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Abstract

Recent years have seen growing interest in
deterministic search approaches to spike-and-
slab Bayesian variable selection. Such meth-
ods have focused on the goal of finding a
global mode to identify a “best model”. How-
ever, the report of a single model will be
a misleading reflection of the model uncer-
tainty inherent in a highly multimodal pos-
terior. Motivated by non-parametric varia-
tional Bayes strategies, we move beyond this
limitation by proposing an ensemble opti-
mization approach to identify a collection of
representative posterior modes. By deploying
determinantal penalty functions as diversity
regularizers, our approach performs regular-
ization over multiple locations of the poste-
rior. The key driver of these determinantal
penalties is a kernel function that induces re-
pulsion in the latent model space domain.

1 Introduction

In the presence of model uncertainty, reporting a set
of representative models will be more meaningful than
reporting a single “best model”. With posterior simu-
lation approaches, such a summary of post-data vari-
able selection uncertainty is conveyed by reporting
the most frequent or probable models occurring along
an MCMC path. However, the scope of such poste-
rior simulations is ultimately challenged in the do-
main of high-dimensional data. As a viable alterna-
tive for large problems, fast deterministic alternatives
(such as EM algorithms) have seen increasing pop-
ularity (Ročková and George, 2014; Ormerod et al.,
2014). But such approaches have been limited to sin-
gle mode detection algorithms which, by outputting
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only a single point estimate, fail to convey underlying
model uncertainly. Variational approximations, a fur-
ther alternative, suffer from local entrapment in mul-
timodal posterior landscapes. Such multimodality is
an inevitable manifestation of model uncertainty and
should be properly accounted for. Here, we propose
a new computational approach that yields an ensem-
ble of representative high-probability models. Moti-
vated by similarities with a non-parametric variational
Bayesian approach (Jaakkola and Jordan, 1998; Ger-
shman et al., 2012), our procedure performs a joint
regularization over multiple locations of the posterior.
This strategy is very different from independently ini-
tialized mode hunting algorithms, which do not have
the opportunity to mutually interact. Forcing regu-
larization trajectories to repel each other (preventing
hill-climbing towards the same modes), our procedure
is more effective (a) in finding a diverse/representative
set of models and (b) in finding the global mode. The
repulsion effect is achieved with new determinantal
penalties which track the regions of attraction of indi-
vidual posterior modes.

2 Spike-and-Slab Variable Selection

We consider the classical linear regression model

Y ∼ N(Xβ, σ2In) (1)

where Y ∈ Rn is a vector of responses, X =
[x1, . . . ,xp] ∈ Rn×p is a matrix of p standardized pre-
dictors and β ∈ Rp is a vector of regression coeffi-
cients. For simplicity of exposition, we assume σ2 is
known and equal to one; the unknown variance case
may be easily incorporated as in EMVS (Ročková and
George, 2014). We introduce binary latent variables
γ = (γ1, . . . , γp)

′ ∈ {0, 1}p, where γi = 1 if xi is in-
cluded in the model.

To avoid the obstinate combinatorial problem of mode
finding in the vast model space of 2p latent states γ,
we will work instead in the continuous space of model
parameters β. To this end, we consider a continuous
spike-and-slab mixture of two Gaussian distributions:

π(βi | γi) = γiφ(βi | v1) + (1− γi)φ(βi | v0) (2)
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where φ(β | v) is a Gaussian distribution centered at
zero with variance v. Here, we have fixed 0 < v0 < v1
so that γi = 1 indicates the βi which are likely to be
large, George and McCulloch (1993); note that one
may take v1 as random as in EMVS. As for γ, we
consider the iid Bernoulli form π(γ|θ) = θ|γ|(1−θ)p−|γ|
with θ ∈ (0, 1).

We will infer about the model space posterior π(γ |Y )
indirectly through the posterior π(β | Y ). Note that
under this spike-and-slab setup, π(β |Y ) is a Gaussian
mixture indexed by 2p latent states γ,

π(β | Y ) =
∑

γ

N (β;µγ ,Σγ)π(γ | Y ), (3)

where µγ = ΣγX
′Y and Σγ = (X ′X +Dγ)−1 and

Dγ = diag{γi 1
v1

+ (1 − γi)
1
v0
}pi=1. High posterior

modes in the parameter domain π(β | Y ) are associ-
ated with high posterior modes γ in the model domain
π(γ | Y ). The transition from the parameter space to
the model space can be achieved with the following
probabilistic consideration. Having identified a mode
µ̂ of π(β | Y ), the most likely model γ̂ = (γ̂1, . . . , γ̂p)

′

associated with this mode is

γ̂i = 1 iff p?(µ̂i) ≡ P(γi = 1 | µ̂i, θ) > 0.5. (4)

As noted in the introduction, deterministic approaches
to this problem so far have involved unimodal approx-
imations or single mode hunting algorithms. Such ap-
proximations will often be inadequate given the Gaus-
sian mixture form of the posterior. Prior to develop-
ing our approach in Section 4, we revisit a multimodal
variational approximation to π(β|Y) in the next sec-
tion.

3 Non-parametric Variational Bayes

Variational methods seek to approximate the posterior
π(β|Y) with a variational density q(β). The approach
stems from the following lower-bound argument:

log π(Y) ≥
∫

β

q(β) log
π(Y,β)

q(β)
dβ ≡ F [q(·)] (5)

where F [q(·)] is known as the evidence lower bound.
The form of q(β) is typically constrained to a family
that ensures (5) is tractable. The parameters of q(β)
are then found by maximizing (5), which is equivalent
to minimizing the Kullback-Leibler distance between
π(β|Y) and q(β). For our variable selection problem,
q(·) is often augmented to include also the latent in-
dicators γ and constrained to be of the product form
q(β,γ) = q(β)

∏p
j=1 qj(γj), also known as a mean field

approximation. Such strategy is very similar to the

EMVS algorithm. However, this variational approx-
imation hinges on the often inadequate assumptions
that the density q(β) is unimodal and that the γ′js are
independent.

Jaakkola and Jordan (1998) considered a more flexible
non-parametric variational approach using mixtures as
approximating distributions. This approach was fur-
ther developed by Gershman et al. (2012) who used
Gaussian mixtures, noting that any density can be ap-
proximated arbitrarily closely with a sufficient number
of Gaussian densities.

Here, we implement the non-parametric variational
Bayes approach for spike-and-slab variable selection.
Following Gershman et al. (2012), we seek to approx-
imate π(β | Y ) by the variational density:

qM (β) =
1

K

K∑

k=1

N (β;µk, σ
2
kIp). (6)

Note that here we have a whole matrix of K unknown
location vectors, M = [µ1, · · · ,µK ] = (µjk)p,Kj,k=1. Ad-
ditionally, we have margined out the K binary indica-
tor vectors γ1, ...,γK ; these indicators will be reintro-
duced later to facilitate optimization of the objective.

With (6), the evidence lower bound (5) becomes

F [qM (·)] =

∫

β

qM (β) log

[
π(Y ,β)

qM (β)

]
dβ

= E[f(·)] +H[qM ], (7)

where Ef(·) =
∫
β

log π(Y,β)qM (β)dβ and H[qM ] =

−
∫
β
qM (β) log qM (β)dβ is the entropy of the mixture

distribution (6). The goal is then to maximize the
lower bound F [qM (·)] with respect to the unknown
modes M and variances σ2

1 , . . . , σ
2
K .

The first summand in (7) represents the contribution
of the posterior, where trajectories µj should gravitate
towards regions with high posterior mass. The entropy
H[qM ] serves as a diversifying penalty, moving the tra-
jectories far away from each other. However, there is
no closed form expression for either of these terms; the
next sections focus on discussing suitable approxima-
tions.

3.1 The Posterior Contribution

We now take a closer look at the first term of the
evidence lower bound (7). We note that

E[f(·)] =
1

K

K∑

k=1

∫

β

N (β;µk, σ
2
kIp) log π(Y,β)dβ.

Following Gershman et al. (2012), we approximate
each integral with a second order Taylor expansion
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around µk as follows:

log π(Y,β) ≈ log π(Y,µk) +∇ log π(Y,β)|β=µk
(β − µk)

+
1

2
(β − µk)′Hk(β − µk). (8)

where Hk = ∇2 log π(Y,β)|β=µk
is the Hessian ma-

trix of second derivatives. The approximate expecta-
tion is

E[f(·)] ≈ 1

K

K∑

k=1

[
log π(Y ,µk) +

σ2
k

2
tr(Hk)

]
(9)

The calculation of the Hessian can be found in the
supplementary material.

The first summand in the approximation (9) is
a separable function of unknown location vectors
µ1, . . . ,µK . Finding µ1, . . . ,µK which maximize this
term is equivalent to finding K highest local modes
of the posterior log π(β|Y ). The second term in (9)
penalizes high posterior peaks with low volume (Ger-
shman et al., 2012).

3.2 Entropy as a Diversifying Penalty

The entropy term H[qM ] in the lower bound (7) im-
poses extra regularization on µ1, . . . ,µK , forcing the
newfound modes to be far apart. This repulsion avoids
unnecessary overlap between the approximating mix-
ture components.

To simplify manipulations with H[qM ], Gershman
et al. (2012) derived the lower-bound

H[qM ] ≥ − 1

K

K∑

k=1

log hk, (10)

where hk = 1
K

∑K
l=1 N (µk;µl, (σ

2
k + σ2

l )I). We
use this lower bound in our implementation of the
Non-Parametric Variational Bayes Variable Selection
(NPVS) strategy introduced below.

We first illuminate the repulsive penalization effect of
the entropy with a one-dimensional example where
p = 1 and K = 2 (Figure 1(a)). For simplicity, we
assume an isotropic mixture with σ1 = σ2 = 1. The
entropy H[qM ] is depicted as a function of the first
location µ1 while keeping µ2 = 2. Expectedly, the en-
tropy has a unique minimum at the point µ1 = µ2,
encouraging µ1 to move away from µ2 by penalizing
the basin centered around µ2. More generally, with
K mixture components, the entropy as a function of
the first argument has K−1 global minima located at
µ2, . . . , µK . Figure 1(a) also displays the lower bound
(10) and a first order approximation, both of which
have a similar monotonicity pattern.

Interestingly, a similar repulsive effect is achieved
within the probabilistic framework of determinantal
point processes, which we will discuss in Section 4.

3.3 Optimization Strategy

With the proposed approximations to the two terms
in (7), we are ready to outline the NPVS strategy. We
now seek to maximize the approximate evidence lower
bound

L[qM (·)] =
1

K

K∑

k=1

[
log π(Y,µk) +

σ2
k

2
tr(Hk)− log hk

]
.

Note that both hk and tr(Hk) depend on µk. Max-
imizing L[qM (·)] with respect to M is hampered by
the unavailability of π(Y,µk). The enumeration of
this term is infeasible due to the summation over all
the 2p hidden states of γ. As in Ročková and George
(2014), we proceed indirectly by augmenting L[qM (·)]
with latent indicators γ. But unlike Ročková and
George (2014), here we have a matrix of hidden in-
dicators Γ = [γ1, . . . ,γK ], one for each trajectory µk.
Maximizing L[qM (·)] proceeds iteratively, updating µk
while keeping all the other vectors µj , j 6= k fixed. Us-
ing an EM step within the variational approximation,
we proceed to maximize a lower bound

QNPV [qM ] ≡ 1

K

K∑

k=1

{
Eγk

[log π(Y,µk,γk)]

+
σ2
k

2
tr(Hk)− log hk

}
, (11)

where Eγk
is the conditional expectation w.r.t γk

given µk. This expectation greatly simplifies by noting

Eγk
[log π(Y,µk,γk)] = −1

2

[
‖Y −Xµk‖2 + µ′kD

?
kµk

]

where D?
k = diag{d?jk}pj=1 with

d?jk =
1

v1
p?(µjk) +

1

v0
[1− p?(µjk)]

and where p?(µ) was defined in (4). The surrogate
objective function (11) now simplifies to

QNPV [qM ] =
1

K

K∑

k=1

{
− 1

2

[
‖Y −Xµk‖2 + µ′kD

?
kµk

]

+
σ2
k

2
tr(Hk)− log hk

}
. (12)

The details of the optimization strategy are given in
Algorithm 1. The optimization is done using standard
L-BFGS. It is interesting to note that with K = 1, the
procedure resembles the EMVS procedure of Ročková
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(c) Regions of attraction

Figure 1: A plot of the entropy H(qM ) as a function of µ1 together with the first order approximation and lower bound
(left). A plot of a determinantal penalty (middle). Convergence regions for EMVS.

and George (2014). We use Algorithm 1 for compar-
isons with our new approach developed in the next
section.

The NPVS strategy boils down to performing an EM-
like computation simultaneously for K trajectories,
forcing them to be far apart with the entropy function.
Although intuitively appealing, additional computa-
tion of the Hessian and approximations to the entropy
are required. Moreover, the isotropic approximating
mixture is at odds with the known topography of the
posterior. From (3) we know that the posterior modes
are ellipsoids with a covariance matrix Σγ . An illus-
tration of the posterior is in Figure 1(c), where we have
p = 2 highly collinear predictors and 4 true posterior
modes. NPVS will be prone to wasting many small
variance mixture components approximating a single
ellipsoidal peak in the posterior. Ideally, we would
like to spend only one mixture component for each
peak/model. We now proceed to develop an alterna-
tive regularization approach for multimodal posterior
exploration which makes use of the geometry of the
posterior.

Algorithm 1: NPVS

Input: Data: Y ,X; Tuning parameters: K, θ

Initialize: [µ
(0)
1 ; · · ·µ(0)

K ] ∈ Rp×K , σ(0)
1 , . . . , σ

(0)
K .

Repeat
for k = 1 to K,

E-step: for each i = 1 to p, calculate d?(µjk).
M-step: calculate
µk = arg maxµk∈Rp QNPV [qM ]1

σ2
k = arg maxσ2

k∈Rp QNPV [qM ]

Until change in M is less than ε = 10−5.

1Following Gershman et al. (2012), the term
σ2
k
2

tr(Hk)
is omitted in this step.

4 Determinantal Point Processes as
Repulsive Priors

Zou and Adams (2012) presented strategies for di-
versified latent variable modelling using determinan-
tal process priors as regularizers in MAP estimation.
Here, we pursue this strategy further in the context of
Bayesian variable selection. Robert and Mengersen
(2003) implemented an MCMC variant of our ap-
proach with different repulsive priors.

As before, we want to estimate a set of location param-
eters M = [µ1, . . . ,µK ] and we want them to be far
apart in some suitable sense. Having a K×K positive
definite kernel matrix K(M) which quantifies pairwise
distances between µi and µj , a useful aggregate mea-
sure of diversity encoded in K(M) is the determinant
|K(M)|. The determinant quantifies the volume of a
parallelepiped delineated by µ1, . . . ,µK , where large
volumes are associated with more diverse sets of vec-
tors. The kernel K(·) can be chosen based on various
context-specific considerations, encouraging repulsion
in different metric spaces.

4.1 Repulsion in the Parameter Space

Regarding µ1, . . . ,µK as location parameters of a
Gaussian mixture, a suitable kernel function is the
probability product Gaussian kernel (Affandi et al.,
2014). This kernel was used for Gaussian mixture
modeling by Zou and Adams (2012). In the case of
an isotropic covariance Σk = Ip, this kernel simplifies
to

k(µi,µj) ∝ exp
(
−||µi − µj ||2/4

)
(13)

The corresponding determinant of the kernel can be
rescaled to become a prior distribution over M =
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[µ1, . . . ,µK ] ∈ Rp×K

πDET (M) ∝ |K(M)|. (14)

It is worthwhile to note that the prior (14) is closed
under conditioning. To see this, we first define

K([x,µ]) =

[
Kxx KT

xµ

Kxµ K(µ)

]
(15)

for x ∈ Rp and µ = [µ2, . . . ,µK ] ∈ Rp×(K−1), where
Kxx is a scalar, KT

xµ = [k(x,µ2), · · · , k(x,µK)] is a 1×
(K − 1) matrix. Using the Schur complement identity
for determinants, we immediately obtain

πDET ([x,µ]) ∝ |K(µ)|(Kxx −KT
xµK(µ)−1Kxµ).

(16)
Therefore, πDET (x |µ) is proportional to the determi-
nant of the Schur complement.

Here, we will use the determinantal point process prior
(14) to define a penalty for repulsive regularization.
For M ∈ Rp×K , we have

PenK(M) = λ log |K(M)|, (17)

where K(M) is the K × K positive definite kernel
matrix. To illuminate the role of the determinantal
penalty, it is useful to regard PenK([x,µ]) as a func-
tion of the first vector for a fixed set µ, using again
the Schur formula (16).

Figure 1(b) depicts the conditional determinantal dis-
tribution (16) for the isotropic kernel (13) with K = 2.
The penalty is plotted as a function of the first argu-
ment µ1, keeping µ2 = 2. For comparison with Figure
1(a), we rescaled the determinantal penalty so that
it has the same minimal value as the entropy H(qM ).
Figure 1(b) depicts three penalties obtained with dif-
ferent scaling factors λ. This parameter determines
the amount of penalization for values far away from the
minimal point µ1 = µ2 and can be matched so that the
level equals the asymptote of the entropy term (Fig-
ure 1(a)). The solid curve in the Figure 1(b) shows one
particular value λ, which yields a very close approx-
imation to the entropy term (black curve in Figure
1(a)). Similar close approximations can be obtained
also in higher dimensions.

It is known that the entropy of a single Gaussian distri-
bution with a covariance matrix Σ is a linear function
of log |Σ|. However, the interesting similarity between
the log determinant of the Gaussian kernel (13) and
the entropy of the Gaussian mixture is new to us, as
we could not find any such connection in the literature.

The repulsive penalty λ log |K(M)| will ultimately
be deployed to locally distort the objective function
log π(β |Y ), erasing its modes from the posterior land-
scape. The calculation will again proceed iteratively,

updating each location µj conditionally on the loca-
tion of µk, k 6= j. To further illustrate the penalty ef-
fect, assume p = 2. Conditionally on the location µ1 =
(0, 2)′, the determinantal penalty log πDET (x | µ1)
(Figure 2(a)) creates a circular hole around µ1. With
K = 2 and µ1 = (2, 0)′,µ2 = (2, 0)′, the penalty now
contains two holes and so on.

4.2 Repulsion in the Model Space

The “Swiss-cheese” Gaussian-kernel determinantal
penalty in Figure 2(a) will erase mass in circular ar-
eas around the posterior modes. Similarly as with the
entropy of an isotropic Gaussian mixture, this will not
be ideal with ellipsoidal modes such as in Figure 1(c).
Since we are ultimately interested in models γk that
underpin each mode µk, it may be more appropriate to
use a kernel K(M) that reflects the distance between
models as opposed to modes.

From the geometry of the spike-and-slab posterior
(Figure 1(c)), we know that there is only one mode
for each model. Each model is associated with a box-
shaped region in Rp, a domain of attraction of EMVS
from where all initializations land in the same mode.
Due to the binary nature of the indicators γ, the pa-
rameter domain Rp can be regarded as a tessellation
of boxes. Instead of considering elliptical or circular
penalties, we use box-shaped penalties, reflecting the
geometry of the convergence regions.

Our determinantal penalty in the probability domain
is again (17) with a new kernel defined as

k̃(µi,µj) ∝ exp
(
−||p∗(µi)− p∗(µj)||2/4

)
, (18)

where p∗(µi) = [p∗(µi1), . . . , p∗(µi1)]′ and p∗(·) is de-
fined in (4). The vectors p∗(µi) are a continuous ver-
sion of the underlying model γi. Thus (18) reflects the
distance between models rather than the distance be-
tween parameters. Figure 2(b) exemplifies this effect.

Similarly as in Figure 2(a), suppose that we condition
on a location µ1 = (0, 2)′. The underlying model is
clearly γ1 = (0, 1)′. The determinantal penalty now
erases the entire box of associated with γ1 (Figure
2(b)): the first coordinate is small and the second co-
ordinate is large in absolute value. Adding the mode
µ2 = (2, 0)′, the penalty deletes another box and so
on.

5 Determinantal Regularization for
Ensemble Variable Selection

In the previous section, we illustrated how a determi-
nantal penalty in the model space is ideal for diversi-
fication of posterior modes for the problem of variable
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(a) Gaussian kernel (b) Probability kernel

Figure 2: A plot of the conditional determinantal penalty log πDET (x | µ) for different kernels. The darker the area the
smaller the penalty. Left graphs assume µ = µ1 = (0, 2)′, right graphs assume µ = [µ1,µ2] where µ1 = (0, 2)′,µ2 = (2, 0)′.

selection. In the development of the NPVS algorithm,
we discussed how the objective function comprises of a
posterior contribution and an entropy term encourag-
ing diversity among the modes. In light of this, we now
develop a new algorithm whereby we replace the Hes-
sian and entropy terms in (12) with a determinantal
penalty to obtain a new objective function:

QDR(M) =
1

K

K∑

k=1

−1

2

[
‖Y −Xµk‖2 + µ′kD

?
kµk

]

+ λ log |K̃(M)|, (19)

where λ|K̃(M)| is the diversity penalty with the kernel
(18). In effect, we search for an estimate of a collec-

tion of diverse posterior modes M̂, which jointly max-
imize the weighted sum of the posterior peaks, that

is M̂ = arg maxM∈Rp×K QDR(M). We proceed con-
ditionally, updating one mode at a time, conditioning
on the location of the remaining particles. This Deter-
minantal Regularization Ensemble Variable Selection
(DREVS) algorithm is outlined in Algorithm 2. Note
that with λ = 0, this strategy corresponds to running
EMVS independently from starting locations M(0).

Algorithm 2: DREVS

Input: Data: Y ,X; Tuning parameters: K, θ, λ

Initialize M(0) = [µ
(0)
1 ; · · ·µ(0)

K ] ∈ Rp×K .
Repeat

for k = 1 to K,
E-step: for each j = 1 to p, calculate d?(µjk).
M-step: calculate
µk = arg maxµk∈Rp QDR(M)

Until change in M is less than ε = 10−5.

The DREVS strategy is illustrated in Figure 3. There
we compare three independent EMVS initializations
(right) which gravitate towards the same mode, and
the ensemble implementation (left) which spreads out
towards three different modes.

6 Numerical examples

In this section, we apply both NPVS and DREVS to
both simulated and real data.

6.1 Highly correlated predictors

We first examine the performance on a simulated
dataset where the predictors are highly correlated in
blocks, resulting in a highly multimodal posterior. The
dataset consists of n = 50 observations with p = 16
predictors, X1, . . . ,X16 and response Y . The predic-
tors are generated as X ∼ Np(0,Σ), where

Σ =




Λ4×4 0 0 0
0 Λ4×4 0 0
0 0 Λ4×4 0
0 0 0 Λ4×4




with Λij = 0.99|i−j|, 1 ≤ i, j ≤ 4. The response is
generated as

Y = X1 + X3 + X14 + X16 + ε,

where ε ∼ Np(0, Ip). With p = 16, all the posterior
model probabilities can be computed for validations of
our methodology.

Implementation details

We recall that v0 specifies the “spikiness” of the spike-
and-slab prior. For a larger value of v0, the poste-
rior landscape is smoother, resulting in easier mode
detection. This motivates the following strategy: we
implement the methods for a large value of v0 (gen-
erally around 0.75) and then decrease the value of v0
incrementally to v0 = 0.1, using the results from the
previous run as “warm starts”. In practice, we have
found that a v0 path of four steps is generally sufficient.
The benefit of having a small but non zero value for
v0 is that negligible but non zero estimates of β are
not included in the model. We take the slab variance
to be v1 = 100. We set θ = 0.5.
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Figure 3: Illustration of DREVS (λ > 0 on the left) and EMVS (λ = 0 on the right) on a simulated example with p = 2 and two highly
collinear predictors. The true model is γ = (1, 0)′.

We additionally examine the effect of the tuning pa-
rameter λ for λ = 0, 1, 10, 50.

For this example, we take K = 10. The choice of K
may be adjusted based on knowledge of how corre-
lated the predictors are (and hence how multimodal
the posterior will be).

Another important consideration is the choice of start-
ing values. Based on deterministic annealing ar-
guments, Ročková and George (2014) recommend a
promising initialization for the EMVS algorithm to be
at the ridge regression solution with equal penalties
v0+v1
2v0v1

:

β̂RG =

[
X′X +

v0 + v1
2v0v1

I

]−1
X′Y.

Additionally, if it is known that the true coefficient
vector is sparse, a good initialization may be at the
null model βNULL = 0. For this dataset, we examine
three different sets of starting values:

(a) µ
(0)
k ∼ Np(0, I);

(b) µ
(0)
k ∼ Np(0, σ2I), σ2 = 0.01; and

(c) µ
(0)
k ∼ Np(β̂RG, σ2I), σ2 = 0.01

for k = 1, . . . ,K. We note that (a) is a very naive
choice and has been included to test the sensitivity
of the methods to the starting vectors. For (b) and

(c), we perturb the starting points 0 and β̂RG slightly
to examine how well NPVS and DREVS diversify the
modes.

Results

We implemented NPVS and DREVS for 20 initializa-
tions of each of the three types of starting values de-
scribed above. The total posterior probability found
for each run is displayed by the box plots in Figure 4.

We see that in Figure 4a (corresponding to starting
values (a)), there is high variance in the performance of
both methods, demonstrating their sensitivity to dif-
ferent starting values. For a low dimensional setting
such as this, it is feasible for the independent EMVS
algorithm (λ = 0) to find a large number of high pos-
terior probability models, provided the initializations
are sufficiently diverse.

For starting vectors (b), we see a dramatic difference
in the performance for the different values of λ. As
expected, λ = 0 always finds the same model, whereas
when λ > 0, the determinantal penalty drives trajec-
tories apart to find a diverse set of modes. The clear
winner is DREVS with λ = 10, which finds over 50%
of the total posterior probability in all of the 20 runs.
As expected, NPVS here performs better than λ = 0
in finding higher posterior probability modes; how-
ever, we see a clear benefit of inducing repulsion in
the model space domain as opposed to the parameter
domain.

Figure 5 is a plot of the posterior probabilities for each
of the 2p models, showing the models found for λ = 0
and λ = 10 with starting values generated as in (c).

Here, we see that having been initialized close to β̂RG,
λ = 0 finds the global mode but is unable to cap-
ture the remaining posterior probability. Contrast-
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Figure 4: The box plots display the total probability explored by DREVS (λ = 0, 1, 10, 50) and NPVS over 20 initializations for each of
the three types of starting values. The higher the total posterior probability found, the better.

Figure 5: Plots show posterior probability of each of the 2p possi-
ble models. The models found are shown in red. The total amount
of posterior probability is displayed in parentheses. The methods
found 3, 10 models for λ = 0, 10 respectively. Starting vectors gen-
erated as in (c).

ingly, λ > 0 finds the global mode and then quickly
diversifies to find a set of high posterior modes.

6.2 Protein activity data

In this section, we apply DREVS to the protein ac-
tivity dataset from Clyde and Parmigiani (1998). Fol-
lowing these authors, we code the categorial variables
by indicators, consider main effects and first order in-
teractions and add second order terms for the numer-
ical variables. This results in p = 88 predictors. The
sample size is n = 96. We also take v0 = 0.1 and
v1 = 1000. As the model posterior may no longer
be completely enumerated for a dataset of this size,
we approximate it with a Metropolis-Hastings (MH)
sampler. Specifically, we run the MH algorithm with
a one-step random scan proposal to simulate from the
marginal posterior on γ for 106 iterations.

We implemented DREVS for a range of different λ val-
ues and found again that λ = 10 performed the best.
Using this setting, as well as K = 50 and starting
at β̂RG for each mode, DREVS found the top three
posterior probability models, which corresponded to

16% of the total probability mass. This performance
is remarkable given the vastness of the model space
(288 models). We also note that the median probabil-
ity model, computed from DREVS and MH were the
same. In this dataset, the median probability model
coincided with the highest posterior probability model.
Contrastingly, EMVS always found the null model, as
β̂RG lies in its domain of attraction.

7 Discussion

In this paper, we applied the nonparametric varia-
tional Bayes framework to the problem of Bayesian
variable selection. This strategy motivated the devel-
opment of a new determinantal regularization variant
(DREVS), which takes advantage of the geometry of
the spike-and-slab posterior. We showed the efficacy
of DREVS in finding a set of high posterior modes
when the design matrix has blocks of highly correlated
predictors. We applied DREVS to a protein activity
dataset and showed that it successfully found the top
three modes.

DREVS is a prototype deterministic ensemble ap-
proach to multimodal posterior discovery. Going for-
ward, Ročková (2016) proposed a fast new Particle
EM ensemble approach, a more computationally effi-
cient alternative that operates directly in the model
space domain.
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Ročková, Moran, George

International Conference on Machine Learning, pp.
1224–1232.

Clyde, M. A. and Parmigiani, G. (1998), “Protein con-
struct storage: Bayesian variable selection and pre-
diction with mixtures,” Journal of Biopharmaceuti-
cal Statistics, 8, 431–443.

George, E. I. and McCulloch, R. E. (1993), “Variable
selection via Gibbs sampling,” Journal of the Amer-
ican Statistical Association, 88, 881–889.

Gershman, S., Hoffman, M., and Blei, D. M. (2012),
“Nonparametric variational inference,” in Proceed-
ings of the 29th International Conference on Ma-
chine Learning, pp. 663–670.

Jaakkola, T. S. and Jordan, M. I. (1998), “Improving
the mean field approximation via the use of mix-
ture distributions,” in Learning Graphical Models,
Springer, pp. 163–173.

Ormerod, J. T., You, C., and Müller, S. (2014), “A
variational Bayes approach to variable selection,”
Manuscript.

Robert, C. and Mengersen, K. (2003), “IID sampling
using self-avoiding population Monte Carlo: the pin-
ball sampler,” Bayesian Statistics, 7, 277–292.
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