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Abstract

A deep generative model is developed for rep-
resentation and analysis of images, based on
a hierarchical convolutional dictionary-learning
framework. Stochastic unpooling is employed
to link consecutive layers in the model, yield-
ing top-down image generation. A Bayesian
support vector machine is linked to the top-
layer features, yielding max-margin discrimina-
tion. Deep deconvolutional inference is em-
ployed when testing, to infer the latent features,
and the top-layer features are connected with the
max-margin classifier for discrimination tasks.
The model is efficiently trained using a Monte
Carlo expectation-maximization (MCEM) algo-
rithm; the algorithm is implemented on graphi-
cal processor units (GPU) to enable large-scale
learning, and fast testing. Excellent results are
obtained on several benchmark datasets, includ-
ing ImageNet, demonstrating that the proposed
model achieves results that are highly competi-
tive with similarly sized convolutional neural net-
works.

1 Introduction

Convolutional neural networks (CNN) (LeCun et al., 1989)
are effective tools for image and video analysis (Chatfield
et al., 2014; Krizhevsky et al., 2012; Mnih et al., 2013; Ser-
manet et al., 2013). The CNN is characterized by feedfor-
ward (bottom-up) sequential application of convolutional
filterbanks, pointwise nonlinear functions (e.g., sigmoid or
hyperbolic tangent), and pooling. Supervision in CNN is
typically implemented via a fully-connected layer at the top
of the deep architecture, usually with a softmax classifier
(Krizhevsky et al., 2012).

A parallel line of research concerns dictionary learning
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(Mairal et al., 2008; Zhang and Li, 2010; Zhou et al., 2012)
based on a set of image patches. In this setting one imposes
sparsity constraints on the dictionary weights with which
the data are represented. For image analysis/processing
tasks, rather than using a patch-based model, there has been
recent interest in deconvolutional networks (DN) (Chen
et al., 2011, 2013; Zeiler et al., 2010). In a DN one uses
dictionary learning on an entire image (as opposed to the
patches of an image), and each dictionary element is con-
volved with a sparse set of weights that exist across the
entire image. Such models are termed “deconvolutional”
because, given a learned dictionary, the features at test are
found through deconvolution. One may build deep decon-
volutional models, which typically employ a pooling step
like the CNN (Chen et al., 2011, 2013). The convolutional
filterbank of the CNN is replaced in the DN by a library of
convolutional dictionaries.

In this paper we develop a new deep generative model for
images, based on convolutional dictionary learning. At
test, after the dictionary elements are learned, deconvolu-
tional inference is employed, like in the aforementioned
DN research. The proposed method is related to Chen
et al. (2011, 2013), but a complete top-down generative
model is developed, with stochastic unpooling connecting
model layers (this is distinct from almost all other mod-
els, which employ bottom-up pooling). Chen et al. (2011,
2013) trained each layer separately, sequentially, with no
final coupling of the overall model (significantly under-
mining classification performance). Further, in Chen et al.
(2011, 2013) Bayesian posterior inference was approxi-
mated for all model parameters (e.g., via Gibbs sampling),
which scales poorly. Here we employ Monte Carlo ex-
pectation maximization (MCEM) (Wei and Tanner, 1990),
with a point estimate learned for the dictionary elements
and the parameters of the classifier, allowing learning on
large-scale data and fast testing.

Forms of stochastic pooling have been applied previously
(Lee et al., 2009; Zeiler and Fergus, 2013). Lee et al. (2009)
defined stochastic pooling in the context of an energy-
based Boltzmann machine, and Zeiler and Fergus (2013)
proposed stochastic pooling as a regularization technique.
Here unpooling is employed, yielding a top-down genera-
tive process.
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To impose supervision, we employ the Bayesian support
vector machine (SVM) (Polson and Scott, 2011), which
has been used for supervised dictionary learning (Henao
et al., 2014; Yuan et al., 2015) (but not previously for deep
learning). The proposed generative model is amenable to
Bayesian analysis, and here the Bayesian SVM is learned
simultaneously with the deep model. The models in Don-
ahue et al. (2014); He et al. (2014); Zeiler and Fergus
(2014) do not train the SVM jointly, as we do – instead, the
SVM is trained separately using the learned CNN features
(with CNN supervised learning implemented via softmax).

This paper makes several contributions: (i) A new deep
model is developed for images, based on convolutional dic-
tionary learning; this model is a generative form of the ear-
lier DN. (ii) A new stochastic unpooling method is pro-
posed, linking consecutive layers of the deep model. (iii)
An SVM is integrated with the top layer of the model, en-
abling max-margin supervision during training. (iv) The
algorithm is implemented on a GPU, for large-scale learn-
ing and fast testing; we demonstrate state-of-the-art classi-
fication results on several benchmark datasets, and demon-
strate scalability through analysis of the ImageNet dataset.

2 Supervised Deep Deconvolutional Model

2.1 Single layer convolutional dictionary learning

Consider N images {X(n)}Nn=1, with X(n) ∈
RNx×Ny×Nc , where Nx and Ny represent the num-
ber of pixels in each spatial dimension; Nc = 1 for
gray-scale images and Nc = 3 for RGB images. We start
by relating our model to optimization-based dictionary
learning and DN, the work of Mairal et al. (2008); Zhang
and Li (2010) and Zeiler et al. (2010), respectively. The
motivations for and details of our model are elucidated by
making connections to this previous work. Specifically,
consider the optimization problem

{D̂(k), Ŝ(n,k)} = argmin

{
N∑

n=1

∥∥∥X(n) −∑K
k=1 D(k) ∗ S(n,k)

∥∥∥
2

F

+λ1

K∑

k=1

‖D(k)‖2F + λ2

N∑

n=1

K∑

k=1

‖S(n,k)‖1
}
, (1)

where ∗ is the 2D (spatial) convolution operator. Each
D(k) ∈ Rnx×ny×Nc and typically nx � Nx, ny �
Ny . The spatially-dependent weights S(n,k) are of size
(Nx − nx + 1) × (Ny − ny + 1). Each of the Nc lay-
ers of D(k) are spatially convolved with S(n,k), and after
summing over theK dictionary elements, this manifests an
approximation for each of the Nc layers of X(n).

The form of (1) is as in Mairal et al. (2008), with the `1
norm on S(n,k) imposing sparsity, and with the Frobenius
norm on D(k) (`2 in Mairal et al. (2008)) imposing an
expected-energy constraint on each dictionary element; in
Mairal et al. (2008) convolution is not used, but otherwise

the model is identical, and the computational methods de-
veloped in Mairal et al. (2008) may be applied.

The form of (1) motivates choices for the priors in the pro-
posed generative model. Specifically, consider

X(n) =
K∑

k=1

D(k) ∗ S(n,k) + E(n), (2)

E(n) ∼ N (0, γ−1e I), D(k) ∼ N (0, I) (3)

with S
(n,k)
i,j denoting element (i, j) of S(n,k), drawn

S
(n,k)
i,j ∼ Laplace(0, b) = 1

2b exp(−|S
(n,k)
i,j |/b). We have

“vectorized” the matrices E(n) and D(k) (from the stand-
point of the distributions from which they are drawn), and
I is an appropriately sized identity matrix. The maximum
a posterior (MAP) solution to (3), with the Laplace prior
imposed independently on each component of S(n,k), cor-
responds to the optimization problem in (1), and the hyper-
parameters γe and b play roles analogous to λ1 and λ2.

The sparsity of S(n,k) manifested in (1) is a consequence
of the geometry imposed by the `1 operator; the MAP so-
lution is sparse, but, with probability one, any draw from
the Laplace prior on S(n,k) is not sparse (Cevher, 2009).
To impose sparsity on S(n,k) within the generative process,
we consider the spike-slab (Ishwaran and Rao, 2005) prior:

S
(n,k)
i,j ∼ [z

(n,k)
i,j N (0, γ−1s ) + (1− z(n,k)i,j )δ0],

z
(n,k)
i,j ∼ Bern(π(n,k)), π(n,k) ∼ Beta(a0, b0) (4)

where z(n,k)i,j ∈ {0, 1}, δ0 is a unit point measure concen-
trated at zero, and (a0, b0) are set to encourage that most
π(n,k) are small (Paisley and Carin, 2009), i.e., a0 = 1/K
and b0 = 1 − 1/K. For parameters γe and γs we impose
the priors γs ∼ Gamma(as, bs) and γe ∼ Gamma(ae, be),
with hyperparameters as = bs = ae = be = 10−6 to im-
pose diffuse priors (Tipping, 2001).

2.2 Generative Deep Model via Stochastic Unpooling

The model in (2) is motivated by the idea that each image
X(n) may be represented in terms of convolutional dictio-
nary elements D(k) that are shared across all N images. In
the proposed deep model, we similarly are motivated by the
idea that the feature maps S(n,k) may also be represented
in terms of convolutions of (distinct) dictionary elements.
Consider a two-layer model, with

X(n,2) =

K2∑

k2=1

D(k2,2) ∗ S(n,k2,2) (5)

S(n,k1,1) ∼ unpool(X(n,k1,2)) , k1 = 1, . . . ,K1 (6)

X(n,1) =

K1∑

k1=1

D(k1,1) ∗ S(n,k1,1) + E(n) (7)
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Figure 1: Demonstration of the stochastic unpooling; one 2 × 2
pooling block is depicted.

where X(n,1) = X(n). Dictionary elements D(k1,1) re-
place D(k) in (2), for representation of X(n). The weights
S(n,k1,1) are connected to X(n,2) via the stochastic oper-
ation unpool(·), detailed below. Motivated as discussed
above, X(n,2) is represented in terms of convolutions with
second-layer dictionary elements D(k2,2). The forms of the
priors on D(k1,1) and D(k2,2) are as above for D(k), and the
prior on E(n) is unchanged.

The tensor X(n,2) ∈ RN
(2)
x ×N(2)

y ×K1 with layer/slice k1
denoted by the matrix X(n,k1,2) ∈ RN

(2)
x ×N(2)

y (k1 ∈
{1, . . . ,K1}). Matrix X(n,k1,2) is a pooled version of
S(n,k1,1). Specifically, S(n,k1,1) is partitioned into contigu-
ous spatial pooling blocks, each pooling block of dimen-
sion p(1)x ×p(1)y , withN (2)

x = Nx/p
(1)
x andN (2)

y = Ny/p
(1)
y

(assumed to be integers). Each pooling block of S(n,k1,1)

is all-zeros except one non-zero element, with the non-zero
element defined in X(n,k1,2). Specifically, element (i, j) of
X(n,k1,2), denoted X(n,k1,2)

i,j , is mapped to pooling block

(i, j) in S(n,k1,1), denoted S
(n,k1,1)
i,j .

Let z(n,k1,1)i,j ∈ {0, 1}p(1)x p(1)y be a vector of all zeros, and
a single one, and the location of the non-zero element of
z
(n,k1,1)
i,j identifies the location of the single non-zero ele-

ment of pooling block S
(n,k1,1)
i,j which is set as X(n,k1,2)

i,j .
The function unpool(·) is a stochastic operation that de-
fines z(n,k1,1)i,j , and hence the way X(n,k1,2) is unpooled to
constitute the sparse S(n,k1,2). We impose

z
(n,k1,1)
i,j ∼ Mult(1,θ(n,k1,1)) (8)

θ(n,k1,1) ∼ Dir(1/(p(1)x p(1)y )) (9)

where Dir(·) denotes the symmetric Dirichlet distribution;
the Dirichlet distribution has a set of parameters, and here
they are all equal to the value indicated in Dir(·).
When introducing the above two-layer model, S(n,k2,2) is
drawn from a spike-slab prior, as in (4). However, we may
extend this to a three-layer model, with pooling blocks de-
fined in S(n,k2,2). A convolutional dictionary representa-
tion is similarly constituted for X(n,3), and this is stochas-
tically unpooled to generate S(n,k2,2). This may continued
for L layers, where the hierarchical convolutional dictio-
nary learning learns multi-scale structure in the weights on

the dictionary elements. At the top layer in the L-layer
model, the weights S(n,kL,L) are drawn from a spike-slab
prior of the form in (4).

Consider an L-layer model, and assume that
{{D(kl,l)}Kl

kl=1}Ll=1 have been learned/specified. An
image is generated by starting at the top, drawing
{S(n,kL,L)}KL

kL=1 from a spike-slab model. Then

{S(n,kL−1,L−1)}KL−1

kL−1=1 are constituted by convolving

{S(n,kL,L)}KL

kL=1 with {D(kL,L)}KL

kL=1, summing over the
KL dictionary elements, and then performing stochastic
unpooling. This process of convolution and stochastic
unpooling proceeds for L layers, ultimately yielding∑K1

k1=1 D(k1,1) ∗ S(n,k1,1) at the bottom (first) layer. With
the added stochastic residual E(n), the image X(n) is
specified.

We note an implementation detail that has been found
useful in experiments. In (9), the unpooling was per-
formed such that each pooling block in S(n,kl,l) has a sin-
gle non-zero element, with the non-zero element defined
in X(n,kl,l+1). The unpooling for block (i, j) was speci-
fied by the p(l)x p

(l)
y -dimensional z(n,kl,l)i,j vector of all-zeros

and a single one. In our slightly modified implementation,
we have considered a (p

(l)
x p

(l)
y + 1)-dimensional z(n,kl,l)i,j ,

which is again all zeros with a single one, and θ(n,kl,l) is
also p(l)x p

(l)
y + 1 dimensional. If the single one in z(n,kl,l)i,j

is located among the first p(l)x p
(l)
y elements of z(n,kl,l)i,j , then

the location of this non-zero element identifies the location
of the single non-zero element in the (i, j) pooling block,
as before. However, if the non-zero element of z(n,kl,l)i,j is

in position p(l)x p
(l)
y + 1, then all elements of pooling block

(i, j) are set to zero. This imposes further sparsity on the
feature maps and, as demonstrated in the Supplementary
Material (SM), it yields a model in which the elements of
the feature map that are relatively small are encouraged to
be zero. This turning off of dictionary elements with small
weights is analogous to dropout (Srivastava et al., 2014),
and in our model it also has been found to yield slightly
better classification performance.

2.3 Supervision via Bayesian SVMs

Assume that a label `n ∈ {1, . . . , C} is associated with
each of the N images, so that the training set may be
denoted {(X(n), `n)}Nn=1. We wish to learn a classi-
fier that maps the top-layer dictionary weights S(n,L) =
{S(n,kl,L)}KL

kl=1 to an associated label `n. The S(n,L) are
“unfolded” into the vector sn. We desire the classifier map-
ping sn → `n and our goal is to learn the dictionary and
classifier jointly.

We design C one-versus-all binary SVM classifiers. For
each of these classifiers, the problem may be posed as train-
ing with {sn, y(`)n }Nn=1, where sn are the top-layer dic-
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tionary weights, as discussed above, and y(`)n ∈ {−1, 1}
(a bias term is also appended to each sn, as is typical of
SVMs). If `n = ` ∈ {1, . . . , C} then y

(`)
n = 1, and

y
(`)
n = −1 otherwise; the indicator ` specifies which of

the C binary SVMs is under consideration. For notational
simplicity, we omit the superscript (`) for the remainder of
the section, and consider the Bayesian SVM for one of the
binary learning tasks, with labeled data {sn, yn}Nn=1. In
practice, C such binary classifiers are learned jointly, and
the value of yn ∈ {1,−1} depends on which one-versus-all
classifier is being specified.

Given a feature vector s, the goal of the SVM is to find an
f(s) that minimizes the objective function

γ
∑N
n=1 max(1− ynf(sn), 0) +R(f(s)), (10)

where max(1 − ynf(sn), 0) is the hinge loss, R(f(s)) is
a regularization term that controls the complexity of f(s),
and γ is a tuning parameter controlling the trade-off be-
tween error penalization and the complexity of the clas-
sification function. The decision boundary is defined as
{s : f(s) = 0} and sign(f(s)) is the decision rule, classi-
fying s as either −1 or 1 (Vapnik, 1995).

Recently, Polson and Scott (2011) showed that for the lin-
ear classifier f(s) = βTs, minimizing (10) is equivalent to
estimating the mode of the pseudo-posterior of β

p(β|S,y, γ) ∝∏N
n=1 L(yn|sn,β, γ)p(β|·) , (11)

where y = [y1 . . . yN ]T , S = [s1 . . . sN ], L(yn|sn,β, γ)
is the pseudo-likelihood function, and p(β|·) is the prior
distribution for the vector of coefficients β. Choosing β
to maximize the log of (11) corresponds to (10), where the
prior is associated with R(f(s)). Polson and Scott (2011)
showed thatL(yn|sn,β, γ) admits a location-scale mixture
of normals representation by introducing latent variables
λn, such that

L(yn|sn,β, γ) = e−2γmax(1−ynβT sn,0)

=
∫∞
0

√
γ√

2πλn
exp

(
− (1+λn−ynβT sn)

2

2γ−1λn

)
dλn. (12)

Note that the exponential in (12) is Gaussian wrt β. As
described in Polson and Scott (2011), this encourages data
augmentation for variable λn (λn is treated as a new ran-
dom variable), which permits efficient Bayesian inference
(see Polson and Scott (2011); Henao et al. (2014) for de-
tails). One of the benefits of a Bayesian formulation for
SVMs is that we can flexibly specify the behavior of β
while being able to adaptively regularize it by specifying
a prior p(γ) as well.

We impose shrinkage (near sparsity) (Polson and Scott,
2010) on β using the Laplace distribution; letting βi de-
note ith element of β, we impose
βi ∼ N (0, ωi), ωi ∼ Exp(κ), κ ∼ Gamma(aκ, bκ), (13)

and similar to κ and λn, a diffuse Gamma prior is imposed
on γ.

For the generative process of the overall model, activation
weights sn are drawn at layer L, as discussed in Sec. 2.2.
These weights then go into theC-class SVM, and from that
a class label is manifested. Specifically, each SVM learns
a linear function of {β>` s}C`=1, and for a given data s, its
class label is defined by (Yang et al., 2009):

`n = argmax
`

β>` sn. (14)

The set of vectors {β`}C`=1, connecting the top-layer fea-
tures s to the classifier, play a role analogous to the fully-
connected layer in the softmax-based CNN, but here we
constitute supervision via the max-margin SVM. Hence,
the proposed model is a generative construction for both
the labels and the images.

3 Model Training
The previous section described a supervised deep genera-
tive model for images, based on deep convolutional dic-
tionary learning, stochastic unpooling, and the Bayesian
SVM. The conditional posterior distribution for each model
parameter can be written in closed form, assuming the other
model parameters are fixed (see the SM). For relatively
small datasets we can therefore employ a Gibbs sampler
for both training and deconvolutional inference, yielding
an approximation to the posterior distribution on all pa-
rameters. Large-scale datasets prohibit the application of
standard Gibbs sampling. For large data we use stochas-
tic MCEM (Wei and Tanner, 1990) to find a maximum a
posterior (MAP) estimate of the model parameters.

We consolidate the “local” model parameters (latent
data-sample-specific variables) as

Φn =
(
{z(n,l)}Ll=1,S

(n,L),γ(n)
s ,E(n), {λ(`)n }C`=1

)
,

the “global” parameters (shared across all data) as Ψ =(
{D(l)}Ll=1,β

)
, and the data as Yn = (X(n), `n). We de-

sire a MAP estimator

ΨMAP = argmax
Ψ

∑

n

ln p(Ψ|Yn), (15)

which can be interpreted as an EM problem:
E-step: Perform an expectation with respect to the local
variables, using p(Φn|Yn,Ψt−1)∀n, where Ψt−1 is the
estimate of the global parameters from iteration (t− 1).
M-step: Maximize ln p(Ψ) +

∑
n EΦn

[ln p(Yn|Φn,Ψ)]
with respect to Ψ.
We approximate the expectation via Monte Carlo sampling,
which gives

Q(Ψ|Ψt−1) = ln p(Ψ) +
1

Ns

Ns∑

s=1

∑

n

ln p(Yn|Φs
n,Ψ), (16)
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where Φs
n is a sample from the full conditional posterior

distribution, and Ns is the number of samples; we seek
to maximize Q(Ψ|Ψt−1) wrt Ψ, constituting Ψt. Recall
from above that each of the conditional distributions in a
Gibbs sampler of the model is analytic; this allows conve-
nient sampling of local parameters, conditioned on speci-
fied global parameters Ψt−1, and therefore the aforemen-
tioned sampling is implemented efficiently (using mini-
batches of data, where It ⊂ {1, . . . , N} identifies the
stochastically defined subset of data in mini-batch t). An
approximation to the M-step is implemented via stochastic
gradient descent (SGD). The stochastic MCEM gradient at
iteration t is

∇ΨQ = ∇Ψ ln p(Ψ)+
1

Ns

Ns∑

s=1

∑

n∈It
∇Ψ ln p(Yn|Φs

n,Ψ).

(17)
We solve (15) using RMSprop (Dauphin et al., 2015; Tiele-
man and Hinton, 2012) with the gradient approximation in
(17).

In the learning phase, the MCEM method is used to learn
a point estimate for the global parameters Ψ. During
testing, we follow the same MCEM setup with Φtest =(
{z(∗,l)}L−1l=1 ,γ

(∗)
s ,E(∗)) , Ψtest = S(∗,L), when given

a new image X∗. We find a MAP estimator:

Ψtest
MAP = argmax

Ψtest
ln p(Ψtest|X∗,D), (18)

using MCEM (gradient wrt Ψtest). In this form of the
MCEM, all data-dependent latent variables Φtest are inte-
grated (summed) out in the expectation, except for the top-
layer feature map Ψtest, for which the gradient descent M
step yields a point estimate. The top-layer features are then
sent to the trained SVM to predict the label. Details for
training and inference are provided in the SM.

4 Experimental Results
We present results for the MNIST, CIFAR-10 & 100, Cal-
tech 101 & 256 and ImageNet 2012 datasets. The same
hyperparameter settings (discussed at the end of Section
2.1) were used in all experiments; no tuning was required
between datasets.

For the first five (small/modest-sized) datasets, the model is
learned via Gibbs sampling. We found that it is effective to
use layer-wise pretraining as employed in some deep gener-
ative models (Erhan et al., 2010; Hinton and Salakhutdinov,
2006). The pretraining is performed sequentially from the
bottom layer (touching the data), to the top layer, in an un-
supervised manner. Details on the layerwise pretraining are
discussed in the SM. In the pretraining step, we average 500
collection samples, to obtain parameter values (e.g., dictio-
nary elements) after first discarding 1000 burn-in samples.
Following pre-training, we refine the entire model jointly
using the complete set of Gibbs conditional distributions.

1000 burn-in iterations are performed followed by 500 col-
lection draws, retaining one of every 50 iterations. During
testing, the predictions are based on averaging the decision
values of the collected samples.

For each of these first five datasets, we show three clas-
sification results, using part of or all of our model (to il-
lustrate the role of each component): 1) Pretraining only:
this model (in an unsupervised manner) is used to extract
features and the futures are sent to a separate linear SVM,
yielding a 2-step procedure. 2) Unsupervised model: this
model includes the deep generative developed in Sec. 2.2,
but is also trained in an unsupervised manner (this is the un-
supervised model after refinement). The features extracted
by this model are sent to a separate linear SVM, and there-
fore this is also a 2-step procedure. 3) Supervised model:
this is the complete refined supervised model developed in
Sec. 2.2 and Sec. 2.3.

ImageNet 2012 is used to assess the scalability of our
model to large datasets. In this case, we learn the su-
pervised model initialized from the priors (without layer-
wise pretraining). The proposed online learning method,
MCEM, based on RMSProp (Dauphin et al., 2015; Tiele-
man and Hinton, 2012), is developed for both training and
inference with mini-batch size 256 and decay rate 0.95.
Our implementation of MCEM learning is based on the
publicly available CUDA C++ Caffe toolbox (August 2015
branch) (Jia et al., 2014), but contains significant modifi-
cations for our model. Our model takes around one week
to train on ImageNet 2012 using a nVidia GeForce GTX
TITAN X GPU with 12GB memory. Testing for the valida-
tion set of ImageNet 2012 (50K images) takes less than 12
minutes. In the subsequent tables providing classification
results, the best results achieved by our model are bold.

4.1 MNIST
The MNIST data (http://yann.lecun.com/
exdb/mnist/) has 60,000 training and 10,000 testing
images, each 28 × 28, for digits 0 through 9. A two-layer
model is used with dictionary element size 8× 8 and 6× 6
at the first and second layer, respectively. The pooling
size is 3 × 3 (px = py = 3) and the number of dictionary
elements at layers 1 and 2 are K1 = 39 and K2 = 117,
respectively. These numbers of dictionary elements are
obtained by setting the initial dictionary number to a
relatively large value (K1 = 50 and K2 = 200) in the
pretraining step and discarding infrequently used elements
by counting the corresponding binary indicator z – effec-
tively inferring the number of needed dictionary elements,
as in Chen et al. (2011, 2013). Table 1 summarizes the
classification results for MNIST. Our 2-layer supervised
model outperforms most other modern approaches. The
methods that outperforms ours are the complicated (6-
layer) ConvNet model with elastic disortions (Ciresan
et al., 2011) and the MCDNN, which combines several
deep convolutional neural networks (Ciresan et al., 2012).
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Table 1: Classification Error (%) for MNIST
Method Test error

2-layer convnet (Jarrett et al., 2009) 0.53
Our pretrained model + SVM 1.42

Our unsupervised model + SVM 0.52
Our supervised model 0.37

6-layer convnet (Ciresan et al., 2011) 0.35
MCDNN (Ciresan et al., 2012) 0.23

Table 2: Average test log-likelihood (in nats) on MNIST
Method Test log-likelihood

CMMVA (Li et al., 2015) -95.86
Our unsupervised model -89.44

Our supervised model -93.49
DRAW (Gregor et al., 2015) -84.13

To examine the performance of the proposed model, we
plot a selection of top-layer dictionary elements (projected
through the generative process down to the data plane)
learned by our supervised model, on the right of Fig. 2, and
on the left we show the corresponding elements inferred by
our unsupervised model. It can be seen that the elements
inferred by the supervised model are clearer (“unique” to a
single number), whereas the elements learned by the unsu-
pervised model are blurry (combinations of multiple num-
bers). Similar results were reported in Erhan et al. (2010).

We further investigate the generative capability of the pro-
posed model via the log-likelihood, as shown in Table 2.
It can be seen that our model outperforms the convolution-
based model by Li et al. (2015), and is comparable to the
state-of-art in Gregor et al. (2015).

The generated examples are shown in Fig. 3 (based on ran-
dom draws of the top-layer weights). We also demonstrate
the ability of the model to predict missing data (generative
nature of the model); reconstructions are shown in Fig. 4.
More results are provided in the SM.

4.2 CIFAR-10 & 100
The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) is
composed of 10 classes of natural 32 × 32 RGB images
with 50000 images for training and 10000 images for test-
ing. We apply the same preprocessing technique of global
contrast normalization and ZCA whitening as used in the
Maxout network (Goodfellow et al., 2013). A three-layer
model is used with dictionary element size 5 × 5, 5 × 5,
4× 4 at the first, second and third layer. The pooling sizes

Unsupervised Supervised

Figure 2: Selected layer 2 (top-layer) dictionary elements of
MNIST learned by the unsupervised model (left) and the super-
vised model (right).

Generated Images

Figure 3: Generated images using random dictionary weights.

Figure 4: Missing data interpolation of digits. For each subfig-
ure: (top) Original data, (middle) Observed data, (bottom) Recon-
struction.

Table 3: Classification Error (%) for CIFAR-10
Method Test error

Without Data Augmentation
Maxout (Goodfellow et al., 2013) 11.68

Network in Network (Lin et al., 2014) 10.41
Our pretrained + SVM 22.43

Our unsupervised + SVM 14.75
Our supervised model 10.39

Deeply-Supervised Nets (Lee et al., 2015) 9.69
With Data Augmentation

Maxout (Goodfellow et al., 2013) 9.38
Network in Network (Lin et al., 2014) 8.81

Our pretrained + SVM 20.62
Our unsupervised + SVM 10.22

Our supervised 8.27
Deeply-Supervised Nets (Lee et al., 2015) 7.97

are both 2 × 2 and the numbers of dictionary elements for
each layer are K1 = 48, K2 = 128 and K3 = 128. If we
augment the data by translation and horizontal flipping as
used in other models (Goodfellow et al., 2013), we achieve
8.27% error. Our result is competitive with the state-of-art,
which integrates supervision on every hidden layer (Lee
et al., 2015). In constrast, we only impose supervision at
the top layer. Table 3 summarizes the classification accu-
racy of our models and some related models.

The CIFAR-100 dataset (Krizhevsky and Hinton, 2009) is
the same as CIFAR-10 in size and format, except it contains
100 classes. We use the same settings as in the CIFAR-
10. Table 4 summarizes the classification accuracy of our
model and some related models. It can be seen that our
results (34.62%) are also very close to the state-of-the-art:
(34.57%) in Lee et al. (2015).
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Table 4: Classification Error (%) for CIFAR-100
Method Test error

Maxout (Goodfellow et al., 2013) 38.57
Network in Network (Lin et al., 2014) 35.68

Our pretrained + SVM (2 step) 77.25
Our unsupervised + SVM (2 step) 42.26

Our supervised model 34.62
Deeply-Supervised Nets (Lee et al., 2015) 34.57

Table 5: Classification Accuracy (%) for Caltech 101

Training images per class 15 30
Without ImageNet Pretrain

5-layer Convnet (Zeiler and Fergus, 2014) 22.8 46.5
HBP-CFA (Chen et al., 2013) 58 65.7

R-KSVD (Li et al., 2013) 79 83
3-layer Convnet 62.3 72.4

Our pretrained + SVM (2 step) 43.24 53.57
Our unsupervised + SVM (2 step) 70.47 80.39

Our supervised model 75.37 87.82
With ImageNet Pretrain

5-layer Convnet (Zeiler and Fergus, 2014) 83.8 86.5
5-layer Convnet (Chatfield et al., 2014) - 88.35

Our supervised model 89.1 93.15
SPP-net (He et al., 2014) - 94.11

4.3 Caltech 101 & 256
To balance speed and performance, we resize the images
of Caltech 101 and Caltech 256 to 128× 128, followed by
local contrast normalization (Jarrett et al., 2009). A three
layer model is adopted. The dictionary element sizes are
set to 7 × 7, 5 × 5 and 5 × 5, and the size of the pooling
regions are 4 × 4 (layer 1 to layer 2) and 2 × 2 (layer 2 to
layer 3).

The dictionary sizes for each layer are set to K1 = 48,
K2 = 84 and K3 = 84 for Caltech 101, and K1 = 48,
K2 = 128 and K3 = 128 for Caltech 256. Tables 5
and 6 summarize the classification accuracy of our model
and some related models. Using only the data inside Cal-
tech 101 and Caltech 256 (without using other datasets)
for training, our results (87.82%, 66.4%) exceed the previ-
ous state-of-art results (83%, 58%) by a substantial margin
(4%, 12.4%), which are the best results obtained by mod-
els without using deep convolutional models (using hand-
crafted features).

As a baseline, we implemented the neural network consist-
ing of three convolutional layers and two fully-connected
layers with a final softmax classifier. The architecture of
three convolutional layers is the same as our model. The
fully-connected layers have 1024 neurons each. The results
of neural network trained with dropout (Srivastava et al.,
2014), after carefully parameter tuning, are also shown in
Tables 5 and 6.

The state-of-the-art results on these two datasets are
achieved by pretraining the deep network on a large dataset,
ImageNet (Donahue et al., 2014; He et al., 2014; Zeiler
and Fergus, 2014). We consider similar ImageNet pretrain-
ing in Sec. 4.4. We also observe from Table 6 that when
there are fewer training images, our accuracy diminishes.

Table 6: Classification Accuracy (%) for Caltech 256
Training images per class 15 60
Without ImageNet Pretrain

5-layer Convnet (Zeiler and Fergus, 2014) 9.0 38.8
Mu-SC (Bo et al., 2013) 42.7 58

3-layer Convet 46.1 60.1
Our pretrained +SVM 13.4 38.2

Our unsupervised +SVM 40.7 60.9
Our supervised model 52.9 70.5

With ImageNet Pretrain
5-layer Convnet (Zeiler and Fergus, 2014) 65 74.2

5-layer Convnet (Chatfield et al., 2014) - 77.61
Our supervised model 67.0 77.9

Unsupervised: Layer One Dictionary
Unsupervised: Layer Two Dictionary Unsupervised: Layer Three Dictionary

Supervised: Layer One Dictionary
Supervised: Layer Two Dictionary Supervised: Layer Three Dictionary

Figure 5: Selected dictionary elements of our unsupervised
model (top) and supervised model (bottom) trained from Caltech
256.

This verifies that the model complexity needs to be selected
based on the size of the data. This is also consistent with
the results reported by Zeiler and Fergus (2014), in which
the classification performance is very poor without training
the model on ImageNet.

Fig. 5 shows selected dictionary elements learned from the
unsupervised and the supervised model, to illustrate the dif-
ferences. It is observed that the dictionaries without super-
vision tend to reconstruct the data while the dictionary el-
ements with supervision tend to extract features that will
distinguish different classes. For example, the dictionaries
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Figure 6: Generated image from the dictionaries trained from the
“Faces easy” category using random dictionary weigths.

Figure 7: Missing data interpolation. (Top) Original data. (Mid-
dle) Observed data. (Bottom) Reconstruction.

learned with supervision have double sides on the image
edges. Our model is generative, and as an example we gen-
erate images using the dictionaries trained from the “Faces
easy” category, with random top-layer dictionary weights
(see Fig. 6). Similar to the MNIST example, we also show
in Fig. 7 the interpolation results of face data with half the
image missing. Though the background is a little noisy,
each face is recovered in great detail by the third (top) layer
dictionaries. More results are provided in the SM.

4.4 ImageNet 2012

We train our model on the 1000-category ImageNet
2012 dataset, which consists of 1.3M/50K/100K train-
ing/validation/test images. Our training process follows the
procedure of previous work (Howard, 2013; Krizhevsky
et al., 2012; Zeiler and Fergus, 2014). The smaller im-
age dimension is scaled to 256, and a 224 × 224 crop is
chosen at 1024 random locations within the image. The
data are augmented by color alteration and horizontal flips
(Howard, 2013; Krizhevsky et al., 2012). A five layer con-
volutional model is employed (L = 5); the numbers (sizes)
of dictionary elements for each layer are set to 96 (5 × 5),
256 (5 × 5), 512 (3 × 3), 1024 (3 × 3) and 512(3 × 3);
the pooling ratios are 4 × 4 (layer 1 to 2) and 2 × 2 (oth-
ers). The number of parameters in our model is around 30
million.

We emphasize that our intention is not to directly com-
pete with the best performance in the ImageNet chal-
lenge (Szegedy et al., 2015; Simonyan and Zisserman,
2015), which requires consideration of many additional as-
pects, but to provide a comparison on this dataset with a
CNN with a similar network architecture (size). Table 7

summarizes our results compared with the “ZF”-net devel-
oped in Zeiler and Fergus (2014) which has a similiar ar-
chitecture with ours.

The MAP estimator of our model, described in Sec. 3,
achieves a top-5 error rate of 16.1% on the testing set,
which is close to Zeiler and Fergus (2014). Model aver-
aging used in Bayesian inference often improves perfor-
mance, and is considered here. Specifically, after running
the MCEM algorithm, we have a (point) estimate of the
global parameters. Using a mini-batch of data, one can
leverage our analytic Gibbs updates to sample from the
posterior (starting from the MAP estimate), and therefore
obtain multiple samples for the global model parameters.
We collect the approximate posterior samples every 1000
iterations, and retain 20 samples. Averaging the predic-
tions of these 20 samples (model averaging) gives a top-5
error rate of 13.6%, which outperforms the combination of
6 “ZF”-nets. Limited additional training time (one day) is
required for this model averaging.

Table 7: ImageNet 2012 classification error rates (%)

Method top-1
val

top-5
val

Our supervised model 37.9 16.1
“ZF”-net (Zeiler and Fergus, 2014) 37.5 16.0

Our model averaging 35.4 13.6
6 “ZF”-net (Zeiler and Fergus, 2014) 36 14.7

To illustrate that our model can generalize to other datasets,
we follow the setup in (Donahue et al., 2014; He et al.,
2014; Zeiler and Fergus, 2014), keeping five convolutional
layers of our ImageNet-trained model fixed and train a new
Bayesian SVM classifier on the top using the training im-
ages of Caltech 101 and Caltech 256, with each image re-
sized to 256 × 256 (effectively, we are using ImageNet to
pretrain the model, which is then refined for Caltech 101
and 256). The results are shown in Tables 5 and 6. We ob-
tain state-of-art results (77.9%) on Caltech 256. For Cal-
tech 101, our result (93.15%) is competitive with the state-
of-the-art result (94.11%), which combines spatial pyra-
mid matching and deep convolutional networks (He et al.,
2014). These results demonstrate that we can provide com-
parable results to the CNN in data generalization tasks,
while also scaling well.

5 Conclusions
A supervised deep convolutional dictionary-learning model
has been proposed within a generative framework, integrat-
ing the Bayesian support vector machine and a new form
of stochastic unpooling. Extensive image classification ex-
periments demonstrate excellent classification performance
on both small and large datasets. The top-down form of the
model constitutes a new generative form of the deep decon-
volutional network (DN) (Zeiler et al., 2010), with unique
learning and inference methods.
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