
Controlling Bias in Adaptive Data Analysis Using Information Theory

A Proofs

The proof of Proposition 1 relies on the following variational form of Kullback–Leibler divergence, which is
given in Theorem 5.2.1 of Robert Gray’s textbook Entropy and Information Theory [10].
Fact 1. Fix two probability measures P and Q defined on a common measureable space (Ω,F). Suppose that
P is absolutely continuous with respect to Q. Then

D (P||Q) = sup
X

{
EP[X]− log EQ[eX ]

}
,

where the supremum is taken over all random variables X such that the expectation of X under P is well
defined, and eX is integrable under Q.

Proof of Proposition 1.

I(T ;φ) =
n∑
i=1

P(T = i)D (P(φ = ·|T = i) ||P(φ = ·))

≥
n∑
i=1

P(T = i)D (P(φi = ·|T = i) ||P(φi = ·))

Applying Fact 1 with P = P(φi = ·|T = i), Q = P(φi = ·), and X = λ(φi − µi), we have

D (P(φi = ·|T = i) ||P(φi = ·)) ≥ sup
λ
λ∆i − λ2σ2/2

where ∆i ≡ E[φi|T = i]−µi. Taking the derivative with respect to λ, we find that the optimizer is λ = ∆i/σ
2.

This gives

2σ2I(T ;φ) ≥
n∑
i=1

P(T = i)∆2
i = E[∆2

T ].

By the Tower property of conditional expectation and Jensen’s inequality

E[φT − µT ] = E[∆T ] ≤
√

E[∆2
T ] ≤ σ

√
2I(T ;φ).

Proof of Proposition 2. Set
Mk = max

i≤k
φi = σmax

i≤k

φi
σ
.

Basic facts about the maximum of independent standard Gaussian random variables then imply

σ−1E[Mk] ≥ c
√

2k & σ−1E[Mk]−
√

2k −→
k→∞

0,

where c is a numerical constant that does not depend on k or σ. Now we have,

E[φTB
] = E[MbBc.]

The result then follows by observing that for B ≥ 2

B ≤ 2bBc

and √
B −

√
bBc −→

B→∞
0.
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Proof of Proposition 3. Following the same analysis as in the sub-Gaussian setting, we have

D (P(φi = ·|T = i) ||P(φi = ·)) ≥ sup
λ<1/b

λ∆i − λ2σ2/2

The RHS is greater than the value from setting λ = 1/b. Therefore, we have

D (P(φi = ·|T = i) ||P(φi = ·)) ≥ ∆i

b
− σ2

2b2 .

Summing over P (T = i) gives

E[φT − µT ] ≤ bI(T ;φ) + σ2

2b .

When b > 1, λ = 1/
√
b < 1/b is also a feasible point. Putting in this value of λ into the calculations above

gives the second bound

E[φT − µT ] ≤
√
bI(T ;φ) + σ2

2
√
b
.

Proof of Corollary 1. Let Zi = (φi−µi)2. Then, Zi ∈ [−C2, C2] and hence is C2–sub-Gaussian. This implies
that

E[ZT − µT ] ≤ C
√

2I(T ;Z) ≤ C
√

2I(T ;φ)

where the last step follows from the data-processing inequality for mutual-information, and the fact that Zi
is a deterministic function of φi.

Proof of Proposition 4.

D
(
P(φT = ·) ||P(φ̃T = ·)

)
≤ D

(
P(φT = ·, T = ·) ||P(φ̃T = ·, T = ·)

)
=

m∑
T=1

P(T = i)D
(
P(φT = ·|T = i) ||P(φ̃T = ·|T = i)

)
=

m∑
T=1

P(T = i)D (P(φi = ·|T = i) ||P(φi = ·))

≤
m∑
T=1

P(T = i)D (P(φ = ·|T = i) ||P(φ = ·))

= I(T ;φ),

where both inequalities follow from the data-processing inequality for KL divergence.

Proof of Proposition 5. Since φi ∼ Uniform(0, 1), Zε,i = 1(φi < ε) is a Bernoulli random variable with
parameter ε and E[Zi] = ε. We use the fact that a probability p Bernoulli random variable is sub-Gaussian
with parameter [4]

σ =

√
1− 2p

2 log((1− p)/p) ≤

√
1

2 log(1/2p) .

Combining this with Proposition 1, we have the desired result

E[ZT ]− E[µT ] = P(pT < ε)− ε ≤

√
I(T ; Zε)
log(1/2ε) .

The second inequality follows by the data-processing inequality.
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Proof of Proposition 6. Note that
max
x∈X

µ(x) ≥ E[µ(X∗)]

and
E[max

x∈X
fθ(x)] = E[fθ(X∗)]

Therefore,

E[max
x∈X

fθ(x)]−max
x∈X

µ(x) ≤ E[fθ(X∗)]− E[µ(X∗)] ≤ σ
√

2I(X∗; θ) = σ
√

2H(X∗)

Proof of Lemma 1. Since, conditional on Hk, Tk+1 is independent of φ, the data-processing inequality for
mutual information implies,

I(Tk+1;φ) ≤ I(Hk;φ).
Now we have,

I(Hk;φ) =
k∑
i=1

I ((Ti, YTi
);φ|Hi−1) .

We complete the proof by simplifying the expression for I ((Ti, YTi);φ|Hi−1). Let φ(−i) = (φj : j 6= i).
Then,

I ((Ti, YTi);φ|Hi−1) = I (Ti;φ|Hi−1) + I (YTi ;φ|Hi−1, Ti)
= I (YTi ;φ|Hi−1, Ti)
= I(YTi ;φTi |Hi−1, Ti) + I(YTi ;φ(−Ti)|Hi−1, Ti,φTi)
= I(YTi ;φTi |Hi−1, Ti),

where the final equality follows because, conditioned on φTi
, YTi

is independent of φφφ(−Ti).

Proof of Lemma 2.

I(X;Y ) = −1
2 log

(
1− σ2

1
σ2

1 + σ2
2

)
= −1

2 log σ2
2

σ2
1 + σ2

2
= 1

2 log
(

1 + σ2
1
σ2

2

)
.

Proof of Proposition 7. In order to apply our general result, we need to convert the bound on the differences
in the expectations of a random variable into a bound on probability. Let

Zi = 1(φi − µi > τ) i ∈ N,

so that Zi is a bernoulli random variable with expectation

ei = E[Zi] ≤ exp{−nτ
2

2 }

It is known [4] that a bernoulli random variable with parameter p < 1
2 is σ–sub-Gaussian with

σ =

√
1− 2p

2 log((1− p)/p) ≤

√
1

2 log(1/2p)

and applying this with p = E[Zi] shows that Zi is sub-Gaussian with effective standard deviation less than√
c
nτ2 where c is a universal numerical constant. This shows that

E[ZTk+1 − eTk+1 ] ≤
√
c

τ

√
2I(Tk+1;φφφ)

n

≤
√
c

τ

√
2
∑k
i=1 I(YTi

;φTi
|YT1 , .., YTi−1)

n


