## A COMPLETE PROOF OF THEOREM 2

In what follows, we assume an arbitrary set  $\mathcal{H}$  of classifiers and distributions P and Q on  $\mathcal{H}$ . When  $\mathcal{H}$  is a discrete set, P(h) and Q(h) denote probability masses at h. When  $\mathcal{H}$  is continuous, P(h) and Q(h) denote the probability densities at h associated to P and Q when they exist.

Let us first recall the change of measure inequality, which is an important step in most PAC-Bayesian proofs.

**Lemma 1** (Change of measure inequality [Seldin and Tishby, 2010, McAllester, 2013]). Let  $\mathcal{H}$  be a set of classifiers and let P be a distribution on  $\mathcal{H}$ . Let Q be a distribution on  $\mathcal{H}$  with a support entirely contained within the support of P. Then for any function  $\phi: \mathcal{H} \to \mathbb{R}$  measurable with respect to P, we have

$$\ln \left( \underset{h \sim P}{\mathbf{E}} \exp \left[ \phi(h) \right] \right) \geq \underset{h \sim Q}{\mathbf{E}} \phi(h) - \mathrm{KL}(Q \| P).$$

*Proof.* This proof is very similar to the proofs of Seldin and Tishby [2010], McAllester [2013], but we provide it for completeness.

Given  $\mathcal{H}$ , let  $\mathcal{H}_P \subseteq \mathcal{H}$  denote the support of P and  $\mathcal{H}_Q \subseteq \mathcal{H}_P$  denote the support of Q. In the continuous case, for any  $h \in \mathcal{H}_Q$ , we have that P(h)/Q(h) = dP(h)/dQ(h); which is the Radon-Nykodym derivative. Hence, for any  $\psi : \mathcal{H} \to \mathbb{R}$  measurable with respect to P and Q, we have

$$\underset{h \sim P}{\mathbf{E}} \psi(h) = \int_{\mathcal{H}_P} \psi(h) dP(h) \ \geq \int_{\mathcal{H}_Q} \psi(h) dP(h) \ = \int_{\mathcal{H}_Q} \frac{dP(h)}{dQ(h)} \psi(h) dQ(h) \ = \int_{\mathcal{H}_Q} \frac{P(h)}{Q(h)} \psi(h) dQ(h) \ \triangleq \underset{h \sim Q}{\mathbf{E}} \frac{P(h)}{Q(h)} \psi(h) dQ(h).$$

The same result holds trivially in the discrete case. This gives us the rule of how to transform the expectation over P to an expectation over Q. By using Jensen's inequality and by exploiting the concavity of  $\ln(\cdot)$ , we then obtain

$$\ln\left(\mathbf{E}_{h\sim P}\exp\left[\phi(h)\right]\right) \geq \ln\left(\mathbf{E}_{h\sim Q}\exp\left[\phi(h)\right]\frac{P(h)}{Q(h)}\right)$$

$$\geq \mathbf{E}_{h\sim Q}\ln\left(\exp\left[\phi(h)\right]\frac{P(h)}{Q(h)}\right)$$

$$= \mathbf{E}_{h\sim Q}\left[\phi(h) - \ln\left(\frac{Q(h)}{P(h)}\right)\right]$$

$$= \mathbf{E}_{h\sim Q}\left[\phi(h) - \mathrm{KL}(Q||P).\right]$$

We also need the following modified version of this lemma, which takes into account pairs of voters.

**Lemma 2** (Change of measure inequality for pairs of voters [Germain et al., 2015]). For any set  $\mathcal{H}$ , for any distributions P and Q on  $\mathcal{H}$ , and for any measurable function  $\phi: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ , we have

$$\ln \left( \mathbf{E}_{(h,h')\sim P^2} \exp\left[\phi(h,h')\right] \right) \geq \mathbf{E}_{(h,h')\sim Q^2} \phi(h,h') - 2\mathrm{KL}(Q\|P).$$

*Proof.* This result is an application of Lemma 1, with  $P = P^2$ ,  $Q = Q^2$ , together with the observation that  $\mathrm{KL}(Q^2\|P^2) = 2\,\mathrm{KL}(Q\|P)$  (see the definition of the KL-divergence, Definition 2).

Now, let us first define the Kullback-Leibler divergence between two Bernoulli distributions, which will be used in the proof of Theorems 3 and 4, below.

**Definition 3.** The Kullback-Leibler divergence between two Bernoulli distributions with probability of success q and probability of success p is given by

$$\mathrm{kl}(q\|p) \ \triangleq \ q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p} \,.$$

To prove Theorem 2 that relies on an upper bound on the first moment of the margin and a lower bound on the second moment, we will first prove these two bounds independently. The first provides a lower bound on the first moment of the margin from its empirical estimate, and is very similar to the classical PAC-Bayesian bounds on the risk of the stochastic Gibbs classifier, which can be recovered with a linear transformation of the first moment of the margin:  $R_{D'}(G_Q) = \frac{1}{2} \left(1 - \mu_1(M_Q^{D'})\right)$ .

**Theorem 3.** For any distribution D on  $\mathcal{X} \times \mathcal{Y}$ , for any set  $\mathcal{H}$  of real-valued voters  $h : \mathcal{X} \to [-1, 1]$ , for any prior distribution P on  $\mathcal{H}$ , and any  $\delta \in (0, 1]$ , we have

$$\Pr_{S \sim D^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H}, \\ \mu_1(M_Q^D) \geq \mu_1(M_Q^S) - \sqrt{\frac{2}{m} \left[ \text{KL}(Q \| P) + \ln \left( \frac{2\sqrt{m}}{\delta} \right) \right]} \end{pmatrix} \geq 1 - \delta.$$

*Proof.* Given a voter  $h: \mathcal{X} \to [-1,1]$  and a distribution D' on  $\mathcal{X} \times \mathcal{Y}$ , let  $M_h^{D'} \triangleq \mathbf{E}_{(x,y) \sim D'} y \cdot h(x)$ .

First, note that  $\mathbf{E}_{h\sim P} \exp\left[\frac{m}{2}\left(M_h^S - M_h^D\right)^2\right]$  is a non-negative random variable. By applying Markov's inequality, with probability at least  $1 - \delta$  over the choice of  $S \sim D^m$ , we have

$$\underset{h \sim P}{\mathbf{E}} \exp \left[ \frac{m}{2} \left( M_h^S - M_h^D \right)^2 \right] \le \frac{1}{\delta} \underset{S \sim D^m}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} \exp \left[ \frac{m}{2} \left( M_h^S - M_h^D \right)^2 \right]. \tag{7}$$

Let us now upper-bound the right-hand side of the inequality:

$$\mathbf{E}_{S \sim D^{m}} \mathbf{E}_{h \sim P} \exp \left[ \frac{m}{2} \left( M_{h}^{S} - M_{h}^{D} \right)^{2} \right] = \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ \frac{m}{2} \left( M_{h}^{S} - M_{h}^{D} \right)^{2} \right] \\
= \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot 2 \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) - \frac{1}{2} \left( 1 - M_{h}^{D} \right) \right)^{2} \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \text{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \left\| \frac{1}{2} \left( 1 - M_{h}^{D} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right] \\
\leq \mathbf{E}_{h \sim P} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot \mathbf{kl} \left( \frac{1}{2} \left( 1 - M_{h}^{S} \right) \right) \right]$$

where Line (8) comes from the fact that P is independent of S, Line (9) is an application of Pinsker's inequality  $2(q-p)^2 \le \text{kl}(q||p)$ , and Line (10) is an application of the main result of Maurer [2004], which is valid for arbitrary random variables which lie within [0, 1].

Now, by applying Line 10 in Inequality (7) and by taking the logarithm on each side, with probability at least  $1 - \delta$  over the choice of  $S \sim D^m$ , we have

$$\ln \left( \underset{h \sim P}{\mathbf{E}} \exp \left[ \frac{m}{2} \left( M_h^S - M_h^D \right)^2 \right] \right) \leq \ln \left( \frac{2\sqrt{m}}{\delta} \right).$$

By applying the change of measure inequality of Lemma 1 on the left-hand side of the inequality with  $\phi(h) = \frac{m}{2} \left( M_h^S - M_h^D \right)^2$ , and by using Jensen's inequality exploiting the convexity of  $\frac{m}{2} \left( M_h^S - M_h^D \right)^2$ , we obtain that for all distributions Q on  $\mathcal{H}$ ,

$$\ln\left(\mathbf{E}_{h\sim P}\exp\left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right]\right) \geq \mathbf{E}_{h\sim Q}\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}-\mathrm{KL}(Q\|P)$$

$$\geq \frac{m}{2}\left(\mathbf{E}_{h\sim Q}M_{h}^{S}-\mathbf{E}_{h\sim Q}M_{h}^{D}\right)^{2}-\mathrm{KL}(Q\|P)$$

$$= \frac{m}{2}\left(\mu_{1}(M_{Q}^{S})-\mu_{1}(M_{Q}^{D})\right)^{2}-\mathrm{KL}(Q\|P)$$

We then have that with probability at least  $1-\delta$  over the choice of  $S \sim D^m$ , for all Q on  $\mathcal{H}$ ,

$$\frac{m}{2} \left( \mu_1(M_Q^S) - \mu_1(M_Q^D) \right)^2 - \mathrm{KL}(Q \| P) \ \leq \ \ln \left( \frac{2\sqrt{m}}{\delta} \right).$$

The result immediately follows.

The second result provides an upper bound on the second moment of the margin from its empirical estimate. It requires techniques provided in Lacasse et al. [2006], Laviolette et al. [2011], Germain et al. [2011] which are less common in the PAC-Bayesian literature as they make use of random variables considering pairs of voters.

**Theorem 4.** For any distribution D on  $\mathcal{X} \times \mathcal{Y}$ , for any set  $\mathcal{H}$  of real-valued voters  $h : \mathcal{X} \to [-1, 1]$ , for any prior distribution P on  $\mathcal{H}$ , and any  $\delta \in (0, 1]$ , we have

$$\Pr_{S \sim D^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H}, \\ \mu_2(M_Q^D) \leq \mu_2(M_Q^S) + \sqrt{\frac{2}{m} \left[ 2 \text{KL}(Q \| P) + \ln \left( \frac{2\sqrt{m}}{\delta} \right) \right]} \end{pmatrix} \geq 1 - \delta.$$

*Proof.* Given a voter  $h: \mathcal{X} \to [-1, 1]$  and a distribution D' on  $\mathcal{X} \times \mathcal{Y}$ , let  $M_{h,h'}^{D'} \triangleq \mathbf{E}_{(x,y) \sim D'} h(x) h'(x)$ .

First, note that  $\mathbf{E}_{(h,h')\sim P^2}\exp\left[\frac{m}{2}\left(M_{h,h'}^S-M_{h,h'}^D\right)^2\right]$  is a non-negative random variable. By applying Markov's inequality, with probability at least  $1-\delta$  over the draws of  $S\sim D^m$ , we have

$$\mathbf{E} \exp \left[ \frac{m}{2} \left( M_{h,h'}^S - M_{h,h'}^D \right)^2 \right] \le \frac{1}{\delta} \mathbf{E} \mathbf{E} \exp \left[ \frac{m}{2} \left( M_{h,h'}^S - M_{h,h'}^D \right)^2 \right].$$
 (11)

Let us now upper-bound the right-hand side of the last inequality:

$$\mathbf{E}_{S \sim D^{m} (h,h') \sim P^{2}} \mathbf{E}_{P} \exp \left[ \frac{m}{2} \left( M_{h,h'}^{S} - M_{h,h'}^{D} \right)^{2} \right] = \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ \frac{m}{2} \left( M_{h,h'}^{S} - M_{h,h'}^{D} \right)^{2} \right]$$

$$= \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot 2 \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) - \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right) \right)^{2} \right]$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right) \right]$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right) \right]$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right] \frac{1}{2} \left( 1 - M_{h,h'}^{D} \right)$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right) \right]$$

$$\leq \mathbf{E}_{(h,h') \sim P^{2}} \mathbf{E}_{S \sim D^{m}} \exp \left[ m \cdot kl \left( \frac{1}{2} \left( 1 - M_{h,h'}^{S} \right) \right]$$

where Line (12) comes from the fact that distribution P is independent of S, Line (13) is an application of Pinsker's inequality  $2(q-p)^2 \le \text{kl}(q||p)$ , and Line (14) is an application of the main result of Maurer [2004], which is valid for arbitrary random variables which lie within [0,1].

Now, by applying Line (14) in Inequality (11) and by taking the logarithm on each side, with probability at least  $1 - \delta$  over the draws of  $S \sim D^m$ , we have

$$\ln \left( \underset{(h,h') \sim P^2}{\mathbf{E}} \exp \left[ \frac{m}{2} \left( M_{h,h'}^S - M_{h,h'}^D \right)^2 \right] \right) \leq \ln \left( \frac{2\sqrt{m}}{\delta} \right).$$

We now apply the change of measure inequality of Lemma 2 on the left-hand side of the inequality, with  $\phi(h,h') = \frac{m}{2} \left(M_{h,h'}^S - M_{h,h'}^D\right)^2$ . We then use Jensen's inequality exploiting the convexity of  $\frac{m}{2} \left(M_{h,h'}^S - M_{h,h'}^D\right)^2$ . We obtain that for all distributions Q on  $\mathcal{H}$ ,

$$\begin{split} \ln \left( \underbrace{\mathbf{E}}_{(h,h')\sim P^2} \exp \left[ \frac{m}{2} \left( M_{h,h}^S - M_{h'h'}^D \right)^2 \right] \right) & \geq \underbrace{\mathbf{E}}_{(h,h')\sim Q^2} \frac{m}{2} \left( M_{h,h'}^S - M_{h,h'}^D \right)^2 - 2 \operatorname{KL}(Q \| P) \\ & \geq \frac{m}{2} \left( \underbrace{\mathbf{E}}_{(h,h')\sim Q^2} M_{h,h'}^S - \underbrace{\mathbf{E}}_{(h,h')\sim Q^2} M_{h,h'}^D \right)^2 - 2 \operatorname{KL}(Q \| P) \\ & = \frac{m}{2} \left( \mu_2(M_Q^S) - \mu_2(M_Q^D) \right)^2 - 2 \operatorname{KL}(Q \| P) \,. \end{split}$$

We then have that with probability at least  $1 - \delta$  over the draws of  $S \sim D^m$ ,

$$\forall Q \text{ on } \mathcal{H}, \qquad \frac{m}{2} \left( \mu_2(M_Q^S) - \mu_2(M_Q^D) \right)^2 - 2 \operatorname{KL}(Q \| P) \ \leq \ \ln \left( \frac{2\sqrt{m}}{\delta} \right).$$

The result then immediately follows.

## B DETAILED CALCULATIONS OF THE LAGRANGIAN DUALITY

Partial derivative for getting from Lagrangian (4) to first optimality constraint (5). The result is obtained by making the last line equal to 0 and by isolating  $-\xi + \nu 1$ .

$$\begin{split} &\frac{\partial}{\partial \mathbf{q}^{\star}} \Lambda(\mathbf{q}^{\star}, \boldsymbol{\gamma}^{\star}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}, \boldsymbol{\nu}) \\ &= \frac{\partial}{\partial \mathbf{q}^{\star}} \left[ \frac{1}{m} \boldsymbol{\gamma}^{\star \top} \boldsymbol{\gamma}^{\star} + \boldsymbol{\alpha}^{\top} \left( \boldsymbol{\gamma}^{\star} - \operatorname{diag}(\mathbf{y}) \mathbf{H} \, \mathbf{q}^{\star} \right) + \boldsymbol{\beta} \left( \frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star} - \boldsymbol{\mu} \right) - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \boldsymbol{\nu} \left( \mathbf{1}^{\top} \mathbf{q}^{\star} - 1 \right) \right] \\ &= \frac{\partial}{\partial \mathbf{q}^{\star}} \left[ \boldsymbol{\alpha}^{\top} \left( \boldsymbol{\gamma}^{\star} - \operatorname{diag}(\mathbf{y}) \mathbf{H} \, \mathbf{q}^{\star} \right) - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \boldsymbol{\nu} \mathbf{1}^{\top} \mathbf{q}^{\star} - \boldsymbol{\nu} \right] \\ &= \frac{\partial}{\partial \mathbf{q}^{\star}} \left[ \boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star} - \frac{1}{m} \boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \, \mathbf{q}^{\star} - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \boldsymbol{\nu} \mathbf{1}^{\top} \mathbf{q}^{\star} \right] \\ &= \frac{\partial}{\partial \mathbf{q}^{\star}} \left[ -\boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \, \mathbf{q}^{\star} - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \boldsymbol{\nu} \mathbf{1}^{\top} \mathbf{q}^{\star} \right] \\ &= -\mathbf{H}^{\top} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha} - \boldsymbol{\xi} + \boldsymbol{\nu} \mathbf{1} \end{split}$$

Partial derivative for getting from Lagrangian (4) to second optimality constraint (5). The result is obtained by making the last line equal to 0 and by isolating  $\gamma^*$ .

$$\frac{\partial}{\partial \gamma^{\star}} \Lambda(\mathbf{q}^{\star}, \gamma^{\star}, \boldsymbol{\alpha}, \beta, \boldsymbol{\xi}, \nu) 
= \frac{\partial}{\partial \gamma^{\star}} \left[ \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} (\gamma^{\star} - \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}) + \beta \left( \frac{1}{m} \mathbf{1}^{\top} \gamma^{\star} - \mu \right) - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \nu \left( \mathbf{1}^{\top} \mathbf{q}^{\star} - 1 \right) \right] 
= \frac{\partial}{\partial \gamma^{\star}} \left[ \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \gamma^{\star} - \boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star} + \frac{\beta}{m} \mathbf{1}^{\top} \gamma^{\star} - \beta \mu - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \nu \mathbf{1}^{\top} \mathbf{q}^{\star} - \nu \right] 
= \frac{\partial}{\partial \gamma^{\star}} \left[ \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \gamma^{\star} + \frac{\beta}{m} \mathbf{1}^{\top} \gamma^{\star} \right] 
= \frac{2}{m} \gamma^{\star} + \boldsymbol{\alpha} + \frac{\beta}{m} \mathbf{1}$$

Straightforward calculations details for substituting Equation (5) in Lagrangian (4).

$$\begin{split} &\Lambda(\mathbf{q}^{\star}, \gamma^{\star}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\xi}, \nu) \\ &= \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \left( \gamma^{\star} - \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star} \right) + \beta \left( \frac{1}{m} \mathbf{1}^{\top} \gamma^{\star} - \mu \right) - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \nu \left( \mathbf{1}^{\top} \mathbf{q}^{\star} - 1 \right) \\ &= \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \gamma^{\star} - \boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star} + \frac{\beta}{m} \mathbf{1}^{\top} \gamma^{\star} - \beta \mu - \boldsymbol{\xi}^{\top} \mathbf{q}^{\star} + \nu \mathbf{1}^{\top} \mathbf{q}^{\star} - \nu \\ &= \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \gamma^{\star} - \left( \mathbf{H}^{\top} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha} \right)^{\top} \mathbf{q}^{\star} + \frac{\beta}{m} \mathbf{1}^{\top} \gamma^{\star} - \beta \mu - (\boldsymbol{\xi} + \nu \mathbf{1})^{\top} \mathbf{q}^{\star} - \nu \\ &= \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \gamma^{\star} + (\boldsymbol{\xi} + \nu \mathbf{1})^{\top} \mathbf{q}^{\star} + \frac{\beta}{m} \mathbf{1}^{\top} \gamma^{\star} - \beta \mu - (\boldsymbol{\xi} + \nu \mathbf{1})^{\top} \mathbf{q}^{\star} - \nu \end{aligned} \qquad \text{(First substitution using Eq. (5))} \\ &= \frac{1}{m} \gamma^{\star \top} \gamma^{\star} + \boldsymbol{\alpha}^{\top} \gamma^{\star} + \frac{\beta}{m} \mathbf{1}^{\top} \gamma^{\star} - \beta \mu - \nu \end{aligned} \qquad \text{(Simplification)} \\ &= \left( \frac{1}{m} \gamma^{\star} + \boldsymbol{\alpha} + \frac{\beta}{m} \mathbf{1} \right)^{\top} \gamma^{\star} - \beta \mu - \nu \end{aligned} \\ &= \left( \frac{1}{m} \left( -\frac{m}{2} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1} \right) + \boldsymbol{\alpha} + \frac{\beta}{m} \mathbf{1} \right)^{\top} \left( -\frac{m}{2} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1} \right) - \beta \mu - \nu \end{aligned} \qquad \text{(Second substitution using Eq. (5))} \\ &= \left( \frac{1}{2} \boldsymbol{\alpha} + \frac{\beta}{2m} \mathbf{1} \right)^{\top} \left( -\frac{m}{2} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1} \right) - \beta \mu - \nu \end{aligned} \\ &= \left( \frac{1}{2} \boldsymbol{\alpha} + \frac{\beta}{2m} \mathbf{1} \right)^{\top} \left( -\frac{m}{2} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1} \right) - \beta \mu - \nu \end{aligned} \\ &= -\frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\beta}{4} \boldsymbol{\alpha}^{\top} \mathbf{1} - \frac{\beta}{4} \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{\beta^{2}}{4m} \mathbf{1}^{\top} \mathbf{1} - \beta \mu - \nu \end{aligned} \\ &= -\frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} - \frac{\beta}{2} \mathbf{1}^{\top} \boldsymbol{\alpha} - \frac{\beta^{2}}{4} - \beta \mu - \nu \end{aligned}$$

## C RESULTS USING RBF KERNELS AS VOTERS

Table 2 below shows the results of the experiments considering RBF kernels as base voters. In this setting, for each training example (x, y), we consider the voters  $h(\cdot) = \pm K(x, \cdot)$ , where  $K(x, x') \triangleq \exp(-\|x - x'\|^2/2\sigma^2)$ , where  $\sigma$  is the width parameter of the kernel and is set to the mean squared distance between pairs of training examples.

Again, the hyperparameter value of each algorithm has been selected by 5-folds cross-validation on the training set, among 15 values on a logarithmic scale. The value of hyperparameter  $\mu$  of CqBoost and MinCq is selected among values between  $10^{-5}$  and  $10^{-2}$ . The value of hyperparameter D of MDBoost is chosen between  $10^{2}$  and  $10^{6}$ . The value of hyperparameter C of LPBoost and CG-Boost is selected among values between  $10^{-3}$  and  $10^{3}$ . The number of iterations of AdaBoost is selected among values between  $10^{3}$  and  $10^{7}$ . The value of hyperparameter C of SVM has been chosen between  $10^{-4}$  and  $10^{4}$ . The stopping criterion additive constant  $\epsilon$  of all column generation algorithms has been set to  $10^{-8}$ .

| Dataset    | CqBoost     |                 | MDBoost         |              | LPBoost     |              | CG-Boost |       | AdaBoost |       | $\operatorname{MinCq}$ |       | SVM         |       |
|------------|-------------|-----------------|-----------------|--------------|-------------|--------------|----------|-------|----------|-------|------------------------|-------|-------------|-------|
|            | Risk        | Cols.           | Risk            | Cols.        | Risk        | Cols.        | Risk     | Cols. | Risk     | Cols. | Risk                   | Cols. | Risk        | Cols. |
| australian | 0.142       | 31 <sup>*</sup> | 0.151           | 62           | 0.145       | 71           | 0.136    | 345   | 0.157    | 46    | 0.128*                 | 690   | 0.133       | 218   |
| balance    | 0.054       | 25              | 0.038           | 89           | $0.029^{*}$ | $23^{\star}$ | 0.032    | 313   | 0.032    | 23*   | 0.058                  | 624   | 0.035       | 37    |
| breast     | 0.040       | 35              | 0.040           | 33           | 0.040       | $4^{\star}$  | 0.040    | 350   | 0.040    | 10    | $0.037^{*}$            | 700   | 0.040       | 51    |
| bupa       | $0.272^{*}$ | 30              | 0.277           | $23^{\star}$ | 0.295       | 39           | 0.283    | 174   | 0.283    | 37    | 0.295                  | 344   | 0.272*      | 110   |
| car        | 0.094       | $32^{\star}$    | 0.054           | 169          | 0.034*      | 87           | 0.197    | 504   | 0.268    | 74    | 0.302                  | 1000  | 0.034*      | 97    |
| cmc        | 0.317       | $28^{\star}$    | 0.312           | 39           | 0.323       | 30           | 0.322    | 501   | 0.312    | 50    | 0.316                  | 1000  | 0.306*      | 323   |
| credit     | 0.133       | 21*             | 0.130*          | 137          | 0.139       | 73           | 0.133    | 345   | 0.145    | 62    | 0.133                  | 690   | 0.130*      | 118   |
| cylinder   | 0.307       | 36              | 0.296           | 144          | 0.359       | $17^*$       | 0.363    | 270   | 0.300    | 41    | 0.315                  | 540   | $0.267^{*}$ | 152   |
| ecoli      | 0.060*      | 25              | 0.065           | 48           | 0.113       | $12^{\star}$ | 0.113    | 169   | 0.095    | 39    | 0.095                  | 336   | 0.101       | 42    |
| glass      | 0.187       | 38              | 0.187           | 43           | $0.159^{*}$ | $29^{\star}$ | 0.290    | 110   | 0.234    | 37    | 0.243                  | 214   | 0.187       | 64    |
| heart      | 0.156       | 17              | $0.148^{*}$     | 27           | $0.148^{*}$ | 14           | 0.170    | 135   | 0.148*   | 12*   | 0.156                  | 270   | 0.156       | 87    |
| hepatitis  | 0.156*      | $12^*$          | 0.182           | 65           | 0.182       | 18           | 0.195    | 78    | 0.182    | 14    | 0.208                  | 156   | 0.182       | 33    |
| horse      | 0.158       | 31*             | 0.163           | 32           | 0.136*      | 33           | 0.196    | 184   | 0.179    | 34    | 0.185                  | 368   | 0.201       | 85    |
| ionosphere | 0.131       | 31*             | 0.154           | 71           | $0.097^{*}$ | 45           | 0.120    | 176   | 0.126    | 37    | 0.120                  | 352   | 0.097*      | 43    |
| letter:ab  | 0.016       | 26              | $0.008^{*}$     | 104          | 0.012       | 22           | 0.016    | 500   | 0.018    | 16*   | 0.019                  | 1000  | 0.014       | 67    |
| monks      | 0.245       | 18*             | 0.245           | 61           | 0.245       | 50           | 0.329    | 216   | 0.287    | 47    | 0.347                  | 432   | 0.208*      | 96    |
| optdigits  | 0.090       | $25^{\star}$    | 0.066*          | 147          | 0.088       | 77           | 0.098    | 500   | 0.087    | 58    | 0.142                  | 1000  | 0.096       | 77    |
| pima       | 0.263       | 32              | 0.258           | 36           | $0.247^{*}$ | $15^{\star}$ | 0.250    | 384   | 0.253    | 17    | 0.263                  | 768   | 0.260       | 254   |
| titanic    | $0.220^{*}$ | 13*             | $0.220^{\star}$ | 15           | 0.227       | 49           | 0.222    | 500   | 0.220*   | 16    | 0.220*                 | 1000  | 0.227       | 234   |
| vote       | 0.051*      | 33*             | 0.055           | 110          | 0.055       | 37           | 0.055    | 218   | 0.055    | 41    | 0.060                  | 436   | 0.051*      | 54    |
| wine       | 0.034       | 27              | 0.034           | 29           | 0.045       | $16^{\star}$ | 0.045    | 89    | 0.045    | 19    | $0.022^{\star}$        | 178   | 0.056       | 30    |
| yeast      | 0.279       | 33*             | $0.277^{*}$     | 65           | 0.288       | 88           | 0.278    | 502   | 0.282    | 80    | 0.299                  | 1000  | 0.278       | 337   |
| zoo        | 0.059       | 24              | 0.059           | 27           | 0.000*      | 18           | 0.098    | 50    | 0.000*   | 23    | 0.039                  | 100   | 0.137       | 12*   |

Table 2: Performance and sparsity comparison of CqBoost, MDBoost, LPBoost, CG-Boost, AdaBoost, MinCq and SVM, using RBF kernel functions as weak classifiers. A bold value indicates that the risk (or number of chosen columns) is the lowest among the column generation algorithms. A star indicates that the risk is the lowest among all seven algorithms.

In this setting, we observe that CqBoost, MDBoost and LPBoost show a very similar performance. We also notice that MDBoost slightly outperforms CqBoost with 10 wins and 7 losses, but with a sign test p-value of only 0.31, which is not statistically significant.

In terms of sparsity, we observe that CqBoost still reaches its goal of outputting significantly sparser solutions than MinCq, while keeping a similar performance. Using RBF kernels as voters, as opposed to the results using decision stumps, CqBoost produces slightly sparser solutions than LPBoost, even if the latter has a  $L_1$ -norm regularization term on the weight vector that directly penalizes dense solutions.