A COMPLETE PROOF OF THEOREM 2

In what follows, we assume an arbitrary set \mathcal{H} of classifiers and distributions P and Q on \mathcal{H}. When \mathcal{H} is a discrete set, $P(h)$ and $Q(h)$ denote probability masses at h. When \mathcal{H} is continuous, $P(h)$ and $Q(h)$ denote the probability densities at h associated to P and Q when they exist.
Let us first recall the change of measure inequality, which is an important step in most PAC-Bayesian proofs.
Lemma 1 (Change of measure inequality [Seldin and Tishby, 2010, McAllester, 2013]). Let \mathcal{H} be a set of classifiers and let P be a distribution on \mathcal{H}. Let Q be a distribution on \mathcal{H} with a support entirely contained within the support of P. Then for any function $\phi: \mathcal{H} \rightarrow \mathbb{R}$ measurable with respect to P, we have

$$
\ln (\underset{h \sim P}{\mathbf{E}} \exp [\phi(h)]) \geq \underset{h \sim Q}{\mathbf{E}} \phi(h)-\mathrm{KL}(Q \| P) .
$$

Proof. This proof is very similar to the proofs of Seldin and Tishby [2010], McAllester [2013], but we provide it for completeness.
Given \mathcal{H}, let $\mathcal{H}_{P} \subseteq \mathcal{H}$ denote the support of P and $\mathcal{H}_{Q} \subseteq \mathcal{H}_{P}$ denote the support of Q. In the continuous case, for any $h \in \mathcal{H}_{Q}$, we have that $P(h) / Q(h)=d P(h) / d Q(h)$; which is the Radon-Nykodym derivative. Hence, for any $\psi: \mathcal{H} \rightarrow \mathbb{R}$ measurable with respect to P and Q, we have

$$
\underset{h \sim P}{\mathbf{E}} \psi(h)=\int_{\mathcal{H}_{P}} \psi(h) d P(h) \geq \int_{\mathcal{H}_{Q}} \psi(h) d P(h)=\int_{\mathcal{H}_{Q}} \frac{d P(h)}{d Q(h)} \psi(h) d Q(h)=\int_{\mathcal{H}_{Q}} \frac{P(h)}{Q(h)} \psi(h) d Q(h) \triangleq \underset{h \sim Q}{\mathbf{E}} \frac{P(h)}{Q(h)} \psi(h) .
$$

The same result holds trivially in the discrete case. This gives us the rule of how to transform the expectation over P to an expectation over Q. By using Jensen's inequality and by exploiting the concavity of $\ln (\cdot)$, we then obtain

$$
\begin{aligned}
\ln (\underset{h \sim P}{\mathbf{E}} \exp [\phi(h)]) & \geq \ln \left(\underset{h \sim Q}{\mathbf{E}} \exp [\phi(h)] \frac{P(h)}{Q(h)}\right) \\
& \geq \underset{h \sim Q}{\mathbf{E}} \ln \left(\exp [\phi(h)] \frac{P(h)}{Q(h)}\right) \\
& =\underset{h \sim Q}{\mathbf{E}}\left[\phi(h)-\ln \left(\frac{Q(h)}{P(h)}\right)\right] \\
& =\underset{h \sim Q}{\mathbf{E}} \phi(h)-\operatorname{KL}(Q \| P) .
\end{aligned}
$$

We also need the following modified version of this lemma, which takes into account pairs of voters.
Lemma 2 (Change of measure inequality for pairs of voters [Germain et al., 2015]). For any set \mathcal{H}, for any distributions P and Q on \mathcal{H}, and for any measurable function $\phi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$, we have

$$
\ln \left(\underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \exp \left[\phi\left(h, h^{\prime}\right)\right]\right) \geq \underset{\left(h, h^{\prime}\right) \sim Q^{2}}{\mathbf{E}} \phi\left(h, h^{\prime}\right)-2 \mathrm{KL}(Q \| P) .
$$

Proof. This result is an application of Lemma 1, with $P=P^{2}, Q=Q^{2}$, together with the observation that $\mathrm{KL}\left(Q^{2} \| P^{2}\right)=2 \mathrm{KL}(Q \| P)$ (see the definition of the KL-divergence, Definition 2).

Now, let us first define the Kullback-Leibler divergence between two Bernoulli distributions, which will be used in the proof of Theorems 3 and 4, below.
Definition 3. The Kullback-Leibler divergence between two Bernoulli distributions with probability of success q and probability of success p is given by

$$
\mathrm{kl}(q \| p) \triangleq q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p} .
$$

To prove Theorem 2 that relies on an upper bound on the first moment of the margin and a lower bound on the second moment, we will first prove these two bounds independently. The first provides a lower bound on the first moment of the margin from its empirical estimate, and is very similar to the classical PAC-Bayesian bounds on the risk of the stochastic Gibbs classifier, which can be recovered with a linear transformation of the first moment of the margin: $R_{D^{\prime}}\left(G_{Q}\right)=\frac{1}{2}\left(1-\mu_{1}\left(M_{Q}^{D^{\prime}}\right)\right)$.
Theorem 3. For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set \mathcal{H} of real-valued voters $h: \mathcal{X} \rightarrow[-1,1]$, for any prior distribution P on \mathcal{H}, and any $\delta \in(0,1]$, we have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\begin{array}{l}
\forall Q \text { on } \mathcal{H}, \\
\left.\mu_{1}\left(M_{Q}^{D}\right) \geq \mu_{1}\left(M_{Q}^{S}\right)-\sqrt{\frac{2}{m}\left[K L(Q \| P)+\ln \left(\frac{2 \sqrt{m}}{\delta}\right)\right]}\right) \geq 1-\delta .
\end{array}\right.
$$

Proof. Given a voter $h: \mathcal{X} \rightarrow[-1,1]$ and a distribution D^{\prime} on $\mathcal{X} \times \mathcal{Y}$, let $M_{h}^{D^{\prime}} \triangleq \mathbf{E}_{(x, y) \sim D^{\prime}} y \cdot h(x)$.
First, note that $\mathbf{E}_{h \sim P} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right]$ is a non-negative random variable. By applying Markov's inequality, with probability at least $1-\delta$ over the choice of $S \sim D^{m}$, we have

$$
\begin{equation*}
\underset{h \sim P}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right] \leq \frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right] \tag{7}
\end{equation*}
$$

Let us now upper-bound the right-hand side of the inequality:

$$
\begin{align*}
\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right] & =\underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right] \tag{8}\\
& =\underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}} \exp \left[m \cdot 2\left(\frac{1}{2}\left(1-M_{h}^{S}\right)-\frac{1}{2}\left(1-M_{h}^{D}\right)\right)^{2}\right] \\
& \leq \underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}} \exp \left[m \cdot \mathrm{kl}\left(\frac{1}{2}\left(1-M_{h}^{S}\right) \| \frac{1}{2}\left(1-M_{h}^{D}\right)\right)\right] \tag{9}\\
& \leq \underset{h \sim P}{\mathbf{E}} 2 \sqrt{m}=2 \sqrt{m}, \tag{10}
\end{align*}
$$

where Line (8) comes from the fact that P is independent of S, Line (9) is an application of Pinsker's inequality $2(q-p)^{2} \leq \mathrm{kl}(q \| p)$, and Line (10) is an application of the main result of Maurer [2004], which is valid for arbitrary random variables which lie within $[0,1]$.

Now, by applying Line 10 in Inequality (7) and by taking the logarithm on each side, with probability at least $1-\delta$ over the choice of $S \sim D^{m}$, we have

$$
\ln \left(\underset{h \sim P}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right]\right) \leq \ln \left(\frac{2 \sqrt{m}}{\delta}\right)
$$

By applying the change of measure inequality of Lemma 1 on the left-hand side of the inequality with $\phi(h)=$ $\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}$, and by using Jensen's inequality exploiting the convexity of $\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}$, we obtain that for all distributions Q on \mathcal{H},

$$
\begin{aligned}
\ln \left(\underset{h \sim P}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}\right]\right) & \geq \underset{h \sim Q}{\mathbf{E}} \frac{m}{2}\left(M_{h}^{S}-M_{h}^{D}\right)^{2}-\mathrm{KL}(Q \| P) \\
& \geq \frac{m}{2}\left(\underset{h \sim Q}{\mathbf{E}} M_{h}^{S}-\underset{h \sim Q}{\mathbf{E}} M_{h}^{D}\right)^{2}-\mathrm{KL}(Q \| P) \\
& =\frac{m}{2}\left(\mu_{1}\left(M_{Q}^{S}\right)-\mu_{1}\left(M_{Q}^{D}\right)\right)^{2}-\mathrm{KL}(Q \| P)
\end{aligned}
$$

We then have that with probability at least $1-\delta$ over the choice of $S \sim D^{m}$, for all Q on \mathcal{H},

$$
\frac{m}{2}\left(\mu_{1}\left(M_{Q}^{S}\right)-\mu_{1}\left(M_{Q}^{D}\right)\right)^{2}-\mathrm{KL}(Q \| P) \leq \ln \left(\frac{2 \sqrt{m}}{\delta}\right)
$$

The result immediately follows.

The second result provides an upper bound on the second moment of the margin from its empirical estimate. It requires techniques provided in Lacasse et al. [2006], Laviolette et al. [2011], Germain et al. [2011] which are less common in the PAC-Bayesian literature as they make use of random variables considering pairs of voters.
Theorem 4. For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set \mathcal{H} of real-valued voters $h: \mathcal{X} \rightarrow[-1,1]$, for any prior distribution P on \mathcal{H}, and any $\delta \in(0,1]$, we have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\begin{array}{l}
\forall Q \text { on } \mathcal{H}, \\
\left.\mu_{2}\left(M_{Q}^{D}\right) \leq \mu_{2}\left(M_{Q}^{S}\right)+\sqrt{\frac{2}{m}\left[2 \mathrm{KL}(Q \| P)+\ln \left(\frac{2 \sqrt{m}}{\delta}\right)\right]}\right) \geq 1-\delta .
\end{array}\right.
$$

Proof. Given a voter $h: \mathcal{X} \rightarrow[-1,1]$ and a distribution D^{\prime} on $\mathcal{X} \times \mathcal{Y}$, let $M_{h, h^{\prime}}^{D^{\prime}} \triangleq \mathbf{E}_{(x, y) \sim D^{\prime}} h(x) h^{\prime}(x)$.
First, note that $\mathbf{E}_{\left(h, h^{\prime}\right) \sim P^{2}} \exp \left[\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}\right]$ is a non-negative random variable. By applying Markov's inequality, with probability at least $1-\delta$ over the draws of $S \sim D^{m}$, we have

$$
\begin{equation*}
\underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}\right] \leq \frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \exp ^{\operatorname{ex}}\left[\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}\right] \tag{11}
\end{equation*}
$$

Let us now upper-bound the right-hand side of the last inequality:

$$
\begin{align*}
\underset{S \sim D^{m}}{\mathbf{E}} \underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}\right] & =\underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}\right] \tag{12}\\
& =\underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}} \exp \left[m \cdot 2\left(\frac{1}{2}\left(1-M_{h, h^{\prime}}^{S}\right)-\frac{1}{2}\left(1-M_{h, h^{\prime}}^{D}\right)\right)^{2}\right] \\
& \leq \underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}} \exp \left[m \cdot \mathrm{kl}\left(\frac{1}{2}\left(1-M_{h, h^{\prime}}^{S}\right) \| \frac{1}{2}\left(1-M_{h, h^{\prime}}^{D}\right)\right)\right] \tag{13}\\
& \leq \underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} 2 \sqrt{m}=2 \sqrt{m} \tag{14}
\end{align*}
$$

where Line (12) comes from the fact that distribution P is independent of S, Line (13) is an application of Pinsker's inequality $2(q-p)^{2} \leq \mathrm{kl}(q \| p)$, and Line (14) is an application of the main result of Maurer [2004], which is valid for arbitrary random variables which lie within $[0,1]$.
Now, by applying Line (14) in Inequality (11) and by taking the logarithm on each side, with probability at least $1-\delta$ over the draws of $S \sim D^{m}$, we have

$$
\ln \left(\underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}\right]\right) \leq \ln \left(\frac{2 \sqrt{m}}{\delta}\right)
$$

We now apply the change of measure inequality of Lemma 2 on the left-hand side of the inequality, with $\phi\left(h, h^{\prime}\right)=\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}$. We then use Jensen's inequality exploiting the convexity of $\frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}$. We obtain that for all distributions Q on \mathcal{H},

$$
\begin{aligned}
\ln \left(\underset{\left(h, h^{\prime}\right) \sim P^{2}}{\mathbf{E}} \exp \left[\frac{m}{2}\left(M_{h, h}^{S}-M_{h^{\prime} h^{\prime}}^{D}\right)^{2}\right]\right) & \geq \underset{\left(h, h^{\prime}\right) \sim Q^{2}}{\mathbf{E}} \frac{m}{2}\left(M_{h, h^{\prime}}^{S}-M_{h, h^{\prime}}^{D}\right)^{2}-2 \mathrm{KL}(Q \| P) \\
& \geq \frac{m}{2}\left(\underset{\left(h, h^{\prime}\right) \sim Q^{2}}{\mathbf{E}} M_{h, h^{\prime}}^{S}-\underset{\left(h, h^{\prime}\right) \sim Q^{2}}{\mathbf{E}} M_{h, h^{\prime}}^{D}\right)^{2}-2 \mathrm{KL}(Q \| P) \\
& =\frac{m}{2}\left(\mu_{2}\left(M_{Q}^{S}\right)-\mu_{2}\left(M_{Q}^{D}\right)\right)^{2}-2 \mathrm{KL}(Q \| P)
\end{aligned}
$$

We then have that with probability at least $1-\delta$ over the draws of $S \sim D^{m}$,

$$
\forall Q \text { on } \mathcal{H}, \quad \frac{m}{2}\left(\mu_{2}\left(M_{Q}^{S}\right)-\mu_{2}\left(M_{Q}^{D}\right)\right)^{2}-2 \mathrm{KL}(Q \| P) \leq \ln \left(\frac{2 \sqrt{m}}{\delta}\right)
$$

The result then immediately follows.

B DETAILED CALCULATIONS OF THE LAGRANGIAN DUALITY

Partial derivative for getting from Lagrangian（4）to first optimality constraint（5）．The result is obtained by making the last line equal to $\mathbf{0}$ and by isolating $-\boldsymbol{\xi}+\nu \mathbf{1}$ ．

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{q}^{\star}} & \Lambda\left(\mathbf{q}^{\star}, \boldsymbol{\gamma}^{\star}, \boldsymbol{\alpha}, \beta, \boldsymbol{\xi}, \nu\right) \\
& =\frac{\partial}{\partial \mathbf{q}^{\star}}\left[\frac{1}{m} \boldsymbol{\gamma}^{\star \top} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top}\left(\boldsymbol{\gamma}^{\star}-\operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}\right)+\beta\left(\frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\mu\right)-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu\left(\mathbf{1}^{\top} \mathbf{q}^{\star}-1\right)\right] \\
& =\frac{\partial}{\partial \mathbf{q}^{\star}}\left[\boldsymbol{\alpha}^{\top}\left(\boldsymbol{\gamma}^{\star}-\operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}\right)-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu \mathbf{1}^{\top} \mathbf{q}^{\star}-\nu\right] \\
& =\frac{\partial}{\partial \mathbf{q}^{\star}}\left[\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}-\frac{1}{m} \boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu \mathbf{1}^{\top} \mathbf{q}^{\star}\right] \\
& =\frac{\partial}{\partial \mathbf{q}^{\star}}\left[-\boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu \mathbf{1}^{\top} \mathbf{q}^{\star}\right] \\
& =-\mathbf{H}^{\top} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha}-\boldsymbol{\xi}+\nu \mathbf{1}
\end{aligned}
$$

Partial derivative for getting from Lagrangian（4）to second optimality constraint（5）．The result is obtained by making the last line equal to $\mathbf{0}$ and by isolating γ^{\star} ．

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{\gamma}^{\star}} & \Lambda\left(\mathbf{q}^{\star}, \boldsymbol{\gamma}^{\star}, \boldsymbol{\alpha}, \beta, \boldsymbol{\xi}, \nu\right) \\
& =\frac{\partial}{\partial \boldsymbol{\gamma}^{\star}}\left[\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top}\left(\boldsymbol{\gamma}^{\star}-\operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}\right)+\beta\left(\frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\mu\right)-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu\left(\mathbf{1}^{\top} \mathbf{q}^{\star}-1\right)\right] \\
& =\frac{\partial}{\partial \boldsymbol{\gamma}^{\star}}\left[\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}-\boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}+\frac{\beta}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\beta \mu-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu \mathbf{1}^{\top} \mathbf{q}^{\star}-\nu\right] \\
& =\frac{\partial}{\partial \boldsymbol{\gamma}^{\star}}\left[\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}+\frac{\beta}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}\right] \\
& =\frac{2}{m} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}+\frac{\beta}{m} \mathbf{1}
\end{aligned}
$$

Straightforward calculations details for substituting Equation（5）in Lagrangian（4）．

$$
\begin{array}{rlr}
\Lambda\left(\mathbf{q}^{\star}, \boldsymbol{\gamma}^{\star}, \boldsymbol{\alpha}, \beta, \boldsymbol{\xi}, \nu\right) & \\
& =\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top}\left(\boldsymbol{\gamma}^{\star}-\operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}\right)+\beta\left(\frac{1}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\mu\right)-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu\left(\mathbf{1}^{\top} \mathbf{q}^{\star}-1\right) \\
& =\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}-\boldsymbol{\alpha}^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{H} \mathbf{q}^{\star}+\frac{\beta}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\beta \mu-\boldsymbol{\xi}^{\top} \mathbf{q}^{\star}+\nu \mathbf{1}^{\top} \mathbf{q}^{\star}-\nu & \\
& =\frac{1}{m} \boldsymbol{\gamma}^{\star \top} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}-\left(\mathbf{H}^{\top} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha}\right)^{\top} \mathbf{q}^{\star}+\frac{\beta}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\beta \mu-(\boldsymbol{\xi}+\nu \mathbf{1})^{\top} \mathbf{q}^{\star}-\nu & \\
& =\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}+(\boldsymbol{\xi}+\nu \mathbf{1})^{\top} \mathbf{q}^{\star}+\frac{\beta}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\beta \mu-(\boldsymbol{\xi}+\nu \mathbf{1})^{\top} \mathbf{q}^{\star}-\nu & \\
& =\frac{1}{m} \boldsymbol{\gamma}^{\star} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}^{\top} \boldsymbol{\gamma}^{\star}+\frac{\beta}{m} \mathbf{1}^{\top} \boldsymbol{\gamma}^{\star}-\beta \mu-\nu & \text { 〈First substitution using Eq. (5)) } \\
& =\left(\frac{1}{m} \boldsymbol{\gamma}^{\star}+\boldsymbol{\alpha}+\frac{\beta}{m} \mathbf{1}\right)^{\top} \boldsymbol{\gamma}^{\star}-\beta \mu-\nu & \text { 〈Simplification〉 } \\
& =\left(\frac{1}{m}\left(-\frac{m}{2} \boldsymbol{\alpha}-\frac{\beta}{2} \mathbf{1}\right)+\boldsymbol{\alpha}+\frac{\beta}{m} \mathbf{1}\right)^{\top}\left(-\frac{m}{2} \boldsymbol{\alpha}-\frac{\beta}{2} \mathbf{1}\right)-\beta \mu-\nu & \\
& =\left(-\frac{1}{2} \boldsymbol{\alpha}-\frac{\beta}{2 m} \mathbf{1}+\boldsymbol{\alpha}+\frac{\beta}{m} \mathbf{1}\right)^{\top}\left(-\frac{m}{2} \boldsymbol{\alpha}-\frac{\beta}{2} \mathbf{1}\right)-\beta \mu-\nu & \\
& =\left(\frac{1}{2} \boldsymbol{\alpha}+\frac{\beta}{2 m} \mathbf{1}\right)^{\top}\left(-\frac{m}{2} \boldsymbol{\alpha}-\frac{\beta}{2} \mathbf{1}\right)-\beta \mu-\nu & \text { 〈Second substitution using Eq. (5)) } \\
& =-\frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha}-\frac{\beta}{4} \boldsymbol{\alpha}^{\top} \mathbf{1}-\frac{\beta}{4} \mathbf{1}^{\top} \boldsymbol{\alpha}-\frac{\beta^{2}}{4 m} \mathbf{1}^{\top} \mathbf{1}-\beta \mu-\nu & \\
& =-\frac{m}{4} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha}-\frac{\beta}{2} \mathbf{1}^{\top} \boldsymbol{\alpha}-\frac{\beta^{2}}{4}-\beta \mu-\nu &
\end{array}
$$

C RESULTS USING RBF KERNELS AS VOTERS

Table 2 below shows the results of the experiments considering RBF kernels as base voters. In this setting, for each training example (x, y), we consider the voters $h(\cdot)= \pm K(x, \cdot)$, where $K\left(x, x^{\prime}\right) \triangleq \exp \left(-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$, where σ is the width parameter of the kernel and is set to the mean squared distance between pairs of training examples.

Again, the hyperparameter value of each algorithm has been selected by 5 -folds cross-validation on the training set, among 15 values on a logarithmic scale. The value of hyperparameter μ of CqBoost and MinCq is selected among values between 10^{-5} and 10^{-2}. The value of hyperparameter D of MDBoost is chosen between 10^{2} and 10^{6}. The value of hyperparameter C of LPBoost and CG-Boost is selected among values between 10^{-3} and 10^{3}. The number of iterations of AdaBoost is selected among values between 10^{3} and 10^{7}. The value of hyperparameter C of SVM has been chosen between 10^{-4} and 10^{4}. The stopping criterion additive constant ϵ of all column generation algorithms has been set to 10^{-8}.

	CqBoost		MDBoost		LPBoost		CG-Boost		AdaBoost		MinCq		SVM	
Dataset	Risk	Cols.												
australian	0.142	31*	0.151	62	0.145	71	0.136	345	0.157	46	0.128*	690	0.133	218
balance	0.054	25	0.038	89	0.029^{*}	23^{\star}	0.032	313	0.032	23^{\star}	0.058	624	0.035	37
breast	0.040	35	0.040	33	0.040	4*	0.040	350	0.040	10	$0.037 *$	700	0.040	51
bupa	0.272*	30	0.277	23 ${ }^{\text {® }}$	0.295	39	0.283	174	0.283	37	0.295	344	0.272^{\star}	110
car	0.094	32*	0.054	169	0.034*	87	0.197	504	0.268	74	0.302	1000	0.034*	97
cmc	0.317	28^{\star}	0.312	39	0.323	30	0.322	501	0.312	50	0.316	1000	0.306^{\star}	323
credit	0.133	21*	0.130*	137	0.139	73	0.133	345	0.145	62	0.133	690	0.130 *	118
cylinder	0.307	36	0.296	144	0.359	17*	0.363	270	0.300	41	0.315	540	0.267^{*}	152
ecoli	0.060*	25	0.065	48	0.113	$12{ }^{\text {* }}$	0.113	169	0.095	39	0.095	336	0.101	42
glass	0.187	38	0.187	43	$0.159{ }^{\text {* }}$	29*	0.290	110	0.234	37	0.243	214	0.187	64
heart	0.156	17	0.148*	27	0.148^{\star}	14	0.170	135	0.148*	12^{*}	0.156	270	0.156	87
hepatitis	0.156*	12*	0.182	65	0.182	18	0.195	78	0.182	14	0.208	156	0.182	33
horse	0.158	$31{ }^{\star}$	0.163	32	0.136 ${ }^{\text {* }}$	33	0.196	184	0.179	34	0.185	368	0.201	85
ionosphere	0.131	31*	0.154	71	0.097*	45	0.120	176	0.126	37	0.120	352	$0.097 *$	43
letter:ab	0.016	26	0.008^{\star}	104	0.012	22	0.016	500	0.018	16^{\star}	0.019	1000	0.014	67
monks	0.245	$18{ }^{\text {* }}$	0.245	61	0.245	50	0.329	216	0.287	47	0.347	432	0.208^{*}	96
optdigits	0.090	25*	0.066*	147	0.088	77	0.098	500	0.087	58	0.142	1000	0.096	77
pima	0.263	32	0.258	36	0.247^{*}	15*	0.250	384	0.253	17	0.263	768	0.260	254
titanic	$0.220{ }^{\text {* }}$	13*	0.220*	15	0.227	49	0.222	500	0.220^{*}	16	0.220^{*}	1000	0.227	234
vote	0.051*	33*	0.055	110	0.055	37	0.055	218	0.055	41	0.060	436	0.051*	54
wine	0.034	27	0.034	29	0.045	16*	0.045	89	0.045	19	0.022*	178	0.056	30
yeast	0.279	33*	0.277*	65	0.288	88	0.278	502	0.282	80	0.299	1000	0.278	337
zoo	0.059	24	0.059	27	0.000*	18	0.098	50	0.000*	23	0.039	100	0.137	12^{*}

Table 2: Performance and sparsity comparison of CqBoost, MDBoost, LPBoost, CG-Boost, AdaBoost, MinCq and SVM, using RBF kernel functions as weak classifiers. A bold value indicates that the risk (or number of chosen columns) is the lowest among the column generation algorithms. A star indicates that the risk is the lowest among all seven algorithms.

In this setting, we observe that CqBoost, MDBoost and LPBoost show a very similar performance. We also notice that MDBoost slightly outperforms CqBoost with 10 wins and 7 losses, but with a sign test p-value of only 0.31 , which is not statistically significant.
In terms of sparsity, we observe that CqBoost still reaches its goal of outputting significantly sparser solutions than MinCq, while keeping a similar performance. Using RBF kernels as voters, as opposed to the results using decision stumps, CqBoost produces slightly sparser solutions than LPBoost, even if the latter has a L_{1}-norm regularization term on the weight vector that directly penalizes dense solutions.

