Controlling Bias in Adaptive Data Analysis Using Information Theory

A Proofs

The proof of Proposition 1 relies on the following variational form of Kullback—Leibler divergence, which is
given in Theorem 5.2.1 of Robert Gray’s textbook Entropy and Information Theory [10].

Fact 1. Fiz two probability measures P and Q defined on a common measureable space (Q, F). Suppose that
P is absolutely continuous with respect to Q. Then

D (P||Q) = sup {Ep[X] ~ log Eqle 1},

where the supremum is taken over all random variables X such that the expectation of X under P is well
defined, and e is integrable under Q.

Proof of Proposition 1.
[T:i¢) = Y P(T=)D(P(¢p=T=i)||P(e=")

> ZP(T =)D (P(¢; = |T =14)||P(¢s = ))

Applying Fact 1 with P =P(¢; =-|T =1), Q=P(¢; =-), and X = A(¢; — p:), we have

D (P(¢; =T =) ||P(¢s =-)) > sup AA; — \262/2
A

where A; = E[¢;|T = i]—u;. Taking the derivative with respect to A, we find that the optimizer is A = A; /o2
This gives

2021(T}; @) ZP = E[AZ)].

By the Tower property of conditional expectation and Jensen’s inequality

El¢r — pr] = E[Ar] < /E[AT] < 0/21(T; ).

Proof of Proposition 2. Set

M;, —maquZ —Jmaxﬂ
i<k i<k O

Basic facts about the maximum of independent standard Gaussian random variables then imply
'E(M;] 2 eV2k & oT'E[Mi] - V2k — 0,
where c¢ is a numerical constant that does not depend on k or ¢. Now we have,
El¢r,] = E[M )]
The result then follows by observing that for B > 2
B < 2|B]

and

VB - /| B] 0.
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Proof of Proposition 3. Following the same analysis as in the sub-Gaussian setting, we have

D (P(¢; =T =) || P(¢; =-)) > sup AA; — A?02/2
A<1/b

The RHS is greater than the value from setting A = 1/b. Therefore, we have

A o
b b2’

D (P(¢i = [T =14)[|P(¢i =-)) =

[\]

Summing over P(T = i) gives
2

Elgr — ur] < bI(T:¢) + 7.

When b > 1, A = 1/vb < 1/b is also a feasible point. Putting in this value of X into the calculations above

gives the second bound

0.2

E[¢r — pr] < VOI(T; ¢) + W

O

Proof of Corollary 1. Let Z; = (¢;—u;)%. Then, Z; € [-C?,C?] and hence is C?>-sub-Gaussian. This implies

that
E[Zr — pr) < C\2I(T; Z) < C\/2I(T; @)

where the last step follows from the data-processing inequality for mutual-information, and the fact that Z;
is a deterministic function of ¢;. O

Proof of Proposition 4.

D (P(¢r =) || P(ér = -))

A
>

= Y P(T=i)D(P(¢r =T =) ||P(dr = |T = 1))

T=1
= Y P(T=i)D(P($i =T =4)||P(¢; =)
T=1
< Y PT=iD@P(@=-T=i)|P(¢=")
T=1
= I(T;9),
where both inequalities follow from the data-processing inequality for KL divergence. O

Proof of Proposition 5. Since ¢; ~ Uniform(0,1), Ze; = 1(¢; < €) is a Bernoulli random variable with
parameter € and F[Z;] = e. We use the fact that a probability p Bernoulli random variable is sub-Gaussian

with parameter [4]
> 1—2p < 1
—\/ 2log((1 —p)/p) =\ 2log(1/2p)

Combining this with Proposition 1, we have the desired result

I(T;Z)

ElZr] — Elpr] =P(pr <€) —€ < log(1/2¢)°

The second inequality follows by the data-processing inequality. O
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Proof of Proposition 6. Note that
may ju(x) > E[u(X")]

reX
and
E[max fo(x)] = E[fo(X")]
Therefore,

Blmas fy(r)] - max p(x) < Blfy(X*)] — Bla(X")] < 0+/21(X70) = oy/2H(X")

O

Proof of Lemma 1. Since, conditional on Hy, Tj4+1 is independent of ¢, the data-processing inequality for
mutual information implies,

I(Tyy15¢) < I(Hg; ).

Now we have,
k

I(Hi; @) =Y (T, Yr,); $| Hi 1)
i=1
We complete the proof by simplifying the expression for I (T}, Yr,); @|H;—1). Let ¢y = (¢; = j # ).
Then,

I((T;,Yr,);0|Hi—1) = 1(T;;¢|Hio1) + 1 (Yr,; 0|Hi-1,T;)
= I (Yr;¢|Hi-1,T;)
= I(Yr; 61| Hi—1,T;) + I(Y1,; ¢~y | Hiz1, Ti, d1,)
= I(Yr;ér|Hi—1,T;),
where the final equality follows because, conditioned on ¢r,, Yz, is independent of ¢(_r). O

Proof of Lemma 2.

1 o2 1 o2 1 o2
I(X;Y)=—=1 l———— ) =—Zlog—52— = =1 1+ 1.
(X:Y) 20g< J%—i—a%) 2Og0%+03 2Og<+ag
O
Proof of Proposition 7. In order to apply our general result, we need to convert the bound on the differences
in the expectations of a random variable into a bound on probability. Let
Zi =g —pi >7) i€N,

so that Z; is a bernoulli random variable with expectation
nr?

It is known [4] that a bernoulli random variable with parameter p < % is o—sub-Gaussian with

o -2 1
~ \/ 2log((1 —p)/p) ~ | 2log(1/2p)

and applying this with p = E[Z;] shows that Z; is sub-Gaussian with effective standard deviation less than
¢ where c is a universal numerical constant. This shows that

Ve [201(Tit1;9)

T n

Ve \/2 Zf:l I(Yr,; ¢,
-

E[ZTk+1 - eTk+1] <

YT17 ) YTi—l)
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