−1 + εk. (approximate evaluation step)

The following lemma shows how errors propagate through iterations.

Lemma 1. ∀M < k:

|v∗ − vk,M | ≤
∞∑
j=0

ΓMj

[
2Γk |v∗ − v0|+ 2

k−1∑
i=1

Γi |εk−i|+
k−1∑
i=0

Γi
∣∣ε′k−i

∣∣] .

Proof. We will bound the error made while running the non-stationary strategy (μk, ..., μk−M+1) rather than
the optimal strategy. This means bounding the following positive quantity:
v∗ − vk,M

To do so let us first bound the following quantity:

Tμk
vk−1 − vk,M

= Tμk
vk−1 − Tμk

... Tμk−M+1
vk,M , (with (1))

= Tμk
vk−1 − Tμk,ν̂k

... Tμk−M+1,ν̂k−M+1
vk,M ,

Where ν̂k−i such as Tμk−i,ν̂k−i
... Tμk−M+1,ν̂k−M+1

vk,M = Tμk−i
... Tμk−M+1

vk,M

≤ Tμk,ν̂k
... Tμk−M+1,ν̂k−M+1

vk−M +

i=M−1∑
i=1

γPμk,ν̂k
... γPμk−i+1,ν̂k−i+1

εk−i

− Tμk,ν̂k
... Tμk−M+1,ν̂k−M+1

vk,M ,

since vi = Tμi
vi−1 + εi, ∀vTμk

v ≤ Tμk,ν̂k
v and since Tμk,ν̂k

is affine

≤ γPμk,ν̂k
... γPμk−M+1,ν̂k−M+1

(vk−M − vk,M ) +

i=M−1∑
i=1

γPμk,ν̂k
... γPμk−i+1,ν̂k−i+1

εk−i. (4)
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We also have:

v∗ − vk = T v∗ − T vk−1 + T vk−1 − vk,

≤ Tμ∗v∗ − Tμ∗vk−1 − εk + ε′k, (since Tμ∗vk−1 ≤ T vk−1 and Tμ∗v∗ = T v∗)
≤ Tμ∗,ν̃k−1

v∗ − Tμ∗,ν̃k−1
vk−1 − εk + ε′k, (with Tμ∗,ν̃k−1

vk−1 = Tμ∗vk−1 and Tμ∗v∗ ≤ Tμ∗,ν̃k−1
v∗) (5)

≤ γPμ∗,ν̃k−1
(v∗ − vk−1)− εk + ε′k.

And we have:

v∗ − vk = T v∗ − Tμk
vk−1 + Tμk

vk−1 − vk,

≥ Tμk
v∗ − Tμk

vk−1 − εk, (since Tμk
v∗ ≤ T v∗)

≥ Tμk,ν∗
k
v∗ − Tμk,ν∗

k
vk−1 − εk, (where Tμk,ν∗

k
v∗ = Tμk

v∗ and since Tμk
vk−1 ≤ Tμk,ν∗

k
vk−1)

≥ γPμk,ν∗
k
(v∗ − vk−1)− εk.

which can also be written:
vk − v∗ ≤ γPμk,ν∗

k
(vk−1 − v∗) + εk.

Using the Γn notation .

v∗ − vk ≤ Γk(v∗ − v0)−
k−1∑
i=0

Γiεk−i +

k−1∑
i=0

Γiε′k−i, (6)

vk − v∗ ≤ Γk(v0 − v∗) +
k−1∑
i=0

Γiεk−i. (7)

v∗ − vk,M = T v∗ − T vk−1 + T vk−1 − vk,M ,

≤ Tμ∗v
∗ − Tμ∗vk−1 + T vk−1 − vk,M , (since Tμ∗vk−1 ≤ T vk−1)

≤ Tμ∗,ν̃k−1
v∗ − Tμ∗,ν̃k−1

vk−1 + T vk−1 − vk,M ,with ν̃k−1 defined in (5)

≤ γPμ∗,ν̃k−1
(v∗ − vk−1) + Tμk

vk−1 − vk,M + ε′k,

≤ Γ(v∗ − vk−1) + ΓM (vk−M − vk,M ) +

M−1∑
i=1

Γiεk−i + ε′k,With (4)

≤ Γ(v∗ − vk−1) + ΓM (vk−M − v∗) + ΓM (v∗ − vk,M ) +

M−1∑
i=1

Γiεk−i + ε′k. (8)

Then combining (6), (7) and (8):

v∗ − vk,M ≤ Γk(v∗ − v0)−
k−1∑
i=1

Γiεk−i +

k−1∑
i=1

Γiε′k−i + Γk(v0 − v∗) + ΓM
k−M−1∑

i=0

Γiεk−M−i

+

M−1∑
i=1

Γiεk−i + ε′k + ΓM (v∗ − vk,M ),

|v∗ − vk,M | ≤ 2Γk |v∗ − v0|+ 2

k−1∑
i=1

Γi |εk−i|+
k−1∑
i=0

Γi
∣∣ε′k−i

∣∣+ ΓM |v∗ − vk,M | .

And finally:

|v∗ − vk,M | ≤
∞∑
j=0

ΓMj [2Γk |v∗ − v0|+ 2

k−1∑
i=1

Γi |εk−i|+
k−1∑
i=0

Γi
∣∣ε′k−i

∣∣].



Julien Pérolat, Bilal Piot, Bruno Scherrer, Olivier Pietquin

Full analysis of NSVI Usually, one is only able to control the ε and ε′ according to some norm ‖.‖q,μ and

wants to control the difference of value according to some other norm ‖.‖p,ρ where ‖f‖p,σ =

(∑
s∈S

|f(s)|pσ(s)
) 1

p

.

Then the following theorem controls the convergence in Lp-norm:

Theorem 5. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals such that 1
q +

1
q′ = 1, then

for a non-stationary policy of size M and after k iterations we have:

‖v∗ − vk,M‖p,ρ ≤
2(γ − γk)(C1,k,0,M

q )
1
p

(1− γ)(1− γM )
sup

1≤j≤k−1
‖εj‖pq′,σ

+
(1− γk)(C0,k,0,M

q )
1
p

(1− γ)(1− γM )
sup

1≤j≤k

∥∥ε′j∥∥pq′,σ
+

2γk

1− γM
(Ck,k+1,0,M

q )
1
p ‖v∗ − v0‖pq′,σ ,

With:

Cl,k,d,M
q =

(1− γ)(1− γM )

γl − γk

k−1∑
i=l

∞∑
j=0

γi+jMcq(i+ jM + d)

and where:

cq(j) = sup
μ1,ν1,...,μj ,νj

∥∥∥∥d(ρPμ1,ν1
...Pμj ,νj

)

dσ

∥∥∥∥
q,σ

.

Proof. The full proof uses standard techniques of ADP analysis. It involves a standard lemma of ADP analysis.
Let us recall it (demonstration can be found in [14]).

Lemma 2. Let I and (Ji)i∈I be a sets of positive integers, {I1, ... , In} a partition of I. Let f and (gi)i∈I be
function such as:

|f | ≤
∑
i∈I

∑
j∈Ji

Γj |gi| =
n∑

l=1

∑
i∈Il

∑
j∈Ji

Γj |gi| .

Then for all p, q and q′ such as 1
q + 1

q′ = 1 and for all distribution ρ and σ we have

‖f‖p,ρ ≤
n∑

l=1

(Cq(l))
1
p sup

i∈Il

‖gi‖pq′,σ
∑
i∈Il

∑
j∈Ji

γj .

with the concentrability coefficient written:

Cq(l) =

∑
i∈Il

∑
j∈Ji

γjcq(j)∑
i∈Il

∑
j∈Ji

γj
.

Theorem 5 can be proven by applying lemma 2 with:

I = {1, ..., 2k}
I = {I1, I2, I3}, I1 = {1, 2, ..., k − 1}, I2 = {k, ..., 2k − 1}, I3 = {2k}



Non-Stationary Strategies for 2-Player Zero-Sum Markov Games

∀i ∈ I1
gi = 2εk−i

Ji = {i, i+M, i+ 2M, ...}

∀i ∈ I2
gi = ε′k−(i−k)

Ji = {i− k, i− k +M, i− k + 2M, ...}

∀i ∈ I3
gi = |v∗ − v0|
Ji = {k, k +M,k + 2M, ...}

With lemma 3 of [14]. we have:

‖v∗ − vk,M‖p,ρ ≤
2(γ − γk)(C1,k,0,M

q )
1
p

(1− γ)(1− γM )
sup

1≤j≤k−1
‖εj‖pq′,μ +

(1− γk)(C0,k,0,M
q )

1
p

(1− γ)(1− γM )
sup

1≤j≤k

∥∥ε′j∥∥pq′,μ
+

2γk

1− γM
(Ck,k+1,0,M

q )
1
p ‖v∗ − v0‖pq′,μ .

C PSDP

In this section we prove the two theorems for PSDP schemes (theorem 2) and 3).

C.1 PSDP2

First let us remind the PSDP1 algorithm.

vσk
= Tμk,νk

...Tμ0,ν0
0 + εk

T vσk
= Tμk+1

vσk
and Tμk+1

vσk
= Tμk+1,νk+1

vσk

Let’s note vμk,k+1
= Tμk

...Tμ0vμk,k+1
and only in this section vμ′

k,k−i
= Tμk−i...Tμ0vμk,k+1

.

To prove theorem 2 we will first prove the following lemma:

Lemma 3. ∀k > 0:

0 ≤ vμ∗ − vμk,k+1
≤Γk+1

μ∗ v∗ + Γμ∗Γkvμk,k+1
+

k∑
i=1

Γi
μ∗ε′k−i +

k∑
i=1

Γμ∗Γi−1ε′k−i

With ε′k = Γεk−1 − εk

Proof.

v∗ − vμk,k+1
= Tμ∗v∗ − Tμ∗vσk−1

+ Tμ∗vσk−1
− Tμk

vμ′
k,k−1

≤ γPμ∗,ν̃k
(v∗ − vσk−1

) + Tμ∗vσk−1
− Tμ∗vμ′

k,k−1

≤ γPμ∗,ν̃k
(v∗ − vσk−1

) + γPμ∗,ν̄k
(vσk−1

− vμ′
k,k−1

)

≤ Γμ∗ (v∗ − vσk−1
)︸ ︷︷ ︸

(1)

+Γμ∗ (vσk−1
− vμ′

k,k−1
)︸ ︷︷ ︸

(2)
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To prove (1):

v∗ − vσk
= Tμ∗v∗ − Tμk,νk

(vσk−1
− εk−1)− εk,

= Tμ∗v∗ − Tμk,νk
vσk−1

+ γPμk,νk
εk−1 − εk,

= Tμ∗v∗ − Tμk
vσk−1

+ γPμk,νk
εk−1 − εk,

= Tμ∗v∗ − Tμ∗vσk−1
+ Tμ∗vσk−1

− Tμk
vσk−1

+ γPμk,νk
εk−1 − εk,

≤ Tμ∗v∗ − Tμ∗,ν̃k
vσk−1

+ T vσk−1
− Tμk

vσk−1︸ ︷︷ ︸
= 0

+γPμk,νk
εk−1 − εk,

≤ Tμ∗,ν̃k
v∗ − Tμ∗,ν̃k

vσk−1
+ γPμk,νk

εk−1 − εk︸ ︷︷ ︸
= ε′k

,

≤ γPμ∗,ν̃k
(v∗ − vσk−1

) + ε′k,

≤ γPμ∗,ν̃k
...γPμ∗,ν̃0

(v∗) +
k−1∑
i=0

γPμ∗,ν̃k
...γPμ∗,ν̃k−i+1

ε′k−i,

≤ Γk+1
μ∗ (vμ∗)−

k−1∑
i=0

Γi
μ∗εk−i +

k−1∑
i=0

Γi
μ∗Γεk−i−1.

To prove (2):

vσk−1
− vμ′

k,k−1
= vσk−1

− Tμk−1
...Tμ0

vμk,k+1
,

= Tμk−1,νk−1
(vσk−2

− εk−2) + εk−1 − Tμk−1
...Tμ0vμk,k+1

,

= Tμk−1,νk−1
vσk−2

− Pμk−1,νk−1
εk−2 + εk−1 − Tμk−1

...Tμ0vμk,k+1
,

= Tμk−1
vσk−2

− Tμk−1
...Tμ0vμk,k+1

− ε′k−1,

= Tμk−1
vσk−2

− Tμk−1,ν̂k−1
...Tμ0vμk,k+1

− ε′k−1,

= Tμk−1
vσk−2

− Tμk−1,ν̂k−1
...Tμ0vμk,k+1

− ε′k−1,

≤ Tμk−1,ν̂k−1
vσk−2

− Tμk−1,ν̂k−1
...Tμ0vμk,k+1

− ε′k−1,

≤ γPμk−1,ν̂k−1
(vσk−2

− vμ′
k,k−2

)− ε′k−1,

≤ γPμk−1,ν̂k−1
...γPμ0,ν̂0(0− vμk,k+1

)−
k∑

i=1

γPμk−1,ν̂k−1
...γPμk−i+1,ν̂k−i+1

ε′k−i,

≤ Γkvμk,k+1
−

k∑
i=1

Γi−1ε′k−i.

Finally:

v∗ − vμk,k+1
≤ Γμ∗(v∗ − vσk−1

) + Γμ∗(vσk−1
− vμ′

k,k−1
)

≤ Γk+1
μ∗ v∗ +

k−1∑
i=0

Γi+1
μ∗ ε′k−1−i + Γμ∗Γkvμk,k+1

−
k∑

i=1

Γμ∗Γi−1ε′k−i

≤ Γk+1
μ∗ v∗ + Γμ∗Γkvμk,k+1

+

k∑
i=1

Γi
μ∗ε′k−i −

k∑
i=1

Γμ∗Γi−1ε′k−i
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Finally, noticing v∗ and vμk,k+1
≤ Vmax we have:

0 ≤ vμ∗ − vμk,k+1
≤ Γk+1

μ∗ v∗ + Γμ∗Γkvμk,k+1
+

k∑
i=1

Γi
μ∗ε′k−i +

k∑
i=1

Γμ∗Γi−1ε′k−i

≤ 2γk+1Vmax +

k∑
i=1

Γi
μ∗(Γεk−i−1 − εk−i) +

k∑
i=1

Γμ∗Γi−1(Γεk−i−1 − εk−i)

∣∣vμ∗ − vμk,k+1

∣∣ ≤ 2γk+1Vmax + 4

k∑
i=0

Γi |εk−i|

Lemma 2 concludes the proof of theorem 2.

C.2 PSDP1

Below is reminded the scheme of PSDP1

vσk
= Tμk

...Tμ00 + εk

T vσk
= Tμk+1

vσk
and Tμk+1

vσk
= Tμk+1,νk+1

vσk

First we will prove the following lemma:

Lemma 4. ∀k > 0:

vμ∗ − vσk
≤Γk+1

μ∗ v∗ +
k∑

i=1

Γi
μ∗ε′k−i

With Γn
μ∗ representing the class of kernel products {γPμ∗,ν1 . ... .γPμ∗,νn , with μi, νi random strategies}. And

with ε′k = Γεk−1 − εk

Proof. The proof comes from previous section. It is the bound of (1).

Noticing vμk,k+1
≥ vσk

− γk+1Vmax and v∗ ≤ Vmax we have:

0 ≤ vμ∗ − vμk,k+1
≤2γk+1Vmax + 2

k∑
i=0

Γi−1
μ∗ Γεk−i

Lemma 2 concludes the proof of theorem 3. However one has to do the proof with cμ∗,q(j) instead of cq(j).

D NSPI

We remind the non-stationary strategy of length m μk, ..., μk−m+1 is written μk,m and in this section μ′
k,m =

μk−m+1, μk, ..., μk−m+1, μk, .... Let also note Tμk,m
= Tμk

...Tμk−m+1
. Then we will have vμk,m

= Tμk,m
vμk,m

and
vμ′

k,m
= Tμk−m+1

vμk,m
.

NSPI:

vk = vμk,m
+ εk

T vk = Tμk+1
vk

First let’s prove the following lemma.

Lemma 5. ∀k ≥ m:

0 ≤ v∗ − vμk+1,m
≤Γk−m+1

μ∗ (v∗ − vμm,m
)

+ 2

k−m∑
j=0

Γj
μ∗Γ(

+∞∑
i=0

Γim)εk−j
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Proof. First we need an upper bound for:

vμ′
k,m

− vμμk+1,m
= Tμk−m+1

vμk,m
− vμk+1,m

≤ Tμk−m+1,ν̂k−m+1
vμk,m − vμk+1,m

with Tμk−m+1,ν̂k−m+1
vk = Tμk−m+1

vk

≤ Tμk−m+1,ν̂k−m+1
(vk − εk)− vμk+1,m

≤ Tμk−m+1,ν̂k−m+1
vk − γPμk−m+1,ν̂k−m+1

εk − vμk+1,m

≤ Tμk−m+1
vk − vμk+1,m

− γPμk−m+1,ν̂k−m+1
εk

≤ Tμk+1
vk − vμk+1,m

− γPμk−m+1,ν̂k−m+1
εk

≤ Tμk+1
(vμk,m

+ εk)− vμk+1,m
− γPμk−m+1,ν̂k−m+1

εk

≤ Tμk+1,ν̃k+1
vμk,m

− vμk+1,m
+ γ(Pμk+1,ν̃k+1

− Pμk−m+1,ν̂k−m+1
)εk with Tμk+1,ν̂k+1

vμk,m
= Tμk+1

vμk,m

≤ Tμk+1
vμk,m

− vμk+1,m
+ γ(Pμk+1,ν̃k+1

− Pμk−m+1,ν̂k−m+1
)εk

= Tμk+1
...Tμk−m+1

vμk,m
− Tμk+1

...Tμk−m+2
vμk+1,m

+ γ(Pμk+1,ν̃k+1
− Pμk−m+1,ν̂k−m+1

)εk

= Tμk+1
...Tμk−m+1

vμk,m
− Tμk+1,ν̄k+1

...Tμk−m+2,ν̄k−m+2
vμk+1,m

+ γ(Pμk+1,ν̃k+1
− Pμk−m+1,ν̂k−m+1

)εk

with Tμk+1,ν̄k+1
...Tμk−m+2,ν̄k−m+2

vμk+1,m
= Tμk+1

...Tμk−m+2
vμk+1,m

≤ Pμk+1,ν̄k+1
...Pμk−m+2,ν̄k−m+2︸ ︷︷ ︸
Γ̄k+1,m

(Tμk−m+1
vμk,m︸ ︷︷ ︸

vμ′
k,m

−vμk+1,m
) + γ(Pμk+1,ν̃k+1

− Pμk−m+1,ν̂k−m+1
)εk

Then

≤ (I − Γ̄k+1,m)−1γ(Pμk+1,ν̃k+1
− Pμk−m+1,ν̂k−m+1

)εk

Proof of the lemma:

v∗ − vμk+1,m
= Tμ∗v∗ − Tμk+1,m

vμk+1,m

= Tμ∗v∗ − Tμ∗vμk,m
+ Tμ∗vμk,m

− Tμk+1,m+1
vμk,m

+ Tμk+1,m+1
vμk,m

− Tμk+1,m
vμk+1,m

≤ γPμ∗,ν∗
k,m

(v∗ − vμk,m
) + Γ̄k+1,m(Tμk−m+1

vμk,m
− vμk+1,m

) + Tμ∗vμk,m
− Tμk+1

vμk,m︸ ︷︷ ︸
(1)

Where Tμ∗vμk,m
= Tμ∗,ν∗

k,m
vμk,m

(1):

Tμ∗vμk,m
− Tμk+1

vμk,m
= Tμ∗vμk,m

− Tμ∗vk + Tμ∗vk − Tμk+1
vk︸ ︷︷ ︸

≤0

+Tμk+1
vk − Tμk+1

vμk,m

≤ γPμ∗,ν∗
k+1

(vμk,m
− vk) + γPμk+1,ν̃k+1

(vk − vμk,m
) with Tμ∗vk = Tμ∗,ν∗

k+1
vk

≤ γ(Pμk+1,ν̃k+1
− Pμ∗,ν∗

k+1
)εk

And finally:

v∗ − vμk+1,m
≤ Γμ∗(v∗ − vμk,m

) + γ(Pμk+1,ν̃k+1
− Pμ∗,ν∗

k+1
)εk

+ Γ̄k+1,m(I − Γ̄k+1,m)−1γ(Pμk+1,ν̃k+1
− Pμk−m+1,ν̂k−m+1

)εk

≤ Γμ∗(v∗ − vμk,m
) + 2Γ(

+∞∑
i=0

Γim)εk

≤ Γk−m+1
μ∗ (v∗ − vμm,m) + 2

k−m∑
j=0

Γj
μ∗Γ(

+∞∑
i=0

Γim)εk−j



Non-Stationary Strategies for 2-Player Zero-Sum Markov Games

Theorem 6. Let ρ and σ be distributions over states. Let p,q and q′ be positive reals such that 1
q +

1
q′ = 1, then

for a non-stationary policy of size M and after k iterations we have:

‖v∗ − vk,m‖p,ρ ≤
2(γ − γk−m+2)(C1,k−m+2,0,m

q )
1
p

(1− γ)(1− γm)
sup

m≤j≤k−1
‖εj‖pq′,σ + γk−m(cq(k −m))

1
p

∥∥v∗ − vμm,m

∥∥
pq′,σ ,

Proof. The proof of the theorem 6 is done by applying lemma 2

Then theorem 4 falls using theorem 6.

E Figures

Figure 5: Performance (y-axis) of the strategy at step k (x-axis) for NSVI for a strategy of length 10,5,2 and 1
from right to left. Those curves are averaged over 70 Garnet NS = 100 , NA = 5, NB = 1 ( for the two curves
on the top) and NB = 2 (for the two curves on the bottom). All curves have a sparsity of 0.5. Each step of the
algorithm uses 2.25×NA ×NS samples.
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Figure 6: Performance (y-axis) of the strategy at step k (x-axis) for NSVI, PSDP and NSPI. Those curves are
averaged over 70 Garnet NS = 100 , NA = 8, NB = 2. All garnet have a sparsity of 0.5 and γ = 0.9. Each step
of NSPI and NSVI uses 2.25×NA ×NS samples at each step. Each step of PSDP2 uses 2.25×NA ×NS rollout
at each step.
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Figure 7: Performance (y-axis) of the strategy at step k (x-axis) for NSVI, PSDP and NSPI. Those curves are
averaged over 40 Garnet NS = 100 , NA = 5, NB = 1. All garnet have a sparsity of 0.5 and γ = 0.9. Each step
of NSPI, NSVI and PSDP uses 0.75× k ×NA ×NS samples at step k.


