Low-Rank Approximation of Weighted Tree Automata (Supplementary Material)

Guillaume Rabusseau
Aix-Marseille University

Borja Balle
Lancaster University

Shay B. Cohen
University of Edinburgh

1 Proof of Theorem 2

Theorem. Let $f: \mathfrak{T} \rightarrow \mathbb{R}$ be rational. If $\mathbf{H}_{f}=\mathbf{P S}$ is a rank factorization, then there exists a minimal WTA A computing f such that $\mathbf{P}_{A}=\mathbf{P}$ and $\mathbf{S}_{A}=\mathbf{S}$.

Proof. Let $n=\operatorname{rank}(f)$. Let B be an arbitrary minimal WTA computing f. Suppose B induces the rank factorization $\mathbf{H}_{f}=\mathbf{P}^{\prime} \mathbf{S}^{\prime}$. Since the columns of both \mathbf{P} and \mathbf{P}^{\prime} are basis for the column-span of \mathbf{H}_{f}, there must exists a change of basis $\mathbf{Q} \in \mathbb{R}^{n \times n}$ between \mathbf{P} and \mathbf{P}^{\prime}. That is, \mathbf{Q} is an invertible matrix such that $\mathbf{P}^{\prime} \mathbf{Q}=\mathbf{P}$. Furthermore, since $\mathbf{P}^{\prime} \mathbf{S}^{\prime}=\mathbf{H}_{f}=\mathbf{P S}=\mathbf{P}^{\prime} \mathbf{Q S}$ and \mathbf{P}^{\prime} has full column rank, we must have $\mathbf{S}^{\prime}=\mathbf{Q S}$, or equivalently, $\mathbf{Q}^{-1} \mathbf{S}^{\prime}=\mathbf{S}$. Thus, we let $A=B^{\mathbf{Q}}$, which immediately verifies $f_{A}=f_{B}=f$. It remains to be shown that A induces the rank factorization $\mathbf{H}_{f}=\mathbf{P S}$. Note that when proving the equivalence $f_{A}=f_{B}$ we already showed $\boldsymbol{\omega}_{A}(t)=\mathbf{Q}^{-1} \boldsymbol{\omega}_{B}(t)$, which means we have $\mathbf{S}_{A}=\mathbf{Q}^{-1} \mathbf{S}^{\prime}=\mathbf{S}$. To show $\mathbf{P}_{A}=\mathbf{P}^{\prime} \mathbf{Q}$ we need to show that for any $c \in \mathfrak{C}$ we have $\boldsymbol{\alpha}_{A}(c)^{\top}=\boldsymbol{\alpha}_{B}(c)^{\top} \mathbf{Q}$. This will immediately follow if we show that $\boldsymbol{\Xi}_{A}(c)=\mathbf{Q}^{-1} \boldsymbol{\Xi}_{B}(c) \mathbf{Q}$. If we proceed by induction on $\operatorname{drop}(c)$, we see the case $c=*$ is immediate, and for $c=\left(c^{\prime}, t\right)$ we get

$$
\begin{aligned}
& \boldsymbol{\Xi}_{A}\left(\left(c^{\prime}, t\right)\right)=\left(\boldsymbol{\mathcal { T }}\left(\mathbf{Q}^{-\top}, \mathbf{Q}, \mathbf{Q}\right)\right)\left(\mathbf{I}, \boldsymbol{\Xi}_{A}\left(c^{\prime}\right), \boldsymbol{\omega}_{A}(t)\right) \\
& \quad=\left(\boldsymbol{\mathcal { T }}\left(\mathbf{Q}^{-\top}, \mathbf{Q}, \mathbf{Q}\right)\right)\left(\mathbf{I}, \mathbf{Q}^{-1} \boldsymbol{\Xi}_{B}\left(c^{\prime}\right) \mathbf{Q}, \mathbf{Q}^{-1} \boldsymbol{\omega}_{B}(t)\right) \\
& \quad=\boldsymbol{\mathcal { T }}\left(\mathbf{Q}^{-\top}, \boldsymbol{\Xi}_{B}\left(c^{\prime}\right) \mathbf{Q}, \boldsymbol{\omega}_{B}(t)\right) \\
& \quad=\mathbf{Q}^{-1} \boldsymbol{\mathcal { T }}\left(\mathbf{I}, \boldsymbol{\Xi}_{B}\left(c^{\prime}\right), \boldsymbol{\omega}_{B}(t)\right) \mathbf{Q}
\end{aligned}
$$

Applying the same argument mutatis mutandis for $c=$ $\left(t, c^{\prime}\right)$ completes the proof.

2 Proof of Theorem 3

Theorem. If $f: \mathfrak{T}_{\Sigma} \rightarrow \mathbb{R}$ is rational and strongly convergent, then \mathbf{H}_{f} admits a singular value decomposition.

Proof. The result will follow if we show that \mathbf{H}_{f} is the matrix of a compact operator between Hilbert spaces
[2]. We start by defining the Hilbert spaces of squaresummable series indexed by trees and contexts. Given two functions $g, g^{\prime}: \mathfrak{T}_{\Sigma} \rightarrow \mathbb{R}$ we define their inner product to be $\left\langle g, g^{\prime}\right\rangle_{\mathfrak{T}}=\sum_{t \in \mathfrak{T}_{\Sigma}} g(t) g^{\prime}(t)$ (whenever the sum converges). Let $\|g\|_{\mathfrak{T}}=\sqrt{\langle g, g\rangle_{\mathfrak{T}}}$ be the induced norm. We denote by $\ell_{\mathfrak{T}}^{2}$ be the real vector space of functions $\left\{g: \mathfrak{T} \rightarrow \mathbb{R}\| \| g \|_{\mathfrak{T}}<\infty\right\}$, which is a separable Hilbert space because the set \mathfrak{T} is countable. Similarly, given functions $g, g^{\prime}: \mathfrak{C}_{\Sigma} \rightarrow \mathbb{R}$ we define an inner product $\left\langle g, g^{\prime}\right\rangle_{\mathfrak{C}}=\sum_{c \in \mathfrak{C}_{\Sigma}} g(t) g^{\prime}(t)$, a norm $\|g\|_{\mathfrak{C}}=\sqrt{\langle g, g\rangle_{\mathfrak{C}}}$, and a separable Hilbert space $\ell_{\mathfrak{C}}^{2}=\left\{g: \mathfrak{C} \rightarrow \mathbb{R} \mid\|g\|_{\mathfrak{C}}<\infty\right\}$. With this notation it is possible to see that \mathbf{H}_{f} is the matrix under the standard basis on $\ell_{\mathfrak{T}}^{2}$ and $\ell_{\mathfrak{C}}^{2}$ of the operator $H_{f}: \ell_{\mathfrak{T}}^{2} \rightarrow \ell_{\mathfrak{C}}^{2}$ given by $\left(H_{f} g\right)(c)=\sum_{t \in \mathfrak{T}_{\Sigma}} f(c[t]) g(t)$. Since f is rational, \mathbf{H}_{f} is a finite-rank matrix and therefore H_{f} is a finite-rank operator. Thus, to show the compactness of H_{f} it only remains to show that H_{f} is bounded.
Given $f \in \ell_{\mathfrak{T}}^{2}$ and $c \in \mathfrak{C}_{\Sigma}$ we define a new function $f_{c} \in \ell_{\mathfrak{T}}^{2}$ given by $f_{c}(t)=f(c[t])$ for $t \in \mathfrak{T}_{\Sigma}$. Now let $g \in \ell_{\mathfrak{T}}^{2}$ with $\|g\|_{\mathfrak{T}}=1$ and recall H_{f} is bounded if $\left\|H_{f} g\right\|_{\mathfrak{C}}<\infty$ for every $g \in \ell_{\mathfrak{T}}^{2}$ with $\|g\|_{\mathfrak{T}}=1$. To show that H_{f} is bounded observe that we have:

$$
\begin{aligned}
\left\|H_{f} g\right\|_{\mathfrak{C}}^{2} & =\sum_{c \in \mathfrak{C}_{\Sigma}}\left(H_{f} g\right)(c)^{2}=\sum_{c \in \mathfrak{C}_{\Sigma}}\left(\sum_{t \in \mathfrak{T}_{\Sigma}} f(c[t]) g(t)\right)^{2} \\
& =\sum_{c \in \mathfrak{C}_{\Sigma}}\left\langle f_{c}, g\right\rangle_{\mathfrak{T}}^{2} \leq\|g\|_{\mathfrak{T}} \sum_{c \in \mathfrak{c}_{\Sigma}}\left\|f_{c}\right\|_{\mathfrak{T}^{\prime}}^{2} \\
& =\sum_{c \in \mathfrak{C}_{\Sigma}} \sum_{t \in \mathfrak{T}_{\Sigma}} f_{c}(t)^{2}=\sum_{c \in \mathfrak{C}_{\Sigma}} \sum_{t \in \mathfrak{T}_{\Sigma}} f(c[t])^{2} \\
& =\sum_{t \in \mathfrak{T}_{\Sigma}}|t| f(t)^{2} \leq \sup _{t \in \mathfrak{T}_{\Sigma}}|f(t)| \cdot \sum_{t \in \mathfrak{T}_{\Sigma}}|t||f(t)| \\
& <\infty
\end{aligned}
$$

where we used the Cauchy-Schwarz inequality, and the fact that $\sup _{t \in \mathfrak{T}_{\Sigma}}|f(t)|$ is bounded when f is strongly convergent.

3 Proof of Theorem 5

Theorem. Let $F: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n^{2}}$ be the mapping defined by $F(\mathbf{v})=\boldsymbol{\mathcal { T }}^{\otimes}(\mathbf{I}, \mathbf{v}, \mathbf{v})+\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}^{\otimes}$. Then the following hold:
(i) \mathbf{s} is a fixed-point of F; i.e. $F(\mathbf{s})=\mathbf{s}$.
(ii) $\mathbf{0}$ is in the basin of attraction of \mathbf{s}; i.e. $\lim _{k \rightarrow \infty} F^{k}(\mathbf{0})=\mathbf{s}$.
(iii) The iteration defined by $\mathbf{s}_{0}=\mathbf{0}$ and $\mathbf{s}_{k+1}=F\left(\mathbf{s}_{k}\right)$ converges linearly to \mathbf{s}; i.e. there exists $0<\rho<1$ such that $\left\|\mathbf{s}_{k}-\mathbf{s}\right\|_{2} \leq \mathcal{O}\left(\rho^{k}\right)$.

Proof. (i) We have $\boldsymbol{T}^{\otimes}(\mathbf{I}, \mathbf{s}, \mathbf{s}) \quad=$ $\sum_{t, t^{\prime} \in \mathfrak{T}} \boldsymbol{\mathcal { T }}^{\otimes}\left(\mathbf{I}, \boldsymbol{\omega}^{\otimes}(t), \boldsymbol{\omega}^{\otimes}\left(t^{\prime}\right)\right)=\sum_{t, t^{\prime} \in \mathfrak{T}} \boldsymbol{\omega}^{\otimes}\left(\left(t, t^{\prime}\right)\right)=$ $\sum_{t \in \mathfrak{T} \geq 1} \boldsymbol{\omega}^{\otimes}(t)$ where $\mathfrak{T}^{\geq 1}$ is the set of trees of depth at least one. Hence $F(\mathbf{s})=\sum_{t \in \mathfrak{T} \geq 1} \boldsymbol{\omega}^{\otimes}(t)+\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}^{\otimes}=$ s.
(ii) Let $\mathfrak{T} \leq k$ denote the set of all trees with depth at most k. We prove by induction on k that $F^{k}(\mathbf{0})=$ $\sum_{t \in \mathfrak{T} \leq k} \boldsymbol{\omega}^{\otimes}(t)$, which implies that $\lim _{k \rightarrow \infty} F^{k}(\mathbf{0})=\mathbf{s}$. This is straightforward for $k=0$. Assuming it is true for all naturals up to $k-1$, we have

$$
\begin{aligned}
F^{k}(\mathbf{0}) & =\boldsymbol{\mathcal { T }}^{\otimes}\left(\mathbf{I}, F^{k-1}(\mathbf{0}), F^{k-1}(\mathbf{0})\right)+\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}^{\otimes} \\
& =\sum_{t, t^{\prime} \in \mathfrak{T} \leq k-1} \boldsymbol{\mathcal { T }}^{\otimes}\left(\mathbf{I}, \boldsymbol{\omega}^{\otimes}(t), \boldsymbol{\omega}^{\otimes}\left(t^{\prime}\right)\right)+\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}^{\otimes} \\
& =\sum_{t, t^{\prime} \in \mathfrak{T} \leq k-1} \boldsymbol{\omega}^{\otimes}\left(\left(t, t^{\prime}\right)\right)+\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}^{\otimes} \\
& =\sum_{t \in \mathfrak{T} \leq k} \boldsymbol{\omega}^{\otimes}(t) .
\end{aligned}
$$

(iii) Let \mathbf{E} be the Jacobian of F around \mathbf{s}, we show that the spectral radius $\rho(\mathbf{E})$ of \mathbf{E} is less than one, which implies the result by Ostrowski's theorem (see [4, Theorem 8.1.7]).

Since A is minimal, there exists trees $t_{1}, \cdots, t_{n} \in \mathfrak{T}$ and contexts $c_{1}, \cdots, c_{n} \in \mathfrak{C}$ such that both $\left\{\boldsymbol{\omega}\left(t_{i}\right)\right\}_{i \in[n]}$ and $\left\{\boldsymbol{\alpha}\left(c_{i}\right)\right\}_{i \in[n]}$ are sets of linear independent vectors in $\mathbb{R}^{n}[1]$. Therefore, the sets $\left\{\boldsymbol{\omega}\left(t_{i}\right) \otimes \boldsymbol{\omega}\left(t_{j}\right)\right\}_{i, j \in[n]}$ and $\left\{\boldsymbol{\alpha}\left(c_{i}\right) \otimes \boldsymbol{\alpha}\left(c_{j}\right)\right\}_{i, j \in[n]}$ are sets of linear independent vectors in $\mathbb{R}^{n^{2}}$. Let $\mathbf{v} \in \mathbb{R}^{n^{2}}$ be an eigenvector of \mathbf{E} with eigenvalue $\lambda \neq 0$, and let $\mathbf{v}=\sum_{i, j \in[n]} \beta_{i, j}\left(\boldsymbol{\omega}\left(t_{i}\right) \otimes\right.$ $\left.\boldsymbol{\omega}\left(t_{j}\right)\right)$ be its expression in terms of the basis given by $\left\{\boldsymbol{\omega}\left(t_{i}\right) \otimes \boldsymbol{\omega}\left(t_{j}\right)\right\}$. For any vector $\mathbf{u} \in\left\{\boldsymbol{\alpha}\left(c_{i}\right) \otimes \boldsymbol{\alpha}\left(c_{j}\right)\right\}$ we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} & \mathbf{u}^{\top} \mathbf{E}^{k} \mathbf{v} \leq \lim _{k \rightarrow \infty}\left|\mathbf{u}^{\top} \mathbf{E}^{k} \mathbf{v}\right| \\
& \leq \sum_{i, j \in[n]}\left|\beta_{i, j}\right| \lim _{k \rightarrow \infty}\left|\mathbf{u}^{\top} \mathbf{E}^{k}\left(\boldsymbol{\omega}\left(t_{i}\right) \otimes \boldsymbol{\omega}\left(t_{j}\right)\right)\right|=0
\end{aligned}
$$

where we used Lemma 1 in the last step. Since this is true for any vector \mathbf{u} in the basis $\left\{\boldsymbol{\alpha}\left(c_{i}\right) \otimes \boldsymbol{\alpha}\left(c_{j}\right)\right\}$, we have $\lim _{k \rightarrow \infty} \mathbf{E}^{k} \mathbf{v}=\lim _{k \rightarrow \infty}|\lambda|^{k} \mathbf{v}=\mathbf{0}$, hence $|\lambda|<1$. This reasoning holds for any eigenvalue of \mathbf{E}, hence $\rho(\mathbf{E})<1$.

Lemma 1. Let $A=\left\langle\boldsymbol{\alpha}, \boldsymbol{T},\left\{\boldsymbol{\omega}_{\sigma}\right\}\right\rangle$ be a minimal $W T A$ of dimension n computing the strongly convergent function f, and let $\mathbf{E} \in \mathbb{R}^{n^{2} \times n^{2}}$ be the Jacobian around $\mathbf{s}=\sum_{t \in \mathfrak{T}} \boldsymbol{\omega}(t) \otimes \boldsymbol{\omega}(t)$ of the mapping $F: \mathbf{v} \rightarrow \boldsymbol{T}^{\otimes}(\mathbf{I}, \mathbf{v}, \mathbf{v})+\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}^{\otimes}$. Then for any $c_{1}, c_{2} \in \mathfrak{C}$ and any $t_{1}, t_{2} \in \mathfrak{T}$ we have $\lim _{k \rightarrow \infty} \mid\left(\boldsymbol{\alpha}\left(c_{1}\right) \otimes\right.$ $\left.\boldsymbol{\alpha}\left(c_{2}\right)\right)^{\top} \mathbf{E}^{k}\left(\boldsymbol{\omega}\left(t_{1}\right) \otimes \boldsymbol{\omega}\left(t_{2}\right)\right) \mid=0$.

Proof. Let $\boldsymbol{\Xi}^{\otimes}: \mathfrak{C} \rightarrow \mathbb{R}^{n^{2} \times n^{2}}$ be the context mapping associated with the WTA A^{\otimes}; i.e. $\boldsymbol{\Xi}^{\otimes}=\boldsymbol{\Xi}_{A \otimes}$. We start by proving by induction on $\operatorname{drop}(c)$ that $\boldsymbol{\Xi}^{\otimes}(c)=$ $\boldsymbol{\Xi}(c) \otimes \boldsymbol{\Xi}(c)$ for all $c \in \mathfrak{C}$. Let \mathfrak{C}^{d} denote the set of contexts $c \in \mathfrak{C}$ with $\operatorname{drop}(c)=d$. The statement is trivial for $c \in \mathfrak{C}^{0}$. Assume the statement is true for all naturals up to $d-1$ and let $c=\left(t, c^{\prime}\right) \in \mathfrak{C}^{d}$ for some $t \in \mathfrak{T}$ and $c^{\prime} \in \mathfrak{C}^{d-1}$. Then using our inductive hypothesis we have that

$$
\begin{aligned}
\boldsymbol{\Xi}^{\otimes}(c) & =\boldsymbol{T}^{\otimes}\left(\mathbf{I}_{n^{2}}, \boldsymbol{\omega}(t) \otimes \boldsymbol{\omega}(t), \boldsymbol{\Xi}\left(c^{\prime}\right) \otimes \boldsymbol{\Xi}\left(c^{\prime}\right)\right) \\
& =\boldsymbol{T}\left(\mathbf{I}_{n}, \boldsymbol{\omega}(t), \boldsymbol{\Xi}\left(c^{\prime}\right)\right) \otimes \boldsymbol{\mathcal { T }}\left(\mathbf{I}_{n}, \boldsymbol{\omega}(t), \boldsymbol{\Xi}\left(c^{\prime}\right)\right) \\
& =\boldsymbol{\Xi}(c) \otimes \boldsymbol{\Xi}(c)
\end{aligned}
$$

The case $c=\left(c^{\prime}, t\right)$ follows from an identical argument. Next we use the multi-linearity of F to expand $F(\mathbf{s}+\mathbf{h})$ for a vector $\mathbf{h} \in \mathbb{R}^{n^{2}}$. Keeping the terms that are linear in \mathbf{h} we obtain that $\mathbf{E}=\boldsymbol{T}^{\otimes}(\mathbf{I}, \mathbf{s}, \mathbf{I})+\boldsymbol{T}^{\otimes}(\mathbf{I}, \mathbf{I}, \mathbf{s})$. It follows that $\mathbf{E}=\sum_{c \in \mathfrak{C}^{1}} \boldsymbol{\Xi}^{\otimes}(c)$, and it can be shown by induction on k that $\mathbf{E}^{k}=\sum_{c \in \mathfrak{C}^{k}} \mathbf{\Xi}^{\otimes}(c)$.
Writing $d_{c}=\min \left(\operatorname{drop}\left(c_{1}\right), \operatorname{drop}\left(c_{2}\right)\right)$ and $d_{t}=$
$\min \left(\operatorname{depth}\left(t_{1}\right), \operatorname{depth}\left(t_{2}\right)\right)$, we can see that

$$
\begin{aligned}
\mid\left(\boldsymbol{\alpha}\left(c_{1}\right)\right. & \left.\otimes \boldsymbol{\alpha}\left(c_{2}\right)\right)^{\top} \mathbf{E}^{k}\left(\boldsymbol{\omega}\left(t_{1}\right) \otimes \boldsymbol{\omega}\left(t_{2}\right)\right) \mid \\
& =\left|\sum_{c \in \mathfrak{C}^{k}}\left(\boldsymbol{\alpha}\left(c_{1}\right) \otimes \boldsymbol{\alpha}\left(c_{2}\right)\right)^{\top} \boldsymbol{\Xi}^{\otimes}(c)\left(\boldsymbol{\omega}\left(t_{1}\right) \otimes \boldsymbol{\omega}\left(t_{2}\right)\right)\right| \\
& =\left|\sum_{c \in \mathfrak{C}^{k}}\left(\boldsymbol{\alpha}\left(c_{1}\right)^{\top} \boldsymbol{\Xi}(c) \boldsymbol{\omega}\left(t_{1}\right)\right) \cdot\left(\boldsymbol{\alpha}\left(c_{2}\right)^{\top} \boldsymbol{\Xi}(c) \boldsymbol{\omega}\left(t_{2}\right)\right)\right| \\
& =\left|\sum_{c \in \mathfrak{C}^{k}} f\left(c_{1}\left[c\left[t_{1}\right]\right]\right) f\left(c_{2}\left[c\left[t_{2}\right]\right]\right)\right| \\
& \leq\left(\sum_{c \in \mathfrak{C}^{k}}\left|f\left(c_{1}\left[c\left[t_{1}\right]\right]\right)\right|\right)\left(\sum_{c \in \mathfrak{C}^{k}}\left|f\left(c_{2}\left[c\left[t_{2}\right]\right]\right)\right|\right) \\
& \leq\left(\sum_{t \in \mathfrak{T} \geq d_{c}+d_{t}+k}|t||f(t)|\right)^{2},
\end{aligned}
$$

which tends to 0 with $k \rightarrow \infty$ since f is strongly convergent. To prove the last inequality, check that any tree of the form $t^{\prime}=c\left[c^{\prime}[t]\right]$ satisfies depth $\left(t^{\prime}\right) \geq$ $\operatorname{drop}(c)+\operatorname{drop}\left(c^{\prime}\right)+\operatorname{depth}(t)$, and that for fixed $c \in \mathfrak{C}$ and $t, t^{\prime} \in \mathfrak{T}$ we have $\left|\left\{c^{\prime} \in \mathfrak{C}: c\left[c^{\prime}[t]\right]=t^{\prime}\right\}\right| \leq\left|t^{\prime}\right|$ (indeed, a factorization $t^{\prime}=c\left[c^{\prime}[t]\right]$ is fixed once the root of t is chosen in t^{\prime}, which can be done in at most $\left|t^{\prime}\right|$ different ways).

4 Proof of Theorem 6

Theorem. There exists $0<\rho<1$ such that after k iterations in Algorithm 2, the approximations $\hat{\mathbf{G}}_{\mathbb{C}}$ and $\hat{\mathbf{G}}_{\mathfrak{T}}$ satisfy $\left\|\mathbf{G}_{\mathfrak{C}}-\hat{\mathbf{G}}_{\mathfrak{C}}\right\|_{F} \leq \mathcal{O}\left(\rho^{k}\right)$ and $\left\|\mathbf{G}_{\mathfrak{T}}-\hat{\mathbf{G}}_{\mathfrak{T}}\right\|_{F} \leq$ $\mathcal{O}\left(\rho^{k}\right)$.

Proof. The result for the Gram matrix $\mathbf{G}_{\mathfrak{T}}$ directly follows from Theorem 5 . We now show how the error in the approximation of $\mathbf{G}_{\mathfrak{T}}=$ reshape $(\mathbf{s}, n \times n)$ affects the approximation of $\mathbf{q}=\left(\boldsymbol{\alpha}^{\otimes}\right)^{\top}(\mathbf{I}-\mathbf{E})^{-1}=\operatorname{vec}\left(\mathbf{G}_{\mathbb{C}}\right)$. Let $\hat{\mathbf{s}} \in \mathbb{R}^{n}$ be such that $\|\mathbf{s}-\hat{\mathbf{s}}\| \leq \varepsilon$, let $\hat{\mathbf{E}}=$ $\boldsymbol{T}^{\otimes}(\mathbf{I}, \hat{\mathbf{s}}, \mathbf{I})+\boldsymbol{\mathcal { T }}^{\otimes}(\mathbf{I}, \mathbf{I}, \hat{\mathbf{s}})$ and let $\mathbf{q}=\left(\boldsymbol{\alpha}^{\otimes}\right)^{\top}(\mathbf{I}-\hat{\mathbf{E}})^{-1}$. We first bound the distance between \mathbf{E} and $\hat{\mathbf{E}}$. We have

$$
\begin{aligned}
\|\mathbf{E}-\hat{\mathbf{E}}\|_{F} & =\left\|\mathcal{T}^{\otimes}(\mathbf{I}, \mathbf{s}-\hat{\mathbf{s}}, \mathbf{I})+\boldsymbol{\mathcal { T }}^{\otimes}(\mathbf{I}, \mathbf{I}, \mathbf{s}-\hat{\mathbf{s}})\right\|_{F} \\
& \leq 2\left\|\mathcal{T}^{\otimes}\right\|_{F}\|\mathbf{s}-\hat{\mathbf{s}}\| \\
& =\mathcal{O}(\varepsilon)
\end{aligned}
$$

where we used the bounds $\|\mathcal{T}(\mathbf{I}, \mathbf{I}, \mathbf{v})\|_{F} \leq\|\mathcal{T}\|_{F}\|\mathbf{v}\|$ and $\|\mathcal{T}(\mathbf{I}, \mathbf{v}, \mathbf{I})\|_{F} \leq\|\mathcal{T}\|_{F}\|\mathbf{v}\|$.
Let $\delta=\|\mathbf{E}-\hat{\mathbf{E}}\|$ and let σ be the smallest nonzero eigenvalue of the matrix $\mathbf{I}-\mathbf{E}$. It follows from [3, Equation (7.2)] that if $\delta<\sigma$ then $\left\|(\mathbf{I}-\mathbf{E})^{-1}-(\mathbf{I}-\hat{\mathbf{E}})^{-1}\right\| \leq$
$\delta /(\sigma(\sigma-\delta))$. Since $\delta=\mathcal{O}(\varepsilon)$ from our previous bound, the condition $\delta \leq \sigma / 2$ will be eventually satisfied as $\varepsilon \rightarrow 0$, in which case we can conclude that

$$
\begin{aligned}
\left\|\mathbf{G}_{\mathfrak{C}}-\hat{\mathbf{G}}_{\mathfrak{C}}\right\|_{F} & =\|\mathbf{q}-\hat{\mathbf{q}}\| \\
& \leq\left\|(\mathbf{I}-\mathbf{E})^{-1}-(\mathbf{I}-\hat{\mathbf{E}})^{-1}\right\|\left\|\boldsymbol{\alpha}^{\otimes}\right\| \\
& \leq \frac{2 \delta}{\sigma^{2}}\left\|\boldsymbol{\alpha}^{\otimes}\right\| \\
& =\mathcal{O}(\varepsilon)
\end{aligned}
$$

5 Proof of Theorem 4

Let $A=\left\langle\boldsymbol{\alpha}, \boldsymbol{\mathcal { T }},\left\{\boldsymbol{\omega}_{\sigma}\right\}_{\sigma \in \Sigma}\right\rangle$ be a SVTA with n states realizing a function f and let $\mathfrak{s}_{1} \geq \mathfrak{s}_{2} \geq \cdots \geq \mathfrak{s}_{n}$ be the singular values of the Hankel matrix \mathbf{H}_{f}.

Theorem 4 relies on the following lemma, which explores the consequences that the fixed-point equations used to compute $\mathbf{G}_{\mathfrak{T}}$ and $\mathbf{G}_{\mathfrak{C}}$ have for an SVTA.

Lemma 2. For all $i \in[n]$, the following hold:

$$
\text { 1. } \mathfrak{s}_{i}=\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma}(i)^{2}+\sum_{j, k=1}^{n} \boldsymbol{\mathcal { T }}(i, j, k)^{2} \mathfrak{s}_{j} \mathfrak{s}_{k}
$$

$$
\text { 2. } \mathfrak{s}_{i}=\boldsymbol{\alpha}(j)^{2}+\sum_{j, k=1}^{n}\left(\boldsymbol{\mathcal { T }}(j, i, k)^{2}+\boldsymbol{\mathcal { T }}(j, k, i)^{2}\right) \mathfrak{s}_{j} \mathfrak{s}_{k} \text {. }
$$

Proof. Let $\mathbf{G}_{\mathfrak{T}}$ and $\mathbf{G}_{\mathfrak{C}}$ be the Gram matrices associated with the rank factorization of \mathbf{H}_{f}. Since A is a SVTA we have $\mathbf{G}_{\mathfrak{T}}=\mathbf{G}_{\mathfrak{C}}=\mathbf{D}$ where $\mathbf{D}=$ $\operatorname{diag}\left(\mathfrak{s}_{1}, \cdots, \mathfrak{s}_{n}\right)$ is a diagonal matrix with the Hankel singular values on the diagonal. The first equality then follows from the following fixed point characterization of $\mathbf{G}_{\mathfrak{T}}$:

$$
\begin{aligned}
\mathbf{G}_{\mathfrak{T}} & =\sum_{t \in \mathfrak{T}} \boldsymbol{\omega}(t) \boldsymbol{\omega}(t)^{\top} \\
& =\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma} \boldsymbol{\omega}_{\sigma}^{\top} \\
& +\sum_{t_{1}, t_{2} \in \mathfrak{T}} \boldsymbol{\mathcal { T }}\left(\mathbf{I}, \boldsymbol{\omega}\left(t_{1}\right), \boldsymbol{\omega}\left(t_{2}\right)\right) \boldsymbol{\mathcal { T }}\left(\mathbf{I}, \boldsymbol{\omega}\left(t_{1}\right), \boldsymbol{\omega}\left(t_{2}\right)\right)^{\top} \\
& =\sum_{\sigma \in \Sigma} \boldsymbol{\omega}_{\sigma} \boldsymbol{\omega}_{\sigma}^{\top}+\mathbf{T}_{(1)}\left(\mathbf{G}_{\mathfrak{T}} \otimes \mathbf{G}_{\mathfrak{T}}\right) \mathbf{T}_{(1)}^{\top}
\end{aligned}
$$

(where $\mathbf{T}_{(i)}$ denotes the matricization of the tensor $\boldsymbol{\mathcal { T }}$ along the i th mode). The second equality follows from
the following fixed point characterization of $\mathbf{G}_{\mathfrak{C}}$:

$$
\begin{aligned}
\mathbf{G}_{\mathfrak{C}} & =\sum_{c \in \mathfrak{C}} \boldsymbol{\alpha}(c) \boldsymbol{\alpha}(c)^{\top} \\
& =\boldsymbol{\alpha} \boldsymbol{\alpha}^{\top} \\
& +\sum_{c \in \mathfrak{C}, t \in \mathfrak{T}} \boldsymbol{\mathcal { T }}(\boldsymbol{\alpha}(c), \boldsymbol{\omega}(t), \mathbf{I}) \boldsymbol{\mathcal { T }}(\boldsymbol{\alpha}(c), \boldsymbol{\omega}(t), \mathbf{I})^{\top} \\
& +\sum_{c \in \mathfrak{C}, t \in \mathfrak{I}} \boldsymbol{\mathcal { T }}(\boldsymbol{\alpha}(c), \mathbf{I}, \boldsymbol{\omega}(t)) \boldsymbol{\mathcal { T }}(\boldsymbol{\alpha}(c), \mathbf{I}, \boldsymbol{\omega}(t))^{\top} \\
& =\boldsymbol{\alpha} \boldsymbol{\alpha}^{\top} \\
& +\mathbf{T}_{(2)}\left(\mathbf{G}_{\mathfrak{C}} \otimes \mathbf{G}_{\mathfrak{I}}\right) \mathbf{T}_{(2)}^{\top} \\
& +\mathbf{T}_{(3)}\left(\mathbf{G}_{\mathfrak{C}} \otimes \mathbf{G}_{\mathfrak{I}}\right) \mathbf{T}_{(3)}^{\top} .
\end{aligned}
$$

Theorem. For any $t \in \mathfrak{T}, c \in \mathfrak{C}$ and $i, j, k \in[n]$ the following hold:

- $\left|\boldsymbol{\omega}(t)_{i}\right| \leq \sqrt{\mathfrak{s}_{i}}$,
- $\left|\boldsymbol{\alpha}(c)_{i}\right| \leq \sqrt{\mathfrak{s}_{i}}$, and
- $|\boldsymbol{T}(i, j, k)| \leq \min \left\{\frac{\sqrt{\mathfrak{s}_{i}}}{\sqrt{\mathfrak{5}_{j}} \sqrt{\mathfrak{s}_{k}}}, \frac{\sqrt{\mathfrak{s}_{j}}}{\sqrt{\mathfrak{5}_{i}} \sqrt{\mathfrak{s}_{k}}}, \frac{\sqrt{\mathfrak{s}_{k}}}{\sqrt{\mathfrak{5}_{i}} \sqrt{\mathfrak{s}_{j}}}\right\}$.

Proof. The third point is a direct consequence of the previous Lemma. For the first point, let $\mathbf{U D V}^{\top}$ be the SVD of \mathbf{H}_{f}. Since A is a SVTA we have

$$
\boldsymbol{\omega}(t)_{i}^{2}=\left(\mathbf{D}^{1 / 2} \mathbf{V}^{\top}\right)_{i, t}^{2}=\mathfrak{s}_{i} \mathbf{V}(t, i)^{2}
$$

and since the rows of \mathbf{V} are orthonormal we have $\mathbf{V}(t, i)^{2} \leq 1$.
The inequality for contexts is proved similarly by reasoning on the rows of $\mathbf{U D}^{1 / 2}$.

References

[1] R. Bailly, A. Habrard, and F. Denis. A spectral approach for probabilistic grammatical inference on trees. In Proceedings of ALT, 2010.
[2] J. B. Conway. A course in functional analysis. Springer, 1990.
[3] L. El Ghaoui. Inversion error, condition number, and approximate inverses of uncertain matrices. Linear algebra and its applications, 2002.
[4] J. M. Ortega. Numerical analysis: a second course. Siam, 1990.

