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A COMPLETE PROOF OF THEOREM 2

In what follows, we assume an arbitrary set H of classifiers and distributions P and Q on H. When H is a
discrete set, P (h) and Q(h) denote probability masses at h. When H is continuous, P (h) and Q(h) denote the
probability densities at h associated to P and Q when they exist.

Let us first recall the change of measure inequality, which is an important step in most PAC-Bayesian proofs.

Lemma 1 (Change of measure inequality [Seldin and Tishby, 2010, McAllester, 2013]). Let H be a set of
classifiers and let P be a distribution on H. Let Q be a distribution on H with a support entirely contained
within the support of P . Then for any function φ : H → R measurable with respect to P , we have

ln

(
E
h∼P

exp
[
φ(h)

])
≥ E

h∼Q
φ(h)−KL(Q‖P ) .

Proof. This proof is very similar to the proofs of Seldin and Tishby [2010], McAllester [2013], but we provide it
for completeness.

Given H, let HP ⊆ H denote the support of P and HQ ⊆ HP denote the support of Q. In the continuous case,
for any h ∈ HQ, we have that P (h)/Q(h) = dP (h)/dQ(h); which is the Radon-Nykodym derivative. Hence, for
any ψ : H → R measurable with respect to P and Q, we have

E
h∼P

ψ(h) =

∫
HP

ψ(h)dP (h) ≥
∫
HQ

ψ(h)dP (h) =

∫
HQ

dP (h)

dQ(h)
ψ(h)dQ(h) =

∫
HQ

P (h)

Q(h)
ψ(h)dQ(h) , E

h∼Q

P (h)

Q(h)
ψ(h) .

The same result holds trivially in the discrete case. This gives us the rule of how to transform the expectation
over P to an expectation over Q. By using Jensen’s inequality and by exploiting the concavity of ln(·), we then
obtain

ln

(
E
h∼P

exp
[
φ(h)

])
≥ ln

(
E
h∼Q

exp
[
φ(h)

]P (h)

Q(h)

)
≥ E

h∼Q
ln

(
exp

[
φ(h)

]P (h)

Q(h)

)
= E

h∼Q

[
φ(h)− ln

(
Q(h)

P (h)

)]
= E

h∼Q
φ(h)−KL(Q‖P ) .

We also need the following modified version of this lemma, which takes into account pairs of voters.

Lemma 2 (Change of measure inequality for pairs of voters [Germain et al., 2015]). For any set H, for any
distributions P and Q on H, and for any measurable function φ : H×H → R, we have

ln

(
E

(h,h′)∼P 2
exp

[
φ(h, h′)

])
≥ E

(h,h′)∼Q2
φ(h, h′)− 2KL(Q‖P ) .

Proof. This result is an application of Lemma 1, with P = P 2, Q = Q2, together with the observation that
KL(Q2‖P 2) = 2 KL(Q‖P ) (see the definition of the KL-divergence, Definition 2).

Now, let us first define the Kullback-Leibler divergence between two Bernoulli distributions, which will be used
in the proof of Theorems 3 and 4, below.

Definition 3. The Kullback-Leibler divergence between two Bernoulli distributions with probability of success q
and probability of success p is given by

kl(q‖p) , q ln
q

p
+ (1− q) ln

1− q
1− p

.
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To prove Theorem 2 that relies on an upper bound on the first moment of the margin and a lower bound on
the second moment, we will first prove these two bounds independently. The first provides a lower bound on
the first moment of the margin from its empirical estimate, and is very similar to the classical PAC-Bayesian
bounds on the risk of the stochastic Gibbs classifier, which can be recovered with a linear transformation of the
first moment of the margin: RD′(GQ) = 1

2

(
1− µ1(MD′

Q )
)
.

Theorem 3. For any distribution D on X × Y, for any set H of real-valued voters h : X → [−1, 1], for any
prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 ∀Q on H,

µ1(MD
Q ) ≥ µ1(MS

Q)−

√
2

m

[
KL(Q‖P ) + ln

(
2
√
m

δ

)] ≥ 1− δ .

Proof. Given a voter h : X → [−1, 1] and a distribution D′ on X × Y, let MD′

h , E(x,y)∼D′ y · h(x).

First, note that Eh∼P exp
[
m
2

(
MS
h −MD

h

)2] is a non-negative random variable. By applying Markov’s inequality,
with probability at least 1− δ over the choice of S ∼ Dm, we have

E
h∼P

exp
[m

2

(
MS
h −MD

h

)2] ≤ 1

δ
E

S∼Dm
E
h∼P

exp
[m

2

(
MS
h −MD

h

)2]
. (7)

Let us now upper-bound the right-hand side of the inequality:

E
S∼Dm

E
h∼P

exp

[
m

2

(
MS

h −MD
h

)2]
= E

h∼P
E

S∼Dm
exp

[
m

2

(
MS

h −MD
h

)2]
(8)

= E
h∼P

E
S∼Dm

exp

[
m · 2

(
1
2

(
1−MS

h

)
−1

2

(
1−MD

h

))2]
≤ E

h∼P
E

S∼Dm
exp

[
m · kl

(
1
2

(
1−MS

h

)∥∥∥ 1
2

(
1−MD

h

))]
(9)

≤ E
h∼P

2
√
m = 2

√
m, (10)

where Line (8) comes from the fact that P is independent of S, Line (9) is an application of Pinsker’s inequality
2(q − p)2 ≤ kl(q‖p), and Line (10) is an application of the main result of Maurer [2004], which is valid for
arbitrary random variables which lie within [0, 1].

Now, by applying Line 10 in Inequality (7) and by taking the logarithm on each side, with probability at least
1− δ over the choice of S ∼ Dm, we have

ln

(
E
h∼P

exp
[m

2

(
MS
h −MD

h

)2]) ≤ ln

(
2
√
m

δ

)
.

By applying the change of measure inequality of Lemma 1 on the left-hand side of the inequality with φ(h) =
m
2

(
MS
h −MD

h

)2, and by using Jensen’s inequality exploiting the convexity of m2
(
MS
h −MD

h

)2, we obtain that
for all distributions Q on H,

ln

(
E
h∼P

exp
[m

2

(
MS
h −MD

h

)2]) ≥ E
h∼Q

m

2

(
MS
h −MD

h

)2 −KL(Q‖P )

≥ m

2

(
E
h∼Q

MS
h − E

h∼Q
MD
h

)2

−KL(Q‖P )

=
m

2

(
µ1(MS

Q)− µ1(MD
Q )
)2 −KL(Q‖P )

We then have that with probability at least 1− δ over the choice of S ∼ Dm, for all Q on H,

m

2

(
µ1(MS

Q)− µ1(MD
Q )
)2 −KL(Q‖P ) ≤ ln

(
2
√
m

δ

)
.

The result immediately follows.
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The second result provides an upper bound on the second moment of the margin from its empirical estimate. It
requires techniques provided in Lacasse et al. [2006], Laviolette et al. [2011], Germain et al. [2011] which are less
common in the PAC-Bayesian literature as they make use of random variables considering pairs of voters.

Theorem 4. For any distribution D on X × Y, for any set H of real-valued voters h : X → [−1, 1], for any
prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 ∀Q on H,

µ2(MD
Q ) ≤ µ2(MS

Q) +

√
2

m

[
2KL(Q‖P ) + ln

(
2
√
m

δ

)] ≥ 1− δ .

Proof. Given a voter h : X → [−1, 1] and a distribution D′ on X × Y, let MD′

h,h′ , E(x,y)∼D′ h(x)h′(x).

First, note that E(h,h′)∼P 2 exp

[
m
2

(
MS
h,h′ −MD

h,h′

)2
]
is a non-negative random variable. By applying Markov’s

inequality, with probability at least 1− δ over the draws of S ∼ Dm, we have

E
(h,h′)∼P 2

exp
[m

2

(
MS
h,h′ −MD

h,h′

)2] ≤ 1

δ
E

S∼Dm
E

(h,h′)∼P 2
exp

[m
2

(
MS
h,h′ −MD

h,h′

)2]
. (11)

Let us now upper-bound the right-hand side of the last inequality:

E
S∼Dm

E
(h,h′)∼P2

exp

[
m

2

(
MS

h,h′ −MD
h,h′

)2]
= E

(h,h′)∼P2
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S∼Dm
exp

[
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2

(
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h,h′ −MD
h,h′

)2]
(12)

= E
(h,h′)∼P2

E
S∼Dm

exp

[
m · 2

(
1
2

(
1−MS

h,h′

)
−1

2

(
1−MD

h,h′

))2]
≤ E

(h,h′)∼P2
E

S∼Dm
exp

[
m · kl

(
1
2

(
1−MS

h,h′

)∥∥∥ 1
2

(
1−MD

h,h′

))]
(13)

≤ E
(h,h′)∼P2

2
√
m = 2

√
m, (14)

where Line (12) comes from the fact that distribution P is independent of S, Line (13) is an application of
Pinsker’s inequality 2(q − p)2 ≤ kl(q‖p), and Line (14) is an application of the main result of Maurer [2004],
which is valid for arbitrary random variables which lie within [0, 1].

Now, by applying Line (14) in Inequality (11) and by taking the logarithm on each side, with probability at least
1− δ over the draws of S ∼ Dm, we have

ln

(
E

(h,h′)∼P 2
exp

[m
2

(
MS
h,h′−MD

h,h′

)2]) ≤ ln

(
2
√
m

δ

)
.

We now apply the change of measure inequality of Lemma 2 on the left-hand side of the inequality, with

φ(h, h′) = m
2

(
MS
h,h′ −MD

h,h′

)2

. We then use Jensen’s inequality exploiting the convexity of m2
(
MS
h,h′ −MD

h,h′

)2

.
We obtain that for all distributions Q on H,

ln

(
E

(h,h′)∼P 2
exp

[m
2

(
MS
h,h −MD

h′h′

)2]) ≥ E
(h,h′)∼Q2

m

2

(
MS
h,h′ −MD

h,h′

)2 − 2 KL(Q‖P )

≥ m

2

(
E

(h,h′)∼Q2
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h,h′ − E

(h,h′)∼Q2
MD
h,h′

)2

− 2 KL(Q‖P )

=
m

2

(
µ2(MS

Q)− µ2(MD
Q )
)2 − 2 KL(Q‖P ) .

We then have that with probability at least 1− δ over the draws of S ∼ Dm,

∀Q on H, m

2

(
µ2(MS

Q)−µ2(MD
Q )
)2−2 KL(Q‖P ) ≤ ln

(
2
√
m

δ

)
.

The result then immediately follows.
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B DETAILED CALCULATIONS OF THE LAGRANGIAN DUALITY

Partial derivative for getting from Lagrangian (4) to first optimality constraint (5). The result is
obtained by making the last line equal to 0 and by isolating −ξ + ν1.

∂

∂q?
Λ(q?,γ?,α, β, ξ, ν)

=
∂

∂q?

[
1

m
γ?>γ? + α> (γ? − diag(y)Hq?) + β

(
1

m
1>γ? − µ

)
− ξ>q? + ν

(
1>q? − 1

)]
=

∂

∂q?

[
α> (γ? − diag(y)Hq?)− ξ>q? + ν1>q? − ν

]
=

∂

∂q?

[
α>γ? − 1

m
α>diag(y)Hq? − ξ>q? + ν1>q?

]
=

∂

∂q?

[
−α>diag(y)Hq? − ξ>q? + ν1>q?

]
= −H>diag(y)α− ξ + ν1

Partial derivative for getting from Lagrangian (4) to second optimality constraint (5). The result
is obtained by making the last line equal to 0 and by isolating γ?.

∂

∂γ?
Λ(q?,γ?,α, β, ξ, ν)

=
∂

∂γ?

[
1

m
γ?>γ? + α> (γ? − diag(y)Hq?) + β

(
1

m
1>γ? − µ

)
− ξ>q? + ν

(
1>q? − 1

)]
=

∂

∂γ?

[
1

m
γ?>γ? + α>γ? −α>diag(y)Hq? +

β

m
1>γ? − βµ− ξ>q? + ν1>q? − ν

]
=

∂

∂γ?

[
1

m
γ?>γ? + α>γ? +

β

m
1>γ?

]
=

2

m
γ? + α +

β

m
1

Straightforward calculations details for substituting Equation (5) in Lagrangian (4).

Λ(q
?
,γ

?
,α, β, ξ, ν)

=
1

m
γ

?>
γ

?
+ α

> (
γ

? − diag(y)Hq
?)

+ β

(
1

m
1
>
γ

? − µ
)
− ξ

>
q
?

+ ν
(
1
>
q
? − 1

)
=

1

m
γ

?>
γ

?
+ α

>
γ

? − α
>

diag(y)Hq
?

+
β

m
1
>
γ

? − βµ− ξ
>
q
?

+ ν1
>
q
? − ν

=
1

m
γ

?>
γ

?
+ α

>
γ

? −
(
H

>
diag(y)α

)>
q
?

+
β

m
1
>
γ

? − βµ− (ξ + ν1)
>

q
? − ν

=
1

m
γ

?>
γ

?
+ α

>
γ

?
+ (ξ + ν1)

>
q
?

+
β

m
1
>
γ

? − βµ− (ξ + ν1)
>

q
? − ν 〈First substitution using Eq. (5)〉

=
1

m
γ

?>
γ

?
+ α

>
γ

?
+
β

m
1
>
γ

? − βµ− ν 〈Simplification〉

=

(
1

m
γ

?
+ α +

β

m
1

)>
γ

? − βµ− ν

=

(
1

m

(
−
m

2
α−

β

2
1

)
+ α +

β

m
1

)> (
−
m

2
α−

β

2
1

)
− βµ− ν 〈Second substitution using Eq. (5)〉

=

(
−

1

2
α−

β

2m
1 + α +

β

m
1

)> (
−
m

2
α−

β

2
1

)
− βµ− ν

=

(
1

2
α +

β

2m
1

)> (
−
m

2
α−

β

2
1

)
− βµ− ν

= −
m

4
α

>
α−

β

4
α

>
1−

β

4
1
>
α−

β2

4m
1
>
1− βµ− ν

= −
m

4
α

>
α−

β

2
1
>
α−

β2

4
− βµ− ν
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C RESULTS USING RBF KERNELS AS VOTERS

Table 2 below shows the results of the experiments considering RBF kernels as base voters. In this setting, for
each training example (x, y), we consider the voters h(·) = ±K(x, ·), where K(x, x′) , exp

(
−‖x− x′‖2/2σ2

)
,

where σ is the width parameter of the kernel and is set to the mean squared distance between pairs of training
examples.

Again, the hyperparameter value of each algorithm has been selected by 5-folds cross-validation on the training
set, among 15 values on a logarithmic scale. The value of hyperparameter µ of CqBoost and MinCq is selected
among values between 10−5 and 10−2. The value of hyperparameter D of MDBoost is chosen between 102

and 106. The value of hyperparameter C of LPBoost and CG-Boost is selected among values between 10−3

and 103. The number of iterations of AdaBoost is selected among values between 103 and 107. The value of
hyperparameter C of SVM has been chosen between 10−4 and 104. The stopping criterion additive constant ε
of all column generation algorithms has been set to 10−8.

CqBoost MDBoost LPBoost CG-Boost AdaBoost MinCq SVM

Dataset Risk Cols. Risk Cols. Risk Cols. Risk Cols. Risk Cols. Risk Cols. Risk Cols.

australian 0.142 31? 0.151 62 0.145 71 0.136 345 0.157 46 0.128? 690 0.133 218
balance 0.054 25 0.038 89 0.029? 23? 0.032 313 0.032 23? 0.058 624 0.035 37
breast 0.040 35 0.040 33 0.040 4? 0.040 350 0.040 10 0.037? 700 0.040 51
bupa 0.272? 30 0.277 23? 0.295 39 0.283 174 0.283 37 0.295 344 0.272? 110
car 0.094 32? 0.054 169 0.034? 87 0.197 504 0.268 74 0.302 1000 0.034? 97
cmc 0.317 28? 0.312 39 0.323 30 0.322 501 0.312 50 0.316 1000 0.306? 323
credit 0.133 21? 0.130? 137 0.139 73 0.133 345 0.145 62 0.133 690 0.130? 118
cylinder 0.307 36 0.296 144 0.359 17? 0.363 270 0.300 41 0.315 540 0.267? 152
ecoli 0.060? 25 0.065 48 0.113 12? 0.113 169 0.095 39 0.095 336 0.101 42
glass 0.187 38 0.187 43 0.159? 29? 0.290 110 0.234 37 0.243 214 0.187 64
heart 0.156 17 0.148? 27 0.148? 14 0.170 135 0.148? 12? 0.156 270 0.156 87
hepatitis 0.156? 12? 0.182 65 0.182 18 0.195 78 0.182 14 0.208 156 0.182 33
horse 0.158 31? 0.163 32 0.136? 33 0.196 184 0.179 34 0.185 368 0.201 85
ionosphere 0.131 31? 0.154 71 0.097? 45 0.120 176 0.126 37 0.120 352 0.097? 43
letter:ab 0.016 26 0.008? 104 0.012 22 0.016 500 0.018 16? 0.019 1000 0.014 67
monks 0.245 18? 0.245 61 0.245 50 0.329 216 0.287 47 0.347 432 0.208? 96
optdigits 0.090 25? 0.066? 147 0.088 77 0.098 500 0.087 58 0.142 1000 0.096 77
pima 0.263 32 0.258 36 0.247? 15? 0.250 384 0.253 17 0.263 768 0.260 254
titanic 0.220? 13? 0.220? 15 0.227 49 0.222 500 0.220? 16 0.220? 1000 0.227 234
vote 0.051? 33? 0.055 110 0.055 37 0.055 218 0.055 41 0.060 436 0.051? 54
wine 0.034 27 0.034 29 0.045 16? 0.045 89 0.045 19 0.022? 178 0.056 30
yeast 0.279 33? 0.277? 65 0.288 88 0.278 502 0.282 80 0.299 1000 0.278 337
zoo 0.059 24 0.059 27 0.000? 18 0.098 50 0.000? 23 0.039 100 0.137 12?

Table 2: Performance and sparsity comparison of CqBoost, MDBoost, LPBoost, CG-Boost, AdaBoost, MinCq
and SVM, using RBF kernel functions as weak classifiers. A bold value indicates that the risk (or number of
chosen columns) is the lowest among the column generation algorithms. A star indicates that the risk is the
lowest among all seven algorithms.

In this setting, we observe that CqBoost, MDBoost and LPBoost show a very similar performance. We also
notice that MDBoost slightly outperforms CqBoost with 10 wins and 7 losses, but with a sign test p-value of
only 0.31, which is not statistically significant.

In terms of sparsity, we observe that CqBoost still reaches its goal of outputting significantly sparser solutions
than MinCq, while keeping a similar performance. Using RBF kernels as voters, as opposed to the results using
decision stumps, CqBoost produces slightly sparser solutions than LPBoost, even if the latter has a L1-norm
regularization term on the weight vector that directly penalizes dense solutions.


