A Proofs

The proof of Proposition 1 relies on the following variational form of Kullback-Leibler divergence, which is given in Theorem 5.2.1 of Robert Gray's textbook Entropy and Information Theory [10].
Fact 1. Fix two probability measures \mathbf{P} and \mathbf{Q} defined on a common measureable space (Ω, \mathcal{F}). Suppose that \mathbf{P} is absolutely continuous with respect to \mathbf{Q}. Then

$$
D(\mathbf{P} \| \mathbf{Q})=\sup _{X}\left\{\mathbf{E}_{\mathbf{P}}[X]-\log \mathbf{E}_{\mathbf{Q}}\left[e^{X}\right]\right\},
$$

where the supremum is taken over all random variables X such that the expectation of X under \mathbf{P} is well defined, and e^{X} is integrable under \mathbf{Q}.

Proof of Proposition 1.

$$
\begin{aligned}
I(T ; \boldsymbol{\phi}) & =\sum_{i=1}^{n} \mathbf{P}(T=i) D(\mathbf{P}(\phi=\cdot \mid T=i) \| \mathbf{P}(\boldsymbol{\phi}=\cdot)) \\
& \geq \sum_{i=1}^{n} \mathbf{P}(T=i) D\left(\mathbf{P}\left(\phi_{i}=\cdot \mid T=i\right) \| \mathbf{P}\left(\phi_{i}=\cdot\right)\right)
\end{aligned}
$$

Applying Fact 1 with $\mathbf{P}=\mathbf{P}\left(\phi_{i}=\cdot \mid T=i\right), \quad \mathbf{Q}=\mathbf{P}\left(\phi_{i}=\cdot\right)$, and $X=\lambda\left(\phi_{i}-\mu_{i}\right)$, we have

$$
D\left(\mathbf{P}\left(\phi_{i}=\cdot \mid T=i\right) \| \mathbf{P}\left(\phi_{i}=\cdot\right)\right) \geq \sup _{\lambda} \lambda \Delta_{i}-\lambda^{2} \sigma^{2} / 2
$$

where $\Delta_{i} \equiv \mathbf{E}\left[\phi_{i} \mid T=i\right]-\mu_{i}$. Taking the derivative with respect to λ, we find that the optimizer is $\lambda=\Delta_{i} / \sigma^{2}$. This gives

$$
2 \sigma^{2} I(T ; \boldsymbol{\phi}) \geq \sum_{i=1}^{n} \mathbf{P}(T=i) \Delta_{i}^{2}=\mathbf{E}\left[\Delta_{T}^{2}\right]
$$

By the Tower property of conditional expectation and Jensen's inequality

$$
\mathbf{E}\left[\phi_{T}-\mu_{T}\right]=\mathbf{E}\left[\Delta_{T}\right] \leq \sqrt{\mathbf{E}\left[\Delta_{T}^{2}\right]} \leq \sigma \sqrt{2 I(T ; \boldsymbol{\phi})}
$$

Proof of Proposition 2. Set

$$
M_{k}=\max _{i \leq k} \phi_{i}=\sigma \max _{i \leq k} \frac{\phi_{i}}{\sigma}
$$

Basic facts about the maximum of independent standard Gaussian random variables then imply

$$
\sigma^{-1} \mathbf{E}\left[M_{k}\right] \geq c \sqrt{2 k} \quad \& \quad \sigma^{-1} \mathbf{E}\left[M_{k}\right]-\sqrt{2 k} \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

where c is a numerical constant that does not depend on k or σ. Now we have,

$$
\mathbf{E}\left[\phi_{T_{B}}\right]=\mathbf{E}\left[M_{\lfloor B\rfloor} .\right]
$$

The result then follows by observing that for $B \geq 2$

$$
B \leq 2\lfloor B\rfloor
$$

and

$$
\sqrt{B}-\sqrt{\lfloor B\rfloor} \underset{B \rightarrow \infty}{\longrightarrow} 0
$$

Proof of Proposition 3. Following the same analysis as in the sub-Gaussian setting, we have

$$
D\left(\mathbf{P}\left(\phi_{i}=\cdot \mid T=i\right) \| \mathbf{P}\left(\phi_{i}=\cdot\right)\right) \geq \sup _{\lambda<1 / b} \lambda \Delta_{i}-\lambda^{2} \sigma^{2} / 2
$$

The RHS is greater than the value from setting $\lambda=1 / b$. Therefore, we have

$$
D\left(\mathbf{P}\left(\phi_{i}=\cdot \mid T=i\right) \| \mathbf{P}\left(\phi_{i}=\cdot\right)\right) \geq \frac{\Delta_{i}}{b}-\frac{\sigma^{2}}{2 b^{2}}
$$

Summing over $P(T=i)$ gives

$$
\mathbf{E}\left[\phi_{T}-\mu_{T}\right] \leq b I(T ; \boldsymbol{\phi})+\frac{\sigma^{2}}{2 b}
$$

When $b>1, \lambda=1 / \sqrt{b}<1 / b$ is also a feasible point. Putting in this value of λ into the calculations above gives the second bound

$$
\mathbf{E}\left[\phi_{T}-\mu_{T}\right] \leq \sqrt{b} I(T ; \boldsymbol{\phi})+\frac{\sigma^{2}}{2 \sqrt{b}}
$$

Proof of Corollary 1. Let $Z_{i}=\left(\phi_{i}-\mu_{i}\right)^{2}$. Then, $Z_{i} \in\left[-C^{2}, C^{2}\right]$ and hence is C^{2}-sub-Gaussian. This implies that

$$
\mathbf{E}\left[Z_{T}-\mu_{T}\right] \leq C \sqrt{2 I(T ; \boldsymbol{Z})} \leq C \sqrt{2 I(T ; \boldsymbol{\phi})}
$$

where the last step follows from the data-processing inequality for mutual-information, and the fact that Z_{i} is a deterministic function of ϕ_{i}.

Proof of Proposition 4.

$$
\begin{aligned}
D\left(\mathbf{P}\left(\phi_{T}=\cdot\right) \| \mathbf{P}\left(\tilde{\phi}_{T}=\cdot\right)\right) & \leq D\left(\mathbf{P}\left(\phi_{T}=\cdot, T=\cdot\right) \| \mathbf{P}\left(\tilde{\phi}_{T}=\cdot, T=\cdot\right)\right) \\
& =\sum_{T=1}^{m} \mathbf{P}(T=i) D\left(\mathbf{P}\left(\phi_{T}=\cdot \mid T=i\right) \| \mathbf{P}\left(\tilde{\phi}_{T}=\cdot \mid T=i\right)\right) \\
& =\sum_{T=1}^{m} \mathbf{P}(T=i) D\left(\mathbf{P}\left(\phi_{i}=\cdot \mid T=i\right) \| \mathbf{P}\left(\phi_{i}=\cdot\right)\right) \\
& \leq \sum_{T=1}^{m} \mathbf{P}(T=i) D(\mathbf{P}(\phi=\cdot \mid T=i) \| \mathbf{P}(\phi=\cdot)) \\
& =I(T ; \phi)
\end{aligned}
$$

where both inequalities follow from the data-processing inequality for KL divergence.
Proof of Proposition 5. Since $\phi_{i} \sim \operatorname{Uniform}(0,1), Z_{\epsilon, i}=\mathbf{1}\left(\phi_{i}<\epsilon\right)$ is a Bernoulli random variable with parameter ϵ and $E\left[Z_{i}\right]=\epsilon$. We use the fact that a probability p Bernoulli random variable is sub-Gaussian with parameter [4]

$$
\sigma=\sqrt{\frac{1-2 p}{2 \log ((1-p) / p)}} \leq \sqrt{\frac{1}{2 \log (1 / 2 p)}}
$$

Combining this with Proposition 1, we have the desired result

$$
E\left[Z_{T}\right]-E\left[\mu_{T}\right]=\mathbb{P}\left(p_{T}<\epsilon\right)-\epsilon \leq \sqrt{\frac{I\left(T ; \mathbf{Z}_{\epsilon}\right)}{\log (1 / 2 \epsilon)}}
$$

The second inequality follows by the data-processing inequality.

Proof of Proposition 6. Note that

$$
\max _{x \in \mathcal{X}} \mu(x) \geq \mathbf{E}\left[\mu\left(X^{*}\right)\right]
$$

and

$$
\mathbf{E}\left[\max _{x \in \mathcal{X}} f_{\theta}(x)\right]=\mathbf{E}\left[f_{\theta}\left(X^{*}\right)\right]
$$

Therefore,

$$
\mathbf{E}\left[\max _{x \in \mathcal{X}} f_{\theta}(x)\right]-\max _{x \in \mathcal{X}} \mu(x) \leq \mathbf{E}\left[f_{\theta}\left(X^{*}\right)\right]-E\left[\mu\left(X^{*}\right)\right] \leq \sigma \sqrt{2 I\left(X^{*} ; \theta\right)}=\sigma \sqrt{2 H\left(X^{*}\right)}
$$

Proof of Lemma 1. Since, conditional on H_{k}, T_{k+1} is independent of ϕ, the data-processing inequality for mutual information implies,

$$
I\left(T_{k+1} ; \boldsymbol{\phi}\right) \leq I\left(H_{k} ; \boldsymbol{\phi}\right)
$$

Now we have,

$$
I\left(H_{k} ; \boldsymbol{\phi}\right)=\sum_{i=1}^{k} I\left(\left(T_{i}, Y_{T_{i}}\right) ; \boldsymbol{\phi} \mid H_{i-1}\right)
$$

We complete the proof by simplifying the expression for $I\left(\left(T_{i}, Y_{T_{i}}\right) ; \phi \mid H_{i-1}\right)$. Let $\phi_{(-i)}=\left(\phi_{j}: j \neq i\right)$. Then,

$$
\begin{aligned}
I\left(\left(T_{i}, Y_{T_{i}}\right) ; \phi \mid H_{i-1}\right) & =I\left(T_{i} ; \phi \mid H_{i-1}\right)+I\left(Y_{T_{i}} ; \boldsymbol{\phi} \mid H_{i-1}, T_{i}\right) \\
& =I\left(Y_{T_{i}} ; \phi \mid H_{i-1}, T_{i}\right) \\
& =I\left(Y_{T_{i}} ; \phi_{T_{i}} \mid H_{i-1}, T_{i}\right)+I\left(Y_{T_{i}} ; \phi_{\left(-T_{i}\right)} \mid H_{i-1}, T_{i}, \phi_{T_{i}}\right) \\
& =I\left(Y_{T_{i}} ; \phi_{T_{i}} \mid H_{i-1}, T_{i}\right),
\end{aligned}
$$

where the final equality follows because, conditioned on $\phi_{T_{i}}, Y_{T_{i}}$ is independent of $\boldsymbol{\phi}_{\left(-T_{i}\right)}$.
Proof of Lemma 2.

$$
I(X ; Y)=-\frac{1}{2} \log \left(1-\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)=-\frac{1}{2} \log \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\frac{1}{2} \log \left(1+\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)
$$

Proof of Proposition 7. In order to apply our general result, we need to convert the bound on the differences in the expectations of a random variable into a bound on probability. Let

$$
Z_{i}=\mathbf{1}\left(\phi_{i}-\mu_{i}>\tau\right) \quad i \in \mathbb{N}
$$

so that Z_{i} is a bernoulli random variable with expectation

$$
e_{i}=\mathbf{E}\left[Z_{i}\right] \leq \exp \left\{-\frac{n \tau^{2}}{2}\right\}
$$

It is known [4] that a bernoulli random variable with parameter $p<\frac{1}{2}$ is σ-sub-Gaussian with

$$
\sigma=\sqrt{\frac{1-2 p}{2 \log ((1-p) / p)}} \leq \sqrt{\frac{1}{2 \log (1 / 2 p)}}
$$

and applying this with $p=\mathbf{E}\left[Z_{i}\right]$ shows that Z_{i} is sub-Gaussian with effective standard deviation less than $\sqrt{\frac{c}{n \tau^{2}}}$ where c is a universal numerical constant. This shows that

$$
\begin{aligned}
\mathbf{E}\left[Z_{T_{k+1}}-e_{T_{k+1}}\right] & \leq \frac{\sqrt{c}}{\tau} \sqrt{\frac{2 I\left(T_{k+1} ; \phi\right)}{n}} \\
& \leq \frac{\sqrt{c}}{\tau} \sqrt{\frac{2 \sum_{i=1}^{k} I\left(Y_{T_{i}} ; \phi_{T_{i}} \mid Y_{T_{1}}, . ., Y_{T_{i-1}}\right)}{n}}
\end{aligned}
$$

