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Abstract

Radial Basis Function (RBF) networks are a clas-
sical family of algorithms for supervised learn-
ing. The most popular approach for training RBF
networks has relied on kernel methods using reg-
ularization based on a norm in a Reproducing
Kernel Hilbert Space (RKHS), which is a prin-
cipled and empirically successful framework. In
this paper we aim to revisit some of the older ap-
proaches to training the RBF networks from a
more modern perspective. Specifically, we ana-
lyze two common regularization procedures, one
based on the square norm of the coefficients in
the network and another one using centers ob-
tained by k-means clustering. We show that both
of these RBF methods can be recast as certain
data-dependent kernels. We provide a theoretical
analysis of these methods as well as a number
of experimental results, pointing out very com-
petitive experimental performance as well as cer-
tain advantages over the standard kernel methods
in terms of both flexibility (incorporating of un-
labeled data) and computational complexity. Fi-
nally, our results shed light on some impressive
recent successes of using soft k-means features
for image recognition and other tasks.

1 Introduction

Radial Basis Function (RBF) networks are a classical fam-
ily of algorithms for supervised learning. The goal of RBF
is to approximate the target function through a linear com-
bination of radial kernels, such as Gaussian (often inter-
preted as a two-layer neural network). Thus the output of
an RBF network learning algorithm typically consists of a
set of centers and weights for these functions. Proposed in
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[3] as a way to connect function approximation to learning,
RBF networks have drawn significant attention in the ma-
chine learning community due to their strong performance
and nice theoretical properties. The key aspect of any RBF
network algorithm is capacity control. It is easy to see that
any input data (xi, yi) can be fitted exactly by allowing ev-
ery data point to be a center and choosing appropriate co-
efficients. That, of course, is overfitting and thus RBF net-
works need to be regularized by penalizing the coefficients
and/or choosing a set of the centers of smaller cardinality
then the input data. A number of regularization approaches
have been proposed in the literature with various theoretical
properties, computational complexity and empirical perfor-
mance. By far the most popular and successful approach
to regularizing RBF’s has been based on kernel machines,
such as kernel SVM’s (K-SVM) or kernel regularized least
squares (K-RLS) algorithm. In these approaches the func-
tion space is constrained by the norm in a Reproducing
Kernel Hilbert Space (RKHS). While kernel methods are
often considered to be a different class of algorithms, they
are, in fact, types of RBF networks when used with a ra-
dial kernel. The kernel methods have become very popular,
easily eclipsing earlier RBF algorithms, due to their elegant
mathematical formulation grounded in classical functional
analysis, the convex nature of optimizations involved and
to their strong empirical performance.

In this paper we take a step back by revisiting two com-
mon methods for training RBF networks suggested before
the runaway success of kernel machines in machine learn-
ing. Specifically, we look at regularization by the squared
norm of the coefficients in an RBF network and on select-
ing centers through k-means clustering. Perhaps surpris-
ingly we are able to reinterpret these algorithms as ker-
nel methods with explicit distribution-dependent kernels.
We highlight certain advantages of these approaches com-
pared to the standard kernel methods both in terms of flex-
ibility (by easily incorporating unlabeled data) and scaling
to large datasets. In particular, our results provide a kernel
interpretation for the remarkable performance of methods
based on soft k-means embeddings on certain computer vi-
sion tasks [6, 12].

Our contributions could be summarized as follows.
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• We provide a theoretical analysis of RBF networks
whose centers are chosen at random from the same
probability distribution as the input data and which
is regularized based on the l2 norm of the coefficient
vector. In particular this setting applies to the case
when the set of the centers is the training set. We pro-
vide generalization bounds under the usual statistical
assumptions and show that in this case the RBF algo-
rithm is equivalent to a kernel machine with a data de-
pendent kernel whose limit form can be explicitly es-
tablished. It follows from our analysis that the asymp-
totic convergence rate of this methods equals to the
standard rate obtained for kernel machines.

• We analyze another common form of RBF networks,
where the centers are obtained from a k-means clus-
tering algorithm. We provide a bound on the gener-
alization error in terms of the quantization error of
the output of k-means algorithm. Moreover, when k
is large (as is the case in many common applications),
the distribution of k-means centers can be thought of
as a density itself, related to the underlying density
of the data. That allows us to reinterpret the k-means
RBF network in terms of another density-dependent
kernel. This observation sheds light on the strong per-
formance shown by soft k-means feature embedding
used in [6, 12], which are closely related to RBF net-
works with a certain radial kernel. Additionally, we
discuss some non-asymptotic properties of k-means
related to denoising and manifold learning.

• We discuss certain advantages of RBF networks
over the standard kernel methods. In particular semi-
supervised learning for these RBF’s is achieved natu-
rally and without any extra hyper-parameters as unla-
beled data can simply be used as centers. We discuss
why adding unlabeled data can be helpful and provide
experimental support for this observation.

• Finally, we provide a number of experimental results
to show that RBF’s provide comparable performance
to the kernel machines using both the square loss and
the hinge loss. We also demonstrate that the unlabeled
data is indeed helpful in most settings. Additionally
we show that k-means RBF can achieve regulariza-
tion by simply choosing the number of centers. This
is encouraging as the amount of computation required
depends on the number of centers and only linearly on
the number of input points.

Related Work. There is a large body of work investigat-
ing RBF networks from many different perspectives. Pro-
posed in [3], RBF networks were introduced as a function
approximation method and interpreted as artificial neural
networks. Analysis of RBF networks and the connections
to approximation theory were explored in [20]. Results in
[17, 18] showed that any function in the functional space

Lp(Rd) could be approximated by a RBF network arbitrar-
ily well, under a very mild condition on the RBF function.
To control the approximation power of the RBF network
and avoid overfitting, [16] suggested that RBF network
could be regularized by the squared norm of the coefficients
(ridge regression) or subset selection. Ridge regression-
based regularization has been quite popular in the litera-
ture due to its mathematical and computational simplicity.
Several other related forms of regularization such as us-
ing the information curvature information in [2], have also
been proposed. A number of approaches exist for select-
ing a subset of centers for building a parsimonious RBF
network, including [5, 14, 4, 15]. Furthermore, there have
been work on the statistical properties of RBF networks. In
particular, the insightful work [13] investigated the gener-
alization error of RBF networks and provided generaliza-
tion guarantees in terms of the number of training data and
the number of function basis in the setting of the statisti-
cal learning theory. The version of RBF considered in [13]
involved a non-convex optimization over the set of centers.

While the literature on RBF’s is quite large, to the best
of our knowledge there have been few in-depth empirical
comparisons between older methods for training RBF net-
works and kernel machines. That was perhaps due to the
fact that without a standardized center selection procedure
it was hard to produce systematic comparisons. The well-
known work [23] discussed the connection between RBF’s
and kernel SVM and provided some experimental results
on hand-written digits giving a slight advantage to SVM.

The rest of the paper is organized as follows. In Section
2, we give a brief description of ridge-RBF networks and
provide a theoretical analysis. We provide a discussion of
semi-supervised learning in Section 3. In Section 4, we dis-
cuss using centers obtained by k-means clustering. We pro-
vide generalization bounds, a kernel interpretation of these
methods as well as some observations on the regularization
effect of k-means. In Section 5 we provide a number of ex-
periments demonstrating (a) very competitive performance
of ridge-RBF to kernel methods with both square and hinge
losses; (b) consistent performance improvements from un-
labeled data; (c) regularizing effect of k-means.

2 RBF networks: generalization analysis

We start by formulating the problem of RBF network learn-
ing. Given a set of k centers z1, . . . , zk, an RBF network is
simply a function of the form

f(x) =

k∑
i=1

wih(‖x− zi‖). (1)

One of the most popular choices for h is the Gaussian ker-
nel, defined by h(‖x− z‖) = K(x, z) = exp

(
−‖x−z‖

2

2t

)
.

Given n training data points {(x1, y1), . . . , (xn, yn)}, the
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goal of a RBF network learning algorithm is to produce a
set z1, . . . , zk and weights wi, such that f(xi) ≈ yi (or
sign(f(xi)) = yi for most i for classification). It is clear
that regularization is necessary as it is very easy to fit any
data set by a function of this form.

In this section we will concentrate on a particularly simple
form of RBF, where the centers are simply the data points
(labeled or unlabeled) and the regularization term equals to
the sum of squared coefficients.

Choosing the loss function L (and normalizing the coeffi-
cients by 1

n ), we can train the model through minimizing
the empirical risk on the training data:

w∗ = arg min
w∈Rn

1

n

n∑
i=1

L(f(xi), yi) +
λ

n

n∑
i=1

w2
i

where f(x) =
1

n

n∑
j=1

wjh(‖x− xj‖)
(2)

This form of RBF is quite similar to kernel machine meth-
ods such as kernel support vector machine (K-SVM) [7]
and kernel regularized least square classifier (K-RLSC).
The important difference is that we use wTw rather than
wTKw used in kernel methods (where k is the kernel ma-
trix computed from the data). Additionally (and rather ele-
gantly) in kernel methods the functional form of the clas-
sifier is the result of the representer theorem. On the other
hand, the optimization problem in Eqn. 2 is very direct.
Moreover unlabeled data can be incorporated into Eqn. 2
by simply using the unlabeled points as additional centers.
We will provide some intuition and experimental results on
adding unlabeled data later on in the paper.

RBF network as an embedding. A useful interpretation
of RBF’s is to consider them as linear classifiers after an
embedding

φ : Rd → Rk, φ(x) = (h(‖x− z1‖), . . . , h(‖x− zk‖))

For example, for the square loss, the formulation in 2 be-
comes ordinary ridge regression in the embedding space.
This point of view is closely related to the ”feature map”
representation of kernel methods (note the different norm)
as well as the ”random kitchen sink” idea proposed in [22],
which are regularized by the norm ‖ · ‖∞ on the coeffi-
cients. We also note that “soft k-means embeddings” are in
fact RBF networks.

RBF network as a data-dependent kernel. For our anal-
ysis, we consider the square loss as it leads to an explicit
solution to Eqn. (2), which will simplify the discussion.
However the form of the kernel does not depend on the
loss function.
Proposition 1. Using the square loss L(f(x), y) =
(f(x)− y)2, the solution to Eqn (2) is

w∗ =

(
1

n
KTK + nλI

)−1
KTy.

where K is a n × n matrix with Kij = K(xi, xj). The
classifier function

f∗n(x) =
1

n

n∑
i=1

wiK(x, xi),

is equivalent to the solution to a regularized least-square
kernel machine with a data-dependent kernel K̂W , where

K̂W (x, z) =
1

n

n∑
i=1

K(x, xi)K(z, xi). (3)

The proof is standard and is given in Section A.1 of the
supplementary material. Assuming that the training data
xi are i.i.d. samples from a probability distribution p, it
is easy to see that as n → ∞, K̂W (x, z) converges
to a continuous density-dependent kernel KW (x, z) =∫
k(x, u)k(z, u)p(u)du. We will explore how this data de-

pendent kernel affects performance through an example of
semi-supervised learning in Section 3.

2.1 Connection to the Fredholm equation and
generalization bounds

Even though l2 regularized RBF networks were proposed
long ago and perform well in practice, our understanding of
these algorithms seems to be quite limited compared to the
rich literature on kernel machines. Below we will provide
a generalization analysis of the algorithm in a regression
setting.

Given n training data, (x1, y1), . . . , (xn, yn), let us assume
that xi are i.i.d. samples from a probability distribution p
and the outputs yi are determined1, that is yi = g(xi). We
assume the target function g is bounded by |g(x)| ≤ M .
We will also assume that the kernel K(x, z) = h(‖x− z|)
is positive definite.

Now consider the following continuous optimization algo-
rithm for approximating the target function g(x),

w∗ = min
w∈L2

p

‖Kpw − g‖2p + λ‖w‖2p,

with the approximator function f∗ = Kpw∗,
(4)

The norm ‖ · ‖p is defined by ‖w‖p =
(∫
w(x)2p(x)dx

) 1
2

and L2
p = {w, ‖w‖2p < ∞}. H is the RKHS with the RBF

kernel K, which is assumed to be positive semi-definite.
Kp : L2

p → H is an integral operator associated with the
kernel K, defined by

Kpw(x) =

∫
K(x, u)w(u)p(u)du.

It is easy to see Eqn (4) aims to approximate the target
function g through an integral equation Kpw ≈ g, also

1The case when y is also a random variable can also be ana-
lyzed by taking g(x) = E(y|x), cf [24].
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known as a Fredholm equation. This approach for super-
vised learning by solving an integral equation with regular-
ization is closely related to the Fredholm learning frame-
work proposed in [21] (where an RKHS regularizer was
used). By introducing this problem, we want to provide the
continuous counterpart of Eqn. (2). Using f∗, we can de-
compose the generalization error ‖g − f∗n‖p into approxi-
mation error and estimation error.

‖g − f∗n‖p ≤ ‖g − f∗‖p + ‖f∗ − f∗n‖p.
(Approx. Error) (Est. Error)

(5)

Using the techniques in [24], we have the following propo-
sition.

Proposition 2. For approximation error in Eqn (5), as-
suming the target function g satisfies ‖Kp−rg‖p < ∞ for
0 < r ≤ 2, we have

‖g −Kpw∗‖p ≤ λ
r
2 ‖Kp−rg‖p. (6)

Note that the approximation error depends on the smooth-
ness of the target function g, characterized by ‖Kp−rg‖p <
∞ for 0 < r ≤ 2. While this is a strong smoothness as-
sumption, it is a standard setting in a number of learning
theory papers including [24]. As usual the approximation
error tends to zero as the regularization coefficient λ de-
creases to 0.

Now let us present the result for the estimation error (see
the supplementary material for the proof)

Theorem 1. Assuming the target function is uniformly
bounded, that is g(x) < M for any x, with probability at
least 1− 2e−τ , we have

‖f∗n − f∗‖p

≤3κ2M(
√

2τ + 1 +
√

8τ)

λ
√
n

+
4κ2Mτ

3λn
+

4κ3Mτ

3λ
3
2n

(7)

where κ = maxxK(x, x).

Combine the results from Eqn. (6) and (7), we will have
the following result for the generalization error for the l2

regularized RBF network.

Corollary 1. Assume the target function g satisfies
‖Kp−rg‖p < ∞ for 0 < r ≤ 2 and g(x) < M for any
x. With probability at least 1− 2e−τ , we have

‖f∗n − g‖p ≤ Cτ,κ,Mn−
r

2r+4 ,

where Cτ,κ,M is a constant depending on τ, κ and M .

Thus, as n → ∞, the generalization error will converge to
0 with rate O(n−

r
2r+4 ) in probability. In particular, when

g is in the range of K2
p, the convergence rate is O(n−

1
4 ).

This is the same rate as the one for the least square kernel
machine given in [24].

3 RBF networks for semi-supervised
learning

In this section, will highlight the difference between RBF’s
and the standard kernel methods in the semi-supervised
setting, which makes dependence of the classifier on the
probability distribution more explicit. We first observe that
using unlabeled data in the RBF setting is a simple mat-
ter of adding additional center for unlabeled points, writing
f(x) = 1

n

∑n+m
i=1 wih(‖x−xi‖) wherem is the number of

unlabeled points in Eqn. (2). While it may seem to lead to
potential overfitting due to the extra parameters, this is ac-
tually not the case as the regularization penalty constrains
the complexity of the function class. A version of Theo-
rem 1 for the generalization error including unlabeled data
is given in the Theorem 4 in the supplementary material.

It is easy to see that unlabeled data changes the resulting
RBF classifier. A natural question of comparison to kernel
machines arises. We can put f(x) = 1

n

∑n+m
j=1 wjh(‖x −

xi‖) in the standard kernel framework, where the only dif-
ference will be using the norm wTKw (instead of wTw
for RBF). However it follows from the representer theo-
rem2 that the output of a kernel machine will ignore the
unlabeled data by putting zero weights on unlabeled points.

We will illustrate this difference by a simple example. Con-
sider a classification problem with the (marginal) data dis-
tribution p(x) = N(0, diag([9, 1])). Given two labeled
points, positive example xp = (−4, 3) and negative exam-
ple xn = (4,−3), consider two candidate classifier func-
tions using the kernel K(x, z) = exp

(
−‖x−z‖

2

4

)
,

1) f1(x) = K(x, xp) − K(x, xn), xp = (−4, 3), xn =
(4,−3);

2) f2(x) = K(x, zp) − K(x, zn), zp = (−5, 0), zn =
(5, 0).

Figure 1: Contours and classification boundaries for f1
(left) and f2 (right). Two labeled points x+ and x−, grey
unlabeled points are sampled from p. Note that ‖f1‖H =
‖f2‖H, however ‖f1‖HW

� ‖f2‖HW

From Figure 1, it is clear that both f1 and f2 have 0 empir-
ical risk on the two labeled data xp and xn. However, their

2Observe that the solution of the kernel machine is optimal
over the whole RKHS space. As f belongs to the RKHS, the extra
centers will make no difference in the final form of the solution.
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norms are different in the standard RKHSH corresponding
to K and the data-dependent RKHS HW corresponding to
the kernel KW in Eqn. (3).

First, we observe that f1, f2 that

‖f1‖2H = K(xp, xp) +K(xn, xn)− 2K(xn, xp)

=K(zp, zp) +K(zn, zn)− 2K(zn, zp) = ‖f2‖2H.

Thus, f1 and f2 are equivalently good solutions from the
point of a kernel machine with kernel K, as both the em-
pirical risk and regularization term are the same.

Estimating the RBF-related norm HW as a bit trickier and
we omit the details here, and just give the result

‖f1‖HW

‖f2‖HW

≈
1

p(xp)
+ 1

p(xn)

1
p(zp)

+ 1
p(zp)

≈ 54.6

The solution f1 has a much higher regularization penalty
and in the RBF framework would select f2 over f1.

This density dependence may or may not be desirable de-
pending on the assumptions but is generally consistent with
density and manifold-based semi-supervised learning. RBF
networks prefer boundaries orthogonal to the local princi-
pal components of the density. In practice there seems to
be a small but consistent improvement from unlabeled data
without any additional hyper-parameters, see Section 5 for
the experiments.

4 k-means RBF networks

From a practical point of view, the efficiency of RBF net-
work directly depends on the number of centers, which de-
termines how much computational power we need for each
data point. Even though including both labeled and unla-
beled data as basis could potentially improve performance,
it also makes it impractical for large scale data sets. Thus,
we need to find a way to choose a smaller set of centers,
while retaining performance as much as possible. Histori-
cally, people have used the k-means centers for RBF net-
work, which usually performs quite well in practice. Re-
cent research showed that non-linear features learned using
k-means were quite effective for a number of problems,
including visual object recognition and optical character
recognition [6, 12]. In this section, we will discuss why k-
means are a good choice for the centers of RBF networks,
and how the asymptotic properties of the RBF algorithm
will be affected by the k-means quantization.

4.1 k-means RBF algorithm

As a method for vector quantization, k-means splits the
data set into k subsets such that each data point is close
to the center of its cluster. More formally, given a data set

of size n, X = {x1, . . . , xn}, it seeks to find k centers
Ck = {c1, . . . , ck}, by minimizing the quantization error,

Ck = arg min
C,|C|=k.

Qk(C),

where Qk(C) :=

n∑
i=1

min
c∈C
‖xi − c‖2.

(8)

The clusters, defined by

Ci = {xj , ‖xj − ci‖ = min
c∈Ck
‖xj − c‖, 1 ≤ j ≤ n}

form a k-partition of the data set. Solving the problem ex-
actly is difficult, since the existing work [11] shows that
even the planar case is NP-hard. The most common method
used in practice is the greedy iterative Lloyd’s algorithm
proposed in [10], which is guaranteed to converge to a local
minimum. Moreover, the quantization loss of k-means af-
ter the intelligent initialization provided by k-means++ [1]
is shown to be within a factor of O(log k) of the optimal
loss Qk(Ck).

As k-means provides a concise representation of the data, it
is natural to replace the training set with its k-means centers
for radial basis functions. It gives us a classifier that could
be evaluated more efficiently than a full network. In this
section, we consider two types of k-means RBF networks:

(1) Weighted k-means network. Given the cluster weights,
Pn(Ci) = #{xj ∈ Ci}/n, the classifier is learned by

w∗k,p = arg min
w∈Rk

1

n

n∑
i=1

L(f(xi), yi) +
λ

k

k∑
i=1

Pn(Ci)w
2
i

where f(x) =

k∑
i=1

wih(‖x− ci‖)Pn(Ci).

The output classifier is denoted by fk,p.

(2) Unweighted k-means network, trained using

w∗k = arg min
w∈Rk

1

n

n∑
i=1

L(f(xi), yi) +
λ

k

k∑
i=1

w2
i

where f(x) =

k∑
i=1

wih(‖x− ci‖),

whose output is denoted by fk.

We note that the difference is in the density weighting of
the regularization term. Most applications use standard (un-
weighted k-means networks), however weighted k-means
networks turn out to be easier to analyze and seem to give
similar performance in practice.

Remark: We note that k-means RBF is equivalent to linear
classification/regression using “soft k-means features”, that
is applying the embedding x→ (h(‖x− c1‖), . . . , h(‖x−
ck‖)).
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We also note, the solution in Proposition 1 also applies to
the case of fk, as the only difference is the choice of the
centers. For fk,p, the solution is slightly different as extra
weights Pn(Ci) are involved. For square loss, the classifier
weights for fk,p will be

w∗k,p = KT (KPKT + λI)−1y,

whereK is a n×kmatrix withKij = K(xi, cj) andP is a
diagonal matrix of size k×k withP ii = Pn(Ci). Similar to
our analysis before, this classifier is equivalent to a kernel
machine that uses a data dependent kernel K̂W (x, z) =∑k
i=1K(x, ci)K(z, ci)P (Ci). As more clusters are used,

K̂W converges to a density dependent kernel, KW (x, z) =∫
K(x, u)K(z, u)p(u)du, which is the same as for the case

of RBF networks considered earlier.

For the standard (unweighted) k-means, the empirical dis-
tribution of the centers converges to a distribution that is
closely related to p as k → ∞, which allows us to also
write a form for the limiting kernel. The details are given
below.

4.2 Generalization bounds via quantization error and
kernel interpretation of k-means RBF

Under the setting of k-means RBF networks, it is interest-
ing to see how the quantization process affects the gener-
alization error and how it relates to the RBF network that
uses the whole training data as the set of centers. First, let
us provide an analysis for the generalization error of the
k-means RBF network. For this analysis, we will consider
the weighted k-means network, since the k-means with the
cluster weights provide an estimator of the distribution den-
sity. In particular, f∗k,p will converge to the f∗ from Eqn.
(4) and the estimation error ‖f∗ − f∗k,p‖ could be bounded
in terms of the quantization loss. We give this result in the
following theorem.

Theorem 2. Suppose the target function is uniformly
bounded g(x) ≤ M for any x, and the RBF kernel K is
translation invariant such thatK(x, z) = h(‖x−z‖2) with
a monotonic decreasing function h satisfying the Lipschitz
condition: |h(v) − h(u)| ≤ L|u − v|. For the estimation
error ‖f∗ − f∗k,p‖p, we have

‖f∗k,p − f∗‖p ≤

(
κ2 + κ

5
2

λ
+

2κ3

λ
3
2

) √
2τM√
n

+ 8L

(
κ2

λ
+
κ3

λ
3
2

)
MQk(C)

with probability at least 1− 2e−τ .

In addition to the error term depending on n, the estima-
tion error bound for k-means RBF network also contains a
term that depends on the quantization error Qk(Ck). As k
approaches to n, the quantization error decreases to 0, the

k-means RBF network could be viewed as an approxima-
tion of the one use the full data set.

For unweighted k-means networks, giving an explicit anal-
ysis for the generalization error is more subtle. However,
we could still understand their behavior by looking at the
limit of the data dependent kernel induced by the network.
First, the following theorem summarizes the limit of the
empirical distribution of the k-means centers.

Theorem 3. [8] Suppose p is absolutely continuous w.r.t.
Lebesgue measure in Rd and E‖X‖2+δ < ∞ for some
δ > 0. Let (Cp,k)k≥1 be the solution to,

Cp,k = arg min
C,|C|=k.

Qp,k(C),

where Qp,k(C) :=

∫
min
c∈C
‖x− c‖2p(x)dx.

(9)

Let µk be the empirical measure of the cluster centers µk =
1
|Cp,k|

∑
c∈Cp,k 1c. As k →∞ we have

µk
D−→ p2,

where p2 is a distribution with density p2(x) =

p(x)
d

d+2∫
p(x)

d
d+2 dx

. Here D−→ denotes convergence in distribution.

There are several notable aspects to this result. First, the
empirical measure of k-means centers converges to a prob-
ability distribution despite the deterministic process to
learn the centers. Second, if dimension d of the space is
sufficiently high such that d

d+2 ≈ 1, the centers can be
viewed as a density estimator of the original density. How-
ever, as d

d+2 < 1 this estimator over-emphasizes the areas
with low density. Interestingly, this tendency can be coun-
teracted by a finite sample phenomenon as k-means tends
to shrink ”short” directions. We will discuss this in more
details in Section 4.3.

Thus, RBF networks using k-means centers without
weights should be converging to the same Fredholm equa-
tion in Eqn. (4) while using a slightly different integral op-
erator Kp2 . Hence the induced data dependent kernel for
the unweighted k-means network converges to K ′W given
by

K ′W (x, z) =

∫
K(x, u)K(z, u)p2(u)du.

Due to the close relationship between p and p2, it performs
similarly to the weighted k-means RBF network.

4.3 Denoising effect of k-means

A k-means RBF network gives us a compact model for the
data, that makes large scale learning possible for RBF net-
works. On the other hand, it also introduces extra error due
to the quantization. Regarding this trade-off between com-
putational cost and the learning error, in this section we
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would like to give some intuition for the empirical choice
of k based on our observations. It turns out that k-means
clustering has local denoising properties related to mani-
fold learning.

As we know, the Lloyd’s algorithm for k-means is es-
sentially an expectation maximization (EM) algorithm for
the equally weighted spherical Gaussian Mixture Model
(GMM) with infinitesimal variance [9]. In other words, we
can think of k-means as a GMM with small variances. In
this sense, the distribution of the k-means centers could
be considered a deconvolution of the data distribution with
the Gaussian kernel, whose variance is on the order of the
average distance between the neighboring cluster centers.
That distance is on the order of O(k−

1
d ), where d is the

dimension. Thus, the distribution of k-means centers will
remove all directions whose variance is less than O(k

1
d )

and shrink all other directions locally by that amount. This
can be viewed as a form of denoising/manifold learning.

We can use the example of a circular distribution with
Gaussian noise in Figure 2 to illustrate this point. When
k is too small (the left panel), the original distribution is
not well approximated well by the means. As k becomes
larger (the center panel) the set of the means ignores the
“noisy” thin local direction thus learning the manifold, the
circle. When k is even larger (the right panel) the noise
suppressing property becomes insignificant and the set of
means can be viewed as a density approximation. Thus for

Figure 2: Left: k = 2; Middle: k = 10; Right: k = 100.

certain data distribution, with a properly chosen k, the k-
means RBF network will perform as well as the full RBF
netowrk, but with less computation overhead. We explore
this regularization effects of k-means by an experiment in
Section 5.3.

5 Experiments

5.1 Kernel machines and RBF networks

There have been few recent comparisons between kernel
machines and RBF networks. In this section, we compare
these methods on a number of datasets demonstrating RBF
networks perform comparably to kernel machines. We also
explore the performance of RBF’s in semi-supervised prob-
lem. We choose several benchmark datasets for our ex-
periments, including (1) handwritten digits recognition, in-

cluding MNIST, and MNIST variants (2) street view house
number (SVHN) recognition; (3) Adult, Cover Type and
Cod-RNA data sets form the UCI repository.

Supervised learning. The original data set is split into
three parts: a training set, a validation set (a randomly cho-
sen subset of 10%) and a testing set. For ridge RBF, the
training set is also used as the centers. The parameters, reg-
ularization coefficient λ and kernel width t were chosen
based on the performance on the validation set. The final
performance was be evaluated on the testing set, which is
shown in Table 1.

K-
SVM

K-
RLSC

RBFN-
hinge

RBFN-
LS

MNIST 1.5 1.32 1.72 1.35
MNIST-rand 15.8 13.7 16.6 14.3
MNIST-img 23.4 20.9 23.4 20.8
SVHN 60k 20.5 18.7 24.2 18.8

Adult 14.5 15.6 15.8 15.6
Cover Type 28.4 27.8 28.0 27.6
Cod-RNA 4.60 3.55 3.94 3.73

Table 1: Classification Errors (%) for supervised learning
with whole training data using K-SVM, K-RLSC, RBF net-
work with hinge loss and least-square loss.

Semi-supervised learning. When both labeled and unla-
beled are used as centers, RBF becomes a semi-supervised
learning algorithm. To explore the performance of RBF
network for this situation, we randomly choose 100 labeled
points from the original training set and use the whole set as
unlabeled. The final performance is evaluated on the held-
out testing set, which is shown in Table 2.

K-
SVM

K-
RLSC

RBFN-
hinge

RBFN-
LS

MNIST 26.8 26.0 27.4 23.3
MNIST rand 51.4 48.5 35.9 38.3
MNIST img 59.2 52.7 63.1 51.0
SVHN 60k 75.5 73.1 79.5 72.4

Adult 18.8 19.1 19.5 18.4
Cover Type 58.3 58.7 57.3 57.9
Cod-RNA 6.62 6.30 7.83 7.12

Table 2: Classification Errors (%) for semi-supervised
learning, with 100 labeled points, using K-SVM, K-RLSC,
ridge RBF network with hinge loss and least-square loss.

Performance improvements from using unlabeled data are
consistent, appearing in all but one data sets. Notably, un-
like other semi-supervised methods (admittedly with po-
tentially superior performance) no extra hyperparameters
are needed.
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5.2 RBF network with k-means centers

Figure 3: MNIST, MNIST-rand,
MNIST-img

Using RBF network
for supervised or
semi-supervised
learning is appeal-
ing considering
its performance.
However its use
on large data sets
(similarly to that of
kernel machines) is
hindered by the computational complexity. k-means RBF
network provides a more compact model than a full RBF
network and can lead to far more efficient algorithms with
competitive performance. Moreover k-means can serve
as regularization allowing to optimize computation and
minimize the error simultaneously.

We explore performance of the k-means RBF networks.
It is interesting to note that for the original MNIST data,

Figure 4: k-means centers represented as images for
MNIST (left); MNIST-rand (center); MNIST-img (right).

the centers tend to smooth out the quirky styles in some
of the digits, and represent average digits in the data set.
For MNIST-rand data, the background are samples from
a uniform distribution in [0, 1]784 around the clean dig-
its, while the digits usually come from low-dimensional
manifolds. k-means alleviates the noise for this classic
manifold+noise distribution. Finally, the background for
MNIST-img comes from the distribution of nature images,
which also form a low-dimensional manifold themselves.
Thus, k-means recovers not only the digits manifold, but
the manifold for the natural images leading to decreased
performance in our classification task.

Now let us apply the k-means RBF network to these three
variations of MNIST and fix k = 1000 for k-means. For
our experiments, the images are preprocessed so that all
values are in the range of [0, 1]. The k-means are trained
on the whole training+testing dataset. The kernel width t
are chosen from {300, 100, . . . , 1} and the regularization
parameter λ are chosen from 10, . . . , 10−8. Kernel Reg-
ularized Least-square classifier (K-RLSC) is used as the
benchmark. To better evaluate the effect of k-means, we
also consider the RBF network using k random sampled
points as centers, denoted by RBF-k-rand. The classifica-
tion errors are shown in Table 3. We observe that RBF net-

K-
RLSC

RBF-
rand

k-means
RBFN

k-means
RBFN(w)

MNIST 1.32 4.0 3.3 3.3
MNIST-rand 13.6 22.3 10.9 10.6
MNIST-img 21.2 26.4 25.3 25.5
SVHN-60k 18.7 26.2 26.2 26.1

Adult 15.4 15.0 15.7 15.6
Cover Type 27.2 37.9 35.7 35.7
Cod-RNA 3.55 3.87 3.99 4.05

Table 3: Classification Errors (%) for K-RLSC, RBF net-
work with 1000 randomly selected points as centers, k-
means centers, unweighted and weighted, k = 1000.

work using k-means RBF performs consistently better than
the RBF with k points chosen at random from the data. That
is consistent with Theorem 2 showing that the learning er-
ror could be bounded in terms of the quantization error,
that is minimized by k-means. While the performance of
k-means RBF is generally worse than that of the full net-
work, we note that the number of centers k = 1000 is far
smaller than the data size.

5.3 Regularization effect of k-means

As we discussed in Section 4.3, the number of centers used
in k-means also serves as a kind of regularization. To ex-

Figure 5: The regularization effect of k-means, based on
the classification error of RBFs network on MNIST-rand.

plore this effect, we fix small λ = 10−10 and choose dif-
ferent k from {62, 125, 250, 500, 1000, 2000, 4000}. The
classification error on MNIST-rand of K-RLSC (the con-
stant line) and k-means kernel are plotted in Figure 5. The
optimal performance is achieved at a certain number of
centers and deteriorates if more centers are used.
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A Proofs to the Theorems

A.1 Proof to Proposition 1

Proof. Given the kernel matrixK of size n×nwithKij =
K(xi, xj), the optimization problem in Eqn (2) could be
reformulated as

w∗ = min
w∈Rn

1

n

(
1

n
Kw − y

)T (
1

n
Kw − y

)
+λ

wTw

n
.

It is an unconstrained quadratic optimization problem,
whose solution is given by the following equation,(

1

n2
KTK + λI

)
w∗ =

1

n
KTy.

Thus, w∗ =
(

1
nK

TK + nλI
)−1

KTy. Define the ker-

nel K̂W as in the proposition, the final classifier function
will be

f∗n(x) =
1

n

n∑
i=1

K(x, xi)w
∗
i =

n∑
i=1

K̂W (x, xi)αi,

where α =

(
1

n
KKT + nλI

)−1
y.

(10)

And 1
nKK

T is the kernel matrix for K̂W because
( 1
nKK

T )ij = K̂W (xi, xj). The solution classifier f∗n in
Eqn (10) is then equivalent to the regularized least square
kernel machine using kernel K̂W .

A.2 Proof to Theorem 1 and Theorem 2

Before giving the proof, let us first introduce several impor-
tant objects that will be used in the proof.

Suppose K is a positive semi-definite kernel function,
which is associated with a reproducing kernel Hilbert
space (RKHS), denoted by H. Given n data points, X =
{x1, . . . , xn}, define a sample operator SX : H → l2n

SXf = [f(x1), . . . , f(xn)]. (11)

This operator was introduced in [24], which provided a
very simple framework to prove the consistency of kernel
methods for function reconstruction.

Now suppose the inner product in l2n is defined by
〈y, z〉n = 1

n

∑n
i=1 yizi. Then the conjugate operator of

SX , S∗X : l2n → H is

S∗Xy(x) =
1

n

n∑
i=1

K(x, xi)yi.

And we denote SZ for the sampling operator corresponding
to the training data for k-means, Z = {z1, . . . , zm}. In

our theorem in the main text, we use the training data for
training the k-means, thus SZ = SX .

Given k points C = {c1, . . . , ck}, and the correspond-
ing Voronoi diagram Ci, we can have a discrete square
summable space l2k. For u,v ∈ l2k, we have that 〈u,v〉k =∑k
i=1 uiviP (Ci), where P (Ci) = mi

m and mi = #{xj ∈
Ci, 1 ≤ j ≤ m}. We can also define a sample operator on
these k points, denoted by Sk : H → l2k,

Skf = [f(c1), . . . , f(ck)]. (12)

Due to the different inner product we used for l2k, we will
have its conjugate operator defined by

S∗kv(x) =

k∑
i=1

P (Ci)K(x, ci)vi.

To simplify our notation, we denote that A = Kpp and
AX = S∗XSX . Before giving the proof for Theorem 1, we
need the following two lemmas.
Lemma 1. Suppose {x1, . . . , xn} are i.i.d. samples from
a probability distribution p and A and AX are the opera-
tors defined above. For function h with ‖h‖∞ < ∞, with
probability at least 1− 2e−τ , we have

‖(A2 −A2
X)h‖H ≤

κ
3
2 ‖h‖p√
n

(√
2τ + 1 +

√
8τ
)

+
4κ

3
2 ‖h‖∞
3n

τ.

Lemma 2. Suppose the kernel functionK satisfies the con-
dition we given the Theorem 2. We have

‖S∗ZSZ − S∗kSk‖HS ≤ 8LκQk(C).

Now we can give the proof for Proposition 2.

Proof. Firstly, let us given the bound for the approxima-
tion error. Note that we can have the closed form solution
for Eqn (4), f∗ = Kph∗ =

(
Kp2 + λI

)−1Kp2g. AsK is a
positive semi-definite kernel, the operator Kp has positive
eigven values, λ1, λ2, . . . , and its eigenvectors ψi form a
complete orthogonal basis for L2

p. Since ‖Kp−rg‖p < ∞,
there exists a sequence d1, d2, . . . such that Kp−rg =∑∞
i=1 diψi and

∑∞
i=1 d

2
i < ∞. Thus g could be repre-

sented as g =
∑∞
i=1 λ

r
i diψ and f∗ =

∑∞
i=1

λ2
i

λ2
i+λ

λri diψ.
And we have

g − f∗ =

∞∑
i=1

λ

λ2i + λ
λri diψ.

Thus,

‖g − f∗‖2p =

∞∑
i=1

(
λ

λ2i + λ
λri di

)2

=λr
∞∑
i=1

(
λ

λ2i + λ

)2−r (
λ2i

λ2i + λ

)r
d2i

≤λr‖Kp−rg‖2p.



Qichao Que, Mikhail Belkin

Now let us give the proof for the estimation error ‖f∗n −
f∗‖H in Theorem 1.

Proof. Use the operator we define before, we can rewrite
the f∗n as follows,

f∗n =S∗X((SXS
∗
X)

2
+ λI)−1SXS

∗
XSXg

=((S∗XSX)
2

+ λI)−1 (S∗XSX)
2
g

To simplify our notation, we let A = Kp and AX =
S∗XSX .

‖f∗n − f∗‖H

=
∥∥∥(A2

X + λI
)−1A2

Xg −
(
A2 + λI

)−1A2g
∥∥∥
H

≤
∥∥∥(A2

X + λI
)−1A2

Xg −
(
A2
X + λI

)−1A2g
∥∥∥
H

+
∥∥∥(A2

X + λI
)−1A2g −

(
A2 + λI

)−1A2g
∥∥∥
H

=
∥∥∥(A2

X + λI
)−1 (A2 −A2

X

)
g
∥∥∥
H

+
∥∥∥(A2 + λI

)−1 (A2
X −A2

)
f∗
∥∥∥
H
.

≤
∥∥∥(A2

X + λI
)−1∥∥∥ ∥∥(A2 −A2

X

)
g
∥∥
H

+
∥∥∥(A2

X + λI
)−1∥∥∥ ∥∥(A2

X −A2
)
f∗
∥∥
H .

(13)

It is not hard to see that ‖
(
A2 + λI

)−1 ‖ ≤ 1
λ .

We can use Lemma 3 to bound
∥∥(A2 −A2

X

)
g
∥∥
H and∥∥(A2 −A2

X

)
f∗
∥∥
H.

For g, we have ‖g‖p ≤ ‖g‖∞ < M . For f∗, as f∗ = Kpw∗
optimizes Eqn. (4), letting w = 0, we have

‖f∗ − g‖2p + λ‖w∗‖2p ≤ ‖g‖2p ≤M2.

So ‖f∗‖p ≤ 2M and ‖f∗‖H ≤ κ
1
2M√
λ

. It implies that

‖f∗‖∞ ≤ κM√
λ

.

Thus,

‖f∗n − f∗‖H

≤3κ
3
2M(
√

2τ + 1 +
√

8τ)

λ
√
n

+
4κ

3
2Mτ

3λn
+

4κ
5
2Mτ

3λ
3
2n

.

Using the fact that ‖f‖p ≤ κ
1
2 ‖f‖H, we will get the theo-

rem.

Similarly, we can also prove the Theorem 2 about the esti-
mation error for the RBF network with k-means centers.

Proof. Using the operator we defined before, we can
rewrite f∗k as follows,

f∗k = S∗kw
∗ = S∗k (SkS

∗
XSXS

∗
k + λI)

−1
SkS

∗
XSXg

= (S∗kSkS
∗
XSX + λI)

−1
S∗kSkS

∗
XSXg

In addition to the notation used in previous proof, we also
denote that Ak = S∗kSk. Similar with Eqn (19), we have

‖f∗k − f∗‖

≤
∥∥∥(A2 + λI

)−1∥∥∥∥∥A2 −AkAX
∥∥ ‖f∗k‖H

+
∥∥∥(A2 + λI

)−1∥∥∥∥∥(AkAX −A2
)
g
∥∥
H .

It is not hard to see that ‖
(
A2 + λI

)−1 ‖ ≤ 1
λ .

For A2 −AkAX , we have

A2 −AkAX
=(A−AX +AX −Ak)A+Ak(A−AX)

Note that the only difference from the previous proof is the
extra term ‖AX −Ak‖, which is bounded by

‖AX −Ak‖ ≤ ‖AX −Ak‖HS ≤ 8LκQk(C)

Thus, with probability at least 1− 2e−τ ,

‖A2 −AkAX‖ ≤ κ2
√

2τ

(
1√
n

+
1√
m

)
+ 8Lκ2Qk(C)

and

‖(A2 −AkAX)g‖H

≤κ
2
√

2τ‖g‖∞√
n

+
κ

3
2

√
2τ√
n
‖g‖∞ + 8Lκ

3
2Qk(C)‖g‖∞

And using the same process for bounding the ‖f∗m,n‖, we
have

‖f∗k‖H ≤
√
κ√
λ
M

Thus,

‖f∗k − f∗‖H

≤ 1

λ

(
κ2
√

2τ√
n

+
κ

3
2

√
2τ√
n

+ 8Lκ
3
2Qk(C)

)
M

+
1

λ

(
κ2
√

2τ√
n

+
κ2
√

2τ√
n

+ 8Lκ2Qk(C)

)
κ

1
2

λ
1
2

M

=

(
κ

3
2 + κ2

λ
+

2κ
5
2

λ
3
2

) √
2τM√
n

+ 8L

(
κ

3
2

λ
+
κ

5
2

λ
3
2

)
MQk(C)

A.3 Proof to Lemma 2

Proof. We know that for a positive semi-definite kernel K,
there exists a feature map Φ, that maps each point x to



Back to the Future: Radial Basis Function Networks Revisited

an element in RKHS. By the property of reproducing ker-
nel, K(x, z) = 〈Φ(x),Φ(z)〉. That is, the kernel function
K(x, z) is the inner product of Φ(x) and Φ(z). Now we can
define the outer product operator Φ(x) ⊗ Φ(x) : H → H,
where (Φ(x)⊗ Φ(x)) f = f(x)Φ(x).

Using this notation, we can redefine the S∗ZSZ and S∗kSk,

S∗ZSZ =
1

n

m∑
i=1

Φ(zi)⊗ Φ(zi)

S∗kSk =

k∑
i=1

P (Ci)Φ(ci)⊗ Φ(ci).

To bound ‖S∗ZSZ − S∗kSk‖HS , we have

‖S∗ZSZ − S∗kSk‖2HS

=

∥∥∥∥∥ 1

m

m∑
i=1

Φ(zi)⊗ Φ(zi)−
k∑
i=1

P (Ci)Φ(ci)⊗ Φ(ci)

∥∥∥∥∥
2

HS

=

∥∥∥∥∥∥ 1

m

k∑
i=1

∑
zj∈Ci

(Φ(zj)⊗ Φ(zj)− Φ(ci)⊗ Φ(ci))

∥∥∥∥∥∥
2

HS

We could use the counterpart of Jensen’s inequality for the
Hilbert-Schmidt norm of an operator, which gives us,

‖S∗ZSZ − S∗kSk‖2HS

≤ 1

m

k∑
i=1

∑
zj∈Ci

‖Φ(zj)⊗ Φ(zj)− Φ(ci)⊗ Φ(ci)‖2HS .

(14)

Suppose e1, e2, . . . is a orthogonal basis ofH. By the defi-
nition of Hilbert-Schmidt norm, for any x and z, we have

‖Φ(x)⊗ Φ(x)− Φ(z)⊗ Φ(z)‖2HS
=
∑
i

‖(Φ(x)⊗ Φ(x)− Φ(z)⊗ Φ(z)) ei‖2H

=
∑
i

‖ei(x)Φ(x)− ei(z)Φ(z)‖2H

≤2
∑
i

‖ei(x)Φ(x)− ei(z)Φ(x)‖2H

+ 2
∑
i

‖ei(z)Φ(x)− ei(z)Φ(z)‖2H

=2
∑
i

‖〈ei,Φ(x)− Φ(z)〉Φ(x)‖2H

+ 2
∑
i

‖〈ei,Φ(z)〉(Φ(x)− Φ(z))‖2H

≤4‖Φ(x)‖2H‖Φ(x)− Φ(z)‖2H
=4κ‖Φ(x)− Φ(z)‖2H,

(15)

where κ = maxx ‖Φ(x)‖2H = maxxK(x, x). And be-
cause of the property of RKHS, we have that

‖Φ(x)− Φ(z)‖2H = K(x, x) +K(z, z)− 2K(x, z).

As we assumed, K is a translation invariant kernel such
that K(x, z) = f(‖x − z‖2) for a monotonic decreasing
function f that satisfies the Lipschitz condition, we have
that

|K(x, x)−K(x, z)| =
∣∣f(0)− f(‖x− z‖2)

∣∣ ≤ L‖x−z‖2.
And we have the same inequality for K(z, z) − K(x, z).
Thus, we have

‖Φ(x)− Φ(z)‖2H ≤ 2L‖x− z‖22 (16)

Combine the results in Eqn (14), (15) and (16), we have the
Lemma.

A.4 Proof to Lemma 3

Lemma 3.

‖(A2 −A2
X)h‖H ≤

κ
3
2 ‖h‖p√
n

(√
2τ + 1 +

√
8τ
)

+
4κ

3
2 ‖h‖∞
3n

τ.

Proof. For ‖(A2 −A2
X)h‖H, we have

‖(A2 −A2
X)h‖H

≤‖A−AX‖‖Ah‖H + ‖AX‖‖(A−AX)h‖H

Firstly, we have ‖Ah‖H ≤ κ
1
2 ‖h‖p.

By the Lemma 3 in [24] and concentration inequality in
RKHS in [19], we have

‖(A−AX)h‖H ≤
4κ

1
2 ‖h‖∞
3n

τ +
κ

1
2 ‖h‖p√
n

(
1 +
√

8τ
)

and ‖A−AX‖ ≤ κ
√
2τ√
n

with probability at least 1− 2e−τ .

Thus, for any g ∈ L2
p with ‖g‖∞ <∞, with probability at

least 1− 2e−τ , we have

‖(A2 −A2
X)h‖H ≤

κ
3
2 ‖h‖p√
n

(√
2τ + 1 +

√
8τ
)

+
4κ

3
2 ‖h‖∞
3n

τ.

B Estimation error for more general RBF
network

In many applications of machine learning, we have both
labeled and unlabeled points available for training. Suppose
we have m points {xi, 1 ≤ i ≤ m}, and the first n are
labeled {(xi, yi), 1 ≤ i ≤ n}. We can also include the
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unlabeled for the centers in RBF network. In this case, the
classifier function has the form,

f(x) =
1

m

m∑
i=1

wiK(x, xi),

where {xi, 1 ≤ i ≤ m} including both labeled and unla-
beled points. The weights (w1, . . . , wm) could be learned
by minimizing the regularized empirical loss on the train-
ing data of size n. More specifically,

w∗ = arg min
w∈Rm

1

n

n∑
i=1

L(f(xi), yi) +
λ

m

m∑
i=1

w2
i

where f(x) =
1

m

m∑
j=1

wjh(‖x− xj‖).
(17)

Denote the output classifier as fm,n.

We will have the following theorem regarding the estima-
tion error of this RBF network.
Theorem 4. Suppose the target function is uniformly
bounded, g(x) < M for any x and assume that all the data
points {xi, 1 ≤ i ≤ m} are i.i.d. samples from a proba-
bility distribution p. With probability at least 1− 2e−τ , we
have

‖f∗ − f∗m,n‖p ≤
(

1

λ
3
2

κ3 +
1

λ
κ2
) √

2τM√
m

+

(
1

λ
3
2

κ3 +
1

λ
κ

5
2

) √
2τM√
n

(18)

where κ = maxxK(x, x).

Proof. Use the operator we define before, we can rewrite
the f∗m,n as follows,

f∗m,n =S∗Z(SZS
∗
XSXS

∗
Z + λI)−1SZS

∗
XSXg

=(S∗ZSZS
∗
XSX + λI)−1S∗ZSZS

∗
XSXg

To simplify our notation, we letA = Kp andAX = S∗XSX
and AZ = S∗ZSZ .

‖f∗m,n − f∗‖

=
∥∥∥(AZAX + λI)

−1AZAXg −
(
A2 + λI

)−1A2g
∥∥∥
H

≤
∥∥∥(AZAX + λI)

−1AZAXg −
(
A2 + λI

)−1AZAXg∥∥∥
H

+
∥∥∥(A2 + λI

)−1AZAXg − (A2 + λI
)−1A2g

∥∥∥
H

=
∥∥∥(A2 + λI

)−1 (A2 −AZAX
)
f∗m,n

∥∥∥
H

+
∥∥∥(A2 + λI

)−1 (AZAX −A2
)
g
∥∥∥
H
.

≤
∥∥∥(A2 + λI

)−1∥∥∥∥∥A2 −AZAX
∥∥∥∥f∗m,n∥∥H

+
∥∥∥(A2 + λI

)−1∥∥∥∥∥(AZAX −A2
)
g
∥∥
H .

(19)

It is not hard to see that ‖
(
A2 + λI

)−1 ‖ ≤ 1
λ .

For A2 −AZAX , we have

A2 −AZAX = (A−AZ)A+AZ(A−AX)

Thus,

‖(A2 −AZAX)g‖H
≤‖A−AZ‖‖Ag‖H + ‖AZ‖‖(A−AX)g‖H

Firstly, we have ‖Ag‖H ≤ κ
1
2M . By the concentration

inequality in RKHS [19], we have ‖(A−AX)g‖ ≤ κ
√
2τM√
n

and ‖A−AZ‖ ≤ κ
√
2τ√
m

with probability at least 1− 2e−τ .
With probability at least 1− 2e−τ , we have

‖(A2 −AZAX)g‖H ≤ κ
3
2

√
2τM

(
1√
m

+
κ

1
2

√
n

)
.

Similarly, we have

‖A2 −AZAX‖ ≤ κ2
√

2τ

(
1√
m

+
1√
n

)

Now let us look at ‖f∗m,n‖H.

‖f∗m,n‖2H =

m∑
i,j=1

wiwjPm(Ci)Pm(Cj)K(zi, zj)

≤κ
m∑

i,j=1

w2
i + w2

j

2
Pm(Ci)Pm(Cj) = κ

m∑
i=1

w2
iPm(Ci)

Note that
∑m
i=1 w

2
i Pm(Ci) is the regularizer in Eqn. ().

As f∗m,n is the optimizer to Eqn. (), we have ‖f∗m,n‖H ≤√
κM√
λ

.

Thus,

‖f∗m,n − f∗‖H

≤ 1

λ
3
2

κ
5
2

√
2τM

(
1√
m

+
1√
n

)
+

1

λ
κ

3
2

√
2τM

(
1√
m

+
κ

1
2

√
n

)

=

(
1

λ
3
2

κ
5
2 +

1

λ
κ

3
2

) √
2τM√
m

+

(
1

λ
3
2

κ
5
2 +

1

λ
κ2
) √

2τM√
n

Using the fact that ‖ · ‖p ≤ κ
1
2 ‖ · ‖H, we have the theorem.


