
A Column Generation Bound Minimization Approach with
PAC-Bayesian Generalization Guarantees

Jean-Francis Roy
jean-francis.roy@ift.ulaval.ca

Mario Marchand
mario.marchand@ift.ulaval.ca

François Laviolette
francois.laviolette@ift.ulaval.ca

Département d’informatique et de génie logiciel, Université Laval, Québec, Canada

Abstract

The C-bound, introduced in Lacasse et al.
[2006], gives a tight upper bound on the risk
of the majority vote classifier. Laviolette
et al. [2011] designed a learning algorithm
named MinCq that outputs a dense distribu-
tion on a finite set of base classifiers by min-
imizing the C-bound, together with a PAC-
Bayesian generalization guarantee. In this
work, we design a column generation algo-
rithm that we call CqBoost, that optimizes
the C-bound and outputs a sparse distribu-
tion on a possibly infinite set of voters. We
also propose a PAC-Bayesian bound for Cq-
Boost that holds for finite and two cases of
continuous sets of base classifiers. Finally, we
compare the accuracy and the sparsity of Cq-
Boost with MinCq and other state-of-the-art
boosting algorithms.

1 INTRODUCTION

Many state-of-the-art binary classification learning al-
gorithms, such as Bagging [Breiman, 1996], Boost-
ing [Schapire and Singer, 1999], and Random Forests
[Breiman, 2001], output prediction functions that can
be seen as a majority vote of “simple” classifiers.
Majority votes are also central in the Bayesian ap-
proach (see Gelman et al. for an introductory text).
Moreover, classifiers produced by kernel methods, such
as the Support Vector Machine (SVM) [Cortes and
Vapnik, 1995], can also be viewed as majority votes.
Indeed, to classify an example x, the SVM classifier
computes sgn

(∑|S|
i=1 αi yi k(xi, x)

)
. Hence, as for

standard binary majority votes, if the total weight of

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

each αi yi k(xi, x) that votes positive is larger than
the total weight for the negative choice, the classifier
will output a +1 label (and a −1 label in the opposite
case).

Most bounds on majority votes take into account the
margin of the majority vote on an example (x, y), that
is the difference between the total vote weight that has
been given to the winning class minus the weight given
to the alternative class. As an example, PAC-Bayesian
bounds on majority vote classifiers are related to a
stochastic classifier, called the Gibbs classifier, which
is, up to a linear transformation, equivalent to the first
statistical moment of the margin when each (x, y) is
drawn independently from the same distribution [Lavi-
olette et al., 2011]. Unfortunately, in many ensemble
methods, the voters are weak and no majority vote can
achieve a large margin. Lacasse et al. [2006] proposed
a tighter relation between the risk of the majority vote
that takes into account both the first and the second
moments of the margin: the C-bound. This bound cor-
roborates classical knowledge on the behavior of ma-
jority votes: it is not only how good are the voters
but also how they are correlated in their voting. With
this idea in mind, many boosting algorithms such as
MDBoost [Shen and Li, 2010], minimize an objective
function that controls the mean and variance of the
margin distribution. However, these approaches are
not based on the direct minimization of a risk bound.

The C-bound of Lacasse et al. [2006] has inspired
a learning algorithm that directly minimize a PAC-
Bayesian generalization bound, named MinCq [Lavio-
lette et al., 2011], that has also been extended to con-
sider a priori constraints [Bellet et al., 2014], to late
classifier fusion [Morvant et al., 2014] and to domain
adaptation [Morvant, 2015]. This algorithm turns out
to be a quadratic program (QP) that produces dense
weight distributions over a finite set of voters. In many
applications of machine learning, sparse solutions are
preferred as the learned classification rules are easier
to interpret, and the resulting classifier is computa-
tionally faster. In this work, we design CqBoost, a

1241

A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees

boosting learning algorithm based on a relaxed formu-
lation of MinCq, but that produces sparse solutions
and can consider infinite sets of voters. It makes use
of Lagrange duality and column generation techniques,
and is based on a PAC-Bayesian generalization bound
that holds for finite and two cases of continuous sets
of classifiers. Despite the fact that CqBoost is de-
signed to minimize a different generalization bound
than other column generation techniques, the resulting
algorithm turns out to share similarities with other al-
gorithms, such as LPBoost [Demiriz et al., 2002], CG-
Boost [Bi et al., 2004] and MDBoost [Shen and Li,
2010]. Empirical experiments show that CqBoost is
state of the art when compared with these algorithms,
with AdaBoost [Schapire and Singer, 1999] and with
MinCq, while outputting solutions that are consider-
ably sparser than MinCq.

This paper is organized as follows. Section 2 reviews
the C-bound and the MinCq algorithm, and presents
generalized definitions of the margin that consider two
cases of continuous sets of voters. Section 3 presents
a generalization guarantee for CqBoost by providing
a specialized PAC-Bayesian bound. Section 4 ex-
plains how to construct a meaningful Lagrange dual of
MinCq. Section 5 presents the resulting column gener-
ation algorithm. Section 6 discusses the relations with
previous work. Section 7 shows empirical results on
benchmark data, and we conclude in Section 8.

2 THE C-BOUND AND MINCQ

Consider a supervised learning classification task,
where X is the input space and Y = {−1,+1} is the
output space. The learning sample S = {(xi, yi)}mi=1

consists of m examples drawn i.i.d. from a fixed
but unknown distribution D over X×Y. Let H
be a (possibly continuous) set of real-valued voters
h : X → [−1, 1]. For any posterior distribution
Q on H, the majority vote classifier BQ is defined by

BQ(x) , sgn

[
E
h∼Q

h(x)

]
,

where sgn(a) returns 1 if a > 0 and −1 otherwise.

Given a data-generating distribution D and a sample
S, the objective of the PAC-Bayesian approach is to
find the posterior distribution Q on H that minimizes
the true risk of the Q-weighted majority vote BQ(·),
given by

RD(BQ) , E
(x,y)∼D

I (BQ(x) 6= y) ,

where I(a) = 1 if predicate a is true and 0 otherwise.

It is well know that minimizing RD(BQ) is NP-hard.
To get around this problem, one solution is to consider

the C-bound as a surrogate, that is a tight upper bound
on RD(BQ). This quantity depends on the first two
statistical moments of the margin of the majority vote
BQ, defined below.
Definition 1. Given a set H of voters h : X → [−1, 1]
and a distribution Q on H, the margin MQ(x, y) on
example (x, y) is defined by

MQ(x, y) , y E
h∼Q

h(x).

Given a distribution D′ on X ×Y, the first and second
statistical moments of MQ are given, respectively, by

µ1

(
MD′
Q

)
, E

(x,y)∼D′
MQ(x, y) , and

µ2

(
MD′
Q

)
, E

(x,y)∼D′

(
MQ(x, y)

)2

.

According to the definition of the margin, BQ(·)
correctly classifies an example (x, y) when its
margin is strictly positive, hence RD′(BQ) =
Pr(x,y)∼D′ (MQ(x, y) ≤ 0). This equality allows us to
prove the following theorem.
Theorem 1 (The C-bound of Laviolette et al. [2011]).
For any distribution Q on a set of real-valued func-
tions H, and for any distribution D′ on X × Y, if
µ1(MD

Q) > 0, then we have:

RD′(BQ) ≤ 1−
(
µ1(MD′

Q)
)2

µ2(MD′
Q)

.

Proof. The Cantelli-Chebyshev inequality states that
for any random variable Z and any a > 0, we have
that Pr (Z ≤ E [Z]− a) ≤ VarZ

VarZ+a2 . We obtain the
result by applying this inequality with Z = MQ(x, y)
and a = µ1(MD′

Q).

The minimization of the empirical counterpart of the
C-bound is a natural solution for learning a distribu-
tion Q that leads to a Q-weighted majority vote BQ(·)
with a low generalization error. This strategy is justi-
fied by a PAC-Bayesian generalization bound over the
C-bound, and has given the MinCq algorithm [Lavi-
olette et al., 2011]. Given a training set S of m ex-
amples, MinCq minimizes the second moment of the
margin µ2(MS

Q) with an equality constraint on the first
moment of the margin µ1(MS

Q) = µ, where µ is a hy-
perparameter of the algorithm that gives an explicit
control on the first moment of the margin. MinCq
considers all voters from H in its optimization prob-
lem. As the approach presented in this paper will allow
us to consider larger (possibly infinite) sets of voters,
let us present three possible choices of sets H.
When H denotes the simpler case of a finite set of
voters, qi denotes the probability mass of distribution

1242

François Laviolette, Mario Marchand, Jean-Francis Roy

Q on voter hi ∈ H. We also consider two cases of
continuous sets H. One case consists of the set of
linear functions x 7→ 〈w,φφφ(x)〉 ∈ R where φφφ denotes
some high-dimensional feature map, w is an arbitrary
weight vector in the space of feature vectors, and 〈, 〉
denotes the inner product in this space. The other
case is when H denotes the set of linear classifiers x 7→
sgn(〈w,φφφ(x)〉) ∈ {−1,+1}. In both of these cases the
feature map φφφ is fixed and H denotes the set of weight
vectors in the feature space. In these cases, the learner
uses a distribution Q which consists of a mixture of n
isotropic Gaussians1. Hence, for all v ∈ H,

Q(v) =
n∑

i=1

qi

(
1√
2π

)N
exp

(
−1

2
‖v −wi‖2

)
, (1)

where qi denotes the weight assigned to the Gaussian
centered on wi, N denotes the dimension2 of v, and
‖ · ‖ denotes the Euclidean norm. In the proposed
column generation approach, each weight vector wi

can be chosen in H such as to optimize a criterion (to
be defined). Once wi is chosen, qi, qi−1, . . . , q1 will be
found by solving a quadratic program.

The margin MQ(x, y) of the Gaussian mixture Q on
the set of linear functions is given by

MQ(x, y) =

∫

H
Q(v) y〈v,φφφ(x)〉 dv

=

p∑

i=1

qi y 〈wi,φφφ(x)〉 ,

whereas, for the case of linear classifiers, we find

MQ(x, y) =

∫

H
Q(v) sgn(y〈v,φφφ(x)〉) dv

=

p∑

i=1

qi F (y〈wi,φφφ(x)〉) ,

where F : R → [−1,+1] is a monotonously increasing
“sigmoidal” type function which is very similar to the
tanh() function, and which is obtained from a Gaus-
sian cumulative:

F (y〈wi,φφφ(x)〉) , −1 +

√
2

π

∫ y〈wi,φφφ(x)〉

−∞
e−

1
2 z

2

dz .

To write down the quadratic program that needs to be
solved at each step t (once wt has been chosen for the
cases whenH is continuous), letH be the classification

1The choice of Gaussians for infinite sets of voters is
common in PAC-Bayesian literature, as it allows to obtain
exact analytical expressions for the majority vote, the mar-
gin and KL(Q‖P). See Langford and Shawe-Taylor [2002]
and Germain et al. [2009] for related literature.

2For infinite dimensional feature spaces, we can replace
each Gaussian distribution by a Gaussian process.

matrix of m rows and t columns, where m is the size
of the training set, t is the amount of voters in the set
H considered at step t, and where Hki = hi(xk). Each
column represents a voter of H, and each line repre-
sents an example. Also, let y be the vector containing
the m labels and q , (q1, . . . , qt) where qi is the prob-
ability weight on voter hi defined above in all three
cases for H. The empirical first and second moments
of the margin can be written as

µ1(MS
Q) =

1

m

m∑

k=1

MQ(xk, yk) =
1

m
y>Hq ,

µ2(MS
Q) =

1

m

m∑

k=1

(
MQ(xk, yk)

)2
=

1

m
q>H>Hq ,

where the last equality comes from the fact that y2
k = 1

for all k ∈ {1, . . . ,m}.
Together with additional restrictions described below,
MinCq solves the following quadratic program.

Solve: argmin
q

1

m
q>H>Hq

subject to:
1

m
y>Hq ≤ µ , q � 0 , 1>q = 1,

(2)

where H is the m×n classification matrix that con-
siders all n voters from a finite set H, 0 is a vector
of n zeros, and 1 is a vector of n ones. To solve this
problem, one must first compute H>H in O(m×n2),
and then solve the quadratic program in O(n3). Con-
sequently, MinCq is not suitable when the number n
of considered voters is large.

The version of MinCq proposed in Laviolette et al.
[2011] (and Germain et al. [2015]) is slightly more
restrictive by requiring the set H to be self-
complemented (meaning that for each voter h ∈ H
we also have its complement −h ∈ H) together with
another restriction on Q named the quasi-uniformity,
which introduces a L∞ regularization on Q. These
restrictions on Q enable the authors to replace the in-
equality constraint on µ1(MS

Q) with an equality con-
straint, and allow to obtain a tight PAC-Bayesian
bound that does not rely on the Kullback-Leibler (KL)
divergence, defined in Section 3.

In this paper, we remove these restrictions and relax
the primal formulation of the problem to obtain an
interesting dual problem in Section 4. Removing these
constraints also has the effect of allowing the resulting
column generation algorithm of Section 5 to output
sparser solutions.3 The next section shows that we

3Note that we chose to use column generation in this
paper, but this relaxed formulation (and associated gener-
alization bound results) could be used to derive other types
of algorithms as well.

1243

A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees

can still obtain PAC-Bayesian guarantees at the price
of introducing a KL-divergence term which is upper-
bounded by a small value.

3 GENERALIZATION
GUARANTEES

PAC-Bayesian theorems [McAllester, 1999] bound the
true risk of the majority vote classifier from an empir-
ical estimate computed from a sample S of m exam-
ples (drawn i.i.d. from an unknown distribution D),
a prior distribution P on H (chosen before seeing S),
and a posterior distribution Q (chosen after seeing S).
These bounds generally rely on the Kullback-Leibler
divergence between Q and P , defined below.
Definition 2. The Kullback-Leibler divergence be-
tween distributions Q and P is defined by4

KL(Q‖P) , E
h∼Q

ln
Q(h)

P (h)
.

Typical PAC-Bayesian theorems [McAllester, 2003,
Seeger, 2003, Catoni, 2007, Germain et al., 2009] in-
directly bound the risk of the majority vote classifier
through a bound on the so-called Gibbs risk, which has
a linear relationship with µ1(MD

Q). The bound on the
majority vote risk is then given by twice the bound on
the Gibbs risk. However, by taking into account the
second moment of the margin, the C-bound of Theo-
rem 1 provides a tighter relation for the risk of the ma-
jority vote classifier. Lacasse et al. [2006], Laviolette
et al. [2011] and Germain et al. [2015] have developed
PAC-Bayesian bounds that relate the real value of the
C-bound and its empirical estimate. The MinCq algo-
rithm directly minimizes such a generalization bound
under the restrictions that the set of voters is finite
and that the weight distribution is quasi-uniform. In
the following, we present a PAC-Bayesian bound on
the risk of the majority vote that depends on the first
and second moments of the margin, and applies to the
cases when H is finite and to the two cases described
above where the set of H voters is continuous and the
posterior distribution Q is given by Equation (1).
Theorem 2. For any distribution D on X×Y, for
any set H of real-valued voters h : X → [−1, 1], for
any prior distribution P on H, and any δ ∈ (0, 1],
with a probability at least 1 − δ over the choice of the
m-sample S ∼ Dm, for every posterior Q on H, we
have

RD(BQ) ≤ 1 −
max

(
0,
(
µ1

)2)

min
(
1, µ2

) ,

4When P and Q are distributions on a discrete set H,
P (h) and Q(h) denote probability masses at h. When H is
a continuous set, P (h) and Q(h) denote probability densi-
ties at h.

where

µ1 , µ1(MS
Q)−

√
2
m

[
KL(Q‖P) + ln 2

√
m

δ/2

]
,

µ2 , µ2(MS
Q) +

√
2
m

[
2KL(Q‖P) + ln 2

√
m

δ/2

]
.

Proof. The result is an application of the definition
of the C-bound of Theorem 1, by lower-bounding
µ1(MD

Q) and upper-bounding µ2(MD
Q). These bounds

and their respective proof are provided in Appendix A,
as Theorems 3 and 4. The proof of Theorem 3 uses
common techniques of the PAC-Bayesian literature.
The proof of Theorem 4 is a bit trickier, and make
use of ideas discussed in Germain et al. [2015].

Hence, the upper bound on the risk of the majority
vote depends on a lower bound of the first moment
of the margin and on an upper bound of the second
moment. Both of these bounds depend on KL(Q‖P)
which, therefore, should be much smaller than m in
order to obtain a good guarantee on the risk of the
majority vote. In the case where H just consists of
a set of n voters and the prior distribution P is uni-
form, we have the following upper-bound for the KL
divergence:

KL(Q‖P) =
n∑

i=1

Q(hi) ln
Q(hi)

1/n

≤
n∑

i=1

Q(hi) ln
1

1/n
= lnn .

Since we normally have n � m, finding the distri-
bution Q over H that minimizes the upper bound on
RD(BQ) given by Theorem 2 amounts at solving the
optimization problem of Equation (2).

In the cases where H is continuous and when Q is
given by Equation (1), let us denote the isotropic unit-
variance Gaussian centered on wi by Gwi

. For the
prior P , let us use G0. We then have

KL(Q‖P) =

∫

H

n∑

i=1

qiGwi
(v) ln

∑n
i=1 qiGwi

(v)

G0(v)
dv

≤
∫

H

n∑

i=1

qiGwi
(v) ln

Gwi
(v)

G0(v)
dv

=
1

2

n∑

i=1

qi‖wi‖2 ,

where the inequality comes from Jensen’s inequality
applied the the convex function x lnx, and where the
last equality is a standard result for Gaussian dis-
tributions. Since the qis sums to one, we will have
KL(Q‖P)� m whenever the Euclidean norm of each

1244

François Laviolette, Mario Marchand, Jean-Francis Roy

voter wi is upper-bounded by a constant much smaller
than m. This is the case, for example, for the set
of linear functions x 7→ 〈w,φφφ(x)〉 where w = φφφ(x′)
for some arbitrary point x′ ∈ X and where ‖w‖2 =
〈φφφ(x′),φφφ(x′)〉 , k(x′, x′) = 1 for a normalized kernel.

The next section presents a new algorithm for solving
the problem of Equation (2) that follows from a La-
grangian duality formulation, leading to CqBoost. As
we will see, the criterion for incorporating the most
promising voter at step t in the quadratic program,
will be the one which maximizes a quantity which is
often called the edge.

4 A MEANINGFUL LAGRANGE
DUAL

In this section, we use Lagrange duality techniques to
transform the optimization problem of Equation (2)
to a dual optimization problem that will be used in
Section 5 to develop a column generation algorithm.
The reader can refer to Boyd and Vandenberghe [2004]
for more information about the techniques that are
used in this section.

Directly applying the method of Lagrangian multipli-
ers to a primal optimization problem does not always
yield a useful or interesting dual problem. But in-
troducing new variables and equality constraints can
sometimes help [Boyd and Vandenberghe, 2004, Sec-
tion 5.7.1]. As in Shen and Li [2010], Shen et al. [2013],
we first introduce a new vector of variables γ repre-
senting the margin on each example, and its associ-
ated equality constraints forcing each γk to be equal
to yk

∑n
i=1 qiHki. By adding these variables in the

primal optimization problem, we obtain a meaningful
dual formulation. The new primal problem then be-
comes

Solve: argmin
q,γ

1

m
γ>γ

subject to:

γ = diag(y)Hq ,
1

m
1>γ ≤ µ ,

q � 0, and 1>q = 1 .

(3)

Note that the objective function of Equation (3) is
equivalent to the objective function of Equation (2),
as diag(y)>diag(y) = I. Then, by adding a weighted
sum of the constraints of the primal to its objective
function, we obtain the following Lagrangian:

Λ(q,γ,α, β, ξ, ν)

, 1

m
γ>γ + α> (γ−diag(y)Hq)

+ β

(
1

m
1>γ − µ

)
− ξ>q + ν

(
1>q− 1

)
,

(4)

where α, β, ξ and ν are Lagrange multipliers. The
multipliers β and those in ξ are nonnegative as they are
related to inequality constraints. Now, the Lagrangian
dual function is obtained by finding the vectors q?

and γ? minimizing the Lagrangian. The stationarity
condition of Karush-Kuhn-Tucker (KKT) conditions
indicates that this solution is attained when the partial
derivatives of the Lagrangian with respect to vectors
q and γ are null. Therefore, we need

H>diag(y)α = −ξ + ν1 , and

γ? = −m
2
α− β

2
1 .

(5)

Substituting these expressions for ξ and γ in the La-
grangian yields the following dual formulation.5

Solve: argmax
α,β,ξ,ν

− m

4
α>α− β

2
1>α− β2

4
− βµ− ν

s.t.: H>diag(y)α = −ξ + ν1 , β ≥ 0 , ξ � 0 .

The non-negative ξ vector being absent from the ob-
jective function, its only role is to affect the constraint
on the α vector. Thus, we can rewrite the dual prob-
lem the following minimization problem:

Solve: argmin
α,β,ν

m

4
α>α +

β

2
1>α +

β2

4
+βµ+ ν

s.t.: H>diag(y)α � ν1 , β ≥ 0 .

(6)

This dual formulation highlights a variable β that con-
trols the trade-off between the quadratic and linear
parts of the objective function. The termH>diag(y)α
of Equation (6) can be seen as a “score” given to each
voter h, and corresponds to the weighted sum of cor-
rectly classified examples minus the weighed sum of
incorrectly classified examples (when the voters are
classifiers). This measure is often called the edge of a
voter [Demiriz et al., 2002, Shen et al., 2013], and can
be used to guide the choice of the next base voter to be
added in the majority vote. Starting from the primal
optimization problem of Equation (3) which minimizes
the generalization bound of Theorem 2, we are thus
able to recover the same criterion as in many column
generation techniques [Demiriz et al., 2002, Bi et al.,
2004, Shen and Li, 2010, Shen et al., 2013]. In the next
section, we develop a CG algorithm using this insight.

5 A CG ALGORITHM THAT
MINIMIZES THE C-BOUND

The column generation approach [Nash and Sofer,
1996] has been used to create tractable boosting algo-
rithms using linear programming [Demiriz et al., 2002]

5Calculation details of the last two steps can be found
in Appendix B.

1245

A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees

Algorithm 1 CqBoost

− Let q be a vector of n zeros, let α be a vector of m values equal to 1
m and let et Ĥ be an empty matrix.

loop
− Select the column i violating the most Eq. (6) constraint (i.e., the voter with the steepest edge).
− Break if column i does not violate dual constraint: if

∑m
k=1 αkykHki ≤ ν + ε then break.

− Add the i-th column of H to matrix Ĥ.
− Update q, α and ν by solving either the primal or dual optimization problem of Equations (3) or (6),

using matrix Ĥ (of size m×t, where t is the number of columns generated so far).
return q

and quadratic programming [Bi et al., 2004, Shen and
Li, 2010]. More generally, it can be used to solve any
program based on a convex objective function and reg-
ularization term [Shen et al., 2013]. The general idea
is to restrict the original optimization problem by con-
sidering only a subset of the possible voters, which are
columns of the classification matrix associated to the
problem. As the ignored columns of the restricted pri-
mal problem represent ignored constraints in the dual
problem, solving the former corresponds to solving a
relaxation of the latter. CG techniques iteratively se-
lect (or generate, when considering infinite sets of vot-
ers H) a new column to be added the problem, and
solve either the primal or dual problem using this sub-
set. The algorithm stops when no more columns vio-
late the dual constraint (up to the desired accuracy ε),
as optimality is attained.6 The value of ε can be tuned,
and can act as a stopping criterion for the algorithm.

Algorithm 1 shows the pseudo-code of CqBoost. To
simplify the notation and ease the empirical compari-
son with other algorithms, we restrict the problem to
finite sets of voters and we following Demiriz et al.
[2002], Bi et al. [2004] and Shen and Li [2010], we
formulate the algorithm as if all the hypotheses had
already been generated, that is, we consider that the
classification matrix H is computed a priori.7 At each
iteration, CqBoost computes Ĥ>Ĥ in O(m×t2) and
solves a QP in O(t3), where t is only the number of
columns generated so far, as opposed with MinCq that
is not iterative but considers all n voters.

Algorithm 1 is initialized in the degenerate case where
no column have been chosen yet. The vector q is there-
fore initialized to 0. Having no prior knowledge on the
weights that should be given to each example in the

6At each iteration, any column that violates the dual
constraint can be selected (or generated). However, choos-
ing one that maximally violates the constraint may lead to
even faster convergence [Demiriz et al., 2002].

7The CG technique presented in this paper is not re-
stricted to finite sets of voters H. Using the two continuous
sets presented in Section 2 is also theoretically grounded
by the generalization bound of Section 3. Doing so opens
many questions that we intend to tackle as future work.

dual formulation of the problem, we initialize the vec-
tor α to a uniform distribution, as in Demiriz et al.
[2002], Bi et al. [2004] and Shen and Li [2010], respec-
tively for LPBoost, CG-Boost and MDBoost.

6 RELATIONS WITH OTHER
APPROACHES

In this section, we discuss the similarities and differ-
ences of three related learning algorithms, namely LP-
Boost [Demiriz et al., 2002], CG-Boost [Bi et al., 2004]
and MDBoost [Shen and Li, 2010].

LPBoost is a column generation technique based on a
linear programming algorithm with L1-norm regular-
ization. The primal and dual problems are :

Primal: Solve: argmin
q,ξ

1>q + C 1>ξ

subject to: diag(y)Hq � 1− ξ,

q � 0, ξ � 0 ,

Dual: Solve: argmax
α

1>α

subject to: H>diag(y)α � 1,

0 � α � C 1 ,

where q is a weight vector of n elements, ξ is a vec-
tor of m slack variables related to the margin on each
example, where C > 0 is a regularization parameter,
and α is a weight vector of m elements.

We first observe that the dual of LPBoost is similar
to the dual of CqBoost (Equation (6)). In both cases,
the α vector represents weights on the examples, and
the inequality constraint that guides the CG algorithm
into choosing the next column is very similar. Also
note that LPBoost considers a L1-norm regularization
on q, which will directly penalize dense solutions.

CG-Boost is a family of column generation algorithms
that generalize LPBoost to L2-regularized objective
functions. The main difference with LPBoost is that
the weights q are regularized with a L2 norm, trans-
forming the original linear program into a quadratic

1246

François Laviolette, Mario Marchand, Jean-Francis Roy

program. Note that the primal objective function of
CqBoost (Equation (3)) is also quadratic. The primal
and dual optimization problems of the main result are
as follows:

Primal: Solve: argmin
q,ξ

1

2
q>q + C 1>ξ

subject to: diag(y)Hq + ξ � 1,

q � 0, ξ � 0 ,

Dual: Solve: argmax
α

argmin
q

1>α− 1

2
q>q

subject to: H>diag(y)α � q,

0 � α � C 1 ,

where q, ξ and α have the same meaning as in the LP-
Boost, but where the primal variables vector q remains
in the dual. Nevertheless, CG-Boost’s dual has a simi-
lar inequality constraint that yields the same heuristic
as LPBoost and CqBoost for choosing the column to
add at each iteration.

MDBoost starts with the same goals in mind than Cq-
Boost: its optimization function directly deals with the
margin distribution. Its objective function minimizes
the variance of the margin, while maximizing its first
moment. A hyperparameter D controls the trade-off
between these two quantities. When written using the
first and second moments of the margin, the objective
function of MDBoost corresponds to minimizing

Dm

2(m− 1)

(
µ2(MS

Q)−
(
µ1(MS

Q)
)2)− µ1(MS

Q) .

It is noteworthy to point out that the strategy of min-
imizing the second moment of the margin while max-
imizing the first moment is indirectly justified by the
C-bound. The trade-off between the first two moments
is, however, not the same as CqBoost, whose objective
function is directly inspired by this upper bound on
the risk of the majority vote. When comparing both
objective functions, we see that MDBoost will have a
tendency to choose margin distributions with a higher
first moment, whereas CqBoost provides a direct con-
trol over the first moment. The primal and dual prob-
lems of MDBoost are as follows:

Primal: Solve: argmin
q,γ

D

2
γ>Aγ − 1>γ

subject to: γ = diag(y)Hq ,

q � 0, 1>q = 1 ,

Dual: Solve: argmin
α,ν

1

2
(α− 1)

>
A† (α− 1) +Dν

subject to: H>diag(y)α � ν1 ,

where A is a m×m matrix, where Aii = 1 for i ∈
{1, . . . ,m}, Aij = −1

m−1 for i, j ∈ {1, . . . ,m} and i 6= j,
and where A† is its pseudo-inverse. We once again
notice that the strategy for selecting the next column
in the resulting CG technique is the same as all afore-
mentioned algorithms. Also, to ease the comparison
with CqBoost, the primal and dual problems above
correspond to a version of MDBoost that is stated if
terms of the normalized margin.

Finally, note that Shen et al. [2013] have developed a
general column generation framework named CGBoost
(not to be confused with CG-Boost of Bi et al. [2004])
from whom one may recover many column generation
algorithms variants, by carefully choosing a loss func-
tion and a regularizer, and we might be able to re-
cover the optimization problem of CqBoost within this
framework. However, as we have shown, CqBoost is
motivated by a PAC-Bayesian upper bound on the risk
of the majority vote classifier. It is currently unknown
if the general form proposed by Shen et al. [2013] can
be motivated by a risk bound.

7 EMPIRICAL EXPERIMENTS

We now compare how CqBoost performs in terms of
accuracy and sparsity, first against related algorithms
MDBoost, LPBoost and CG-Boost, but also against
AdaBoost [Schapire and Singer, 1999] and the origi-
nal version of MinCq as proposed in Laviolette et al.
[2011]. We consider decision stumps (one-level deci-
sion trees) as base voters. For each attribute, 10 pairs
of decision stumps (with the same decision threshold
but inverse decisions) are generated.

We run all algorithms on binary classification datasets
of the UCI Machine Learning Repository [Lichman,
2013], normalized using a hyperbolic tangent function.
For each dataset, half of the examples are randomly
chosen to be in the training set S of at most 500 exam-
ples, and the remaining testing examples T are used
to evaluate the performance of the algorithms. The
hyperparameter value of each algorithm has been se-
lected by 5-folds cross-validation on the training set,
among 15 values on a logarithmic scale. The value of
hyperparameter µ of CqBoost and MinCq is selected
among values between 10−2 and 10−0.5. The value of
hyperparameter D of MDBoost is chosen in values be-
tween 100 and 102. The value of hyperparameter C of
CG-Boost and LPBoost is selected in values between
10−3 and 103. The number of iterations of AdaBoost
is selected among values between 102 and 106. The
stopping criterion additive constant ε of all column
generation algorithms has been set to 10−6. All linear
and quadratic programs have been solved using the
CVXOPT solver [Dahl and Vandenberghe, 2007].

1247

A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees

CqBoost MDBoost LPBoost CG-Boost AdaBoost MinCq

Dataset Risk Cols. Risk Cols. Risk Cols. Risk Cols. Risk Cols. Risk Cols.

australian 0.151 40 0.159 63 0.171 39? 0.200 140 0.191 42 0.145? 280
balance 0.073 16? 0.073 16? 0.029 16? 0.029 40 0.026? 16? 0.029 80
breast 0.037 46 0.037 32 0.037 20? 0.034? 90 0.046 30 0.037 180
bupa 0.289? 31 0.289? 23? 0.312 39 0.324 60 0.289? 38 0.329 120
car 0.140 16 0.140 17 0.138 16 0.138 66 0.130? 13? 0.141 120
cmc 0.300? 21 0.302 20 0.311 18? 0.303 90 0.318 34 0.305 180
credit 0.133 41 0.125? 25 0.133 1? 0.130 150 0.165 34 0.128 300
cylinder 0.330 18? 0.311 19 0.278 52 0.256? 353 0.274 90 0.300 700
ecoli 0.054? 27 0.060 22? 0.095 25 0.083 70 0.095 22? 0.065 140
glass 0.215 45 0.206? 55 0.308 43 0.224 90 0.215 33? 0.271 180
heart 0.185 26 0.200 21 0.193 14? 0.200 130 0.215 36 0.170? 260
hepatitis 0.143? 43 0.208 9? 0.156 17 0.195 190 0.182 26 0.169 380
horse 0.174? 43 0.174? 40 0.207 2? 0.179 260 0.185 44 0.223 520
ionosphere 0.091? 121 0.097 83 0.114 63 0.091? 340 0.114 52? 0.109 680
letter:ab 0.009 61 0.009 47 0.011 41? 0.012 160 0.010 55 0.005? 320
monks 0.231? 10? 0.236 15 0.231? 11 0.231? 117 0.255 15 0.236 120
optdigits 0.084 174 0.084 150 0.083 87? 0.080? 640 0.084 132 0.090 1280
pima 0.237? 26? 0.250 35 0.279 50 0.250 80 0.273 47 0.242 160
titanic 0.222 6 0.222 8 0.222 5? 0.222 50 0.222 7 0.212? 60
vote 0.051 33 0.051 20 0.051 1? 0.051 155 0.046? 19 0.051 320
wine 0.067 49 0.067 54 0.067 29? 0.079 130 0.045? 31 0.056 260
yeast 0.291 19 0.292 15? 0.299 27 0.289? 80 0.300 38 0.303 160
zoo 0.039? 20 0.039? 54 0.118 9? 0.137 157 0.118 10 0.039? 320

Table 1: Performance and sparsity comparison of CqBoost, MDBoost, LPBoost, CG-Boost, AdaBoost and
MinCq, using decision stumps as weak classifiers. A bold value indicates that the risk (or number of chosen
columns) is the lowest among the column generation algorithms. A star indicates that the risk is the lowest
among all six algorithms.

Table 1 show for each algorithm the testing risks and
the number of non-zero weights in the output majority
vote (associated to the chosen columns). In terms of
accuracy, we observe that CqBoost is very competitive
with all other column generation algorithms, winning
(or tying) 15 times on 23 datasets. The runner-up is
CG-Boost with 10 wins, closely followed by MDBoost
with 9 wins, and finally LPBoost with only 6 wins.
When comparing all algorithms together, CqBoost is
also the algorithm that collects the highest number of
wins. However note that using the sign test [Menden-
hall, 1983], the only statistically significant results are
that CqBoost outperforms LPBoost (p-value of 0.02)
and that MDBoost outperforms AdaBoost (p-value of
0.04). Moreover comparing CqBoost only with MD-
Boost, CqBoost shows a slight advantage 10 wins and
3 losses, with a corresponding sign test p-value of 0.13.
We conjecture that the direct control over the first mo-
ment of the margin provided by CqBoost is advanta-
geous when using voters as weak as decision stumps.

In terms of sparsity, we observe that CqBoost reaches
its goal of outputting significantly sparser solutions
than MinCq, while keeping a similar performance. We
also observe that, as expected, LPBoost is the algo-
rithm that produces the sparsest solutions. Its accu-
racy is, however, significantly worse than CqBoost ac-
cording to the sign test. Hence, CqBoost is an accurate
algorithm that also gives sparse solutions, as wanted.

We also compared all above-mentioned algorithms us-

ing Radial Basis Function (RBF) kernels as voters,
along with the Support Vector Machine (SVM) algo-
rithm [Cortes and Vapnik, 1995]. More details and
empirical results can be found in Appendix C of the
supplementary material.

8 CONCLUSION

In this paper, we designed a column generation ensem-
ble method based on MinCq [Laviolette et al., 2011,
Germain et al., 2015] that outputs much sparser en-
sembles and can consider larger (or even infinite) sets
of voters. The algorithm is motivated by a generaliza-
tion bound that holds for finite and two cases of con-
tinuous sets of base classifiers. Empirically, CqBoost
performs as well as the original algorithm, and slightly
outperforms other column generation algorithms.

In future work, we will investigate how CqBoost com-
pares with other boosting algorithms when using infi-
nite sets of classifiers. We will also extend the algo-
rithm to take into account informative prior informa-
tion, as was done for MinCq by Bellet et al. [2014].
Finally, we will investigate the effect of ε as a stopping
criterion to control the sparsity of the ensemble.

Acknowledgements

This work has been supported by National Science
and Engineering Research Council (NSERC) Discov-
ery grants 262067 and 0122405.

1248

François Laviolette, Mario Marchand, Jean-Francis Roy

References
Aurélien Bellet, Amaury Habrard, Emilie Morvant,
and Marc Sebban. Learning a priori constrained
weighted majority votes. Machine Learning, 97(1-
2):129–154, 2014.

Jinbo Bi, Tong Zhang, and Kristin P. Bennett.
Column-generation boosting methods for mixture of
kernels. Proceedings of the 2004 ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining - KDD ’04, page 521, 2004.

Stephen Boyd and Lieven Vandenberghe. Convex Op-
timization. Cambridge University Press, New York,
NY, USA, mar 2004. ISBN 0521833787.

Leo Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

Leo Breiman. Random forests. Machine Learning, 45
(1):5–32, 2001.

Olivier Catoni. PAC-Bayesian supervised classifica-
tion: the thermodynamics of statistical learning.
Monograph series of the Institute of Mathematical
Statistics, 2007.

Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine Learning, 20(3):273–297, 1995.

Joachim Dahl and Lieven Vandenberghe. CVXOPT,
2007. http://mloss.org/software/view/34/.

Ayhan Demiriz, Kristin P Bennett, and John Shawe-
Taylor. Linear programming boosting via column
generation. Machine Learning, 46(1-3):225–254,
2002.

Andrew Gelman, John B. Carlin, Hal S. Stern,
David B. Dunson, Aki Vehtari, and Donald B. Ru-
bin. Bayesian Data Analysis, Third Edition. Chap-
man & Hall/CRC Texts in Statistical Science. ISBN
9781439840955.

Pascal Germain, Alexandre Lacasse, François Lavio-
lette, and Mario Marchand. PAC-Bayesian learning
of linear classifiers. In ICML, page 45, 2009.

Pascal Germain, Alexandre Lacoste, François Lavio-
lette, Mario Marchand, and Sara Shanian. A PAC-
Bayes sample-compression approach to kernel meth-
ods. In ICML, pages 297–304, 2011.

Pascal Germain, Alexandre Lacasse, Francois Lavio-
lette, Mario Marchand, and Jean-Francis Roy. Risk
bounds for the majority vote: From a PAC-Bayesian
analysis to a learning algorithm. Journal of Machine
Learning Research, 16:787–860, 2015.

Alexandre Lacasse, François Laviolette, Mario Marc-
hand, Pascal Germain, and Nicolas Usunier. PAC-
Bayes bounds for the risk of the majority vote and
the variance of the Gibbs classifier. In NIPS, pages
769–776, 2006.

John Langford and John Shawe-Taylor. PAC-Bayes &
margins. In NIPS, pages 423–430, 2002.

François Laviolette, Mario Marchand, and Jean-
Francis Roy. From PAC-Bayes bounds to quadratic
programs for majority votes. In ICML, pages 649–
656, 2011.

M. Lichman. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/ml.

Andreas Maurer. A note on the PAC-Bayesian theo-
rem. CoRR, cs.LG/0411099, 2004.

D. McAllester. Simplified PAC-Bayesian margin
bounds. In Learning Theory and Kernel Machines,
pages 203–215. Springer, 2003.

David McAllester. Some PAC-Bayesian theorems. Ma-
chine Learning, 37(3):355–363, 1999.

David McAllester. A PAC-Bayesian tutorial with a
dropout bound. CoRR, abs/1307.2118, 2013.

W. Mendenhall. Nonparametric statistics. Introduc-
tion to Probability and Statistics, 604, 1983.

Emilie Morvant. Domain adaptation of weighted
majority votes via perturbed variation-based self-
labeling. Pattern Recognition Letters, 51:37–43,
2015.

Emilie Morvant, Amaury Habrard, and Stéphane Ay-
ache. Majority vote of diverse classifiers for late
fusion. In Structural, Syntactic, and Statistical Pat-
tern Recognition, pages 153–162. Springer, 2014.

Stephen Nash and Ariela Sofer. Linear and Nonlin-
ear Programming. McGraw-Hill series in industrial
engineering and management science. McGraw-Hill,
1996. ISBN 9780070460652.

Robert E. Schapire and Yoram Singer. Improved
boosting using confidence-rated predictions. Ma-
chine Learning, 37(3):297–336, 1999.

Matthias Seeger. PAC-Bayesian generalisation error
bounds for gaussian process classification. The Jour-
nal of Machine Learning Research, 3:233–269, 2003.

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian
analysis of co-clustering and beyond. Journal of Ma-
chine Learning Research, 11:3595–3646, 2010.

Chunhua Shen and Hanxi Li. Boosting through opti-
mization of margin distributions. Neural Networks,
IEEE Transactions on, 21(4):659–666, April 2010.

Chunhua Shen, Hanxi Li, and Anton van den Hengel.
Fully corrective boosting with arbitrary loss and reg-
ularization. Neural networks : the official journal of
the International Neural Network Society, 48:44–58,
dec 2013. ISSN 1879-2782.

1249

