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Abstract

Modern big data settings often involve
messy, high-dimensional data, where it is
not clear a priori what are the right ques-
tions to ask. To extract the most insights
from a dataset, the analyst typically needs
to engage in an iterative process of adap-
tive data analysis. The choice of analytics
to be performed next depends on the re-
sults of the previous analyses on the same
data. It is commonly recognized that such
adaptivity (also called researcher degrees
of freedom), even if well-intentioned, can
lead to false discoveries, contributing to the
crisis of reproducibility in science. In this
paper, we propose a general information-
theoretic framework to quantify and prov-
ably bound the bias of arbitrary adaptive
analysis process. We prove that our mutual
information based bound is tight in natural
models. We show how this framework can
give rigorous insights into when commonly
used feature selection protocols (e.g. rank
selection) do and do not lead to biased esti-
mation. We also show how recent insights
from differential privacy emerge from this
framework when the analyst is assumed to
be adversarial, though our bounds applies
in more general settings. We illustrate our
results with simple simulations.

1 Introduction
Modern big data is messy and high-dimensional, and
it is often not clear a priori what is the right analysis
to perform on the data. To extract the most insight,
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the analyst typically needs to perform exploratory
analysis to make sense of the data and at the same
time test various hypotheses. This is invariably an
adaptive process: patterns in the data observed in
the first stages of analyses inform what tests are run
next and the process iterates. This is also called
“researcher degrees of freedom” [17]. Such “data-
dredging” is largely maligned by classical statistical
theory. It is known that this process, even when the
analyst is well-intentioned, can lead to false discov-
ery or large bias in the reported estimates.

Although adaptivity is ubiquitous in data science,
it is largely outside the realm of classical statistics.
Standard tools of multiple hypothesis testing and
false discovery rate (FDR) assume that all the hy-
potheses to be tested are chosen independently of
the dataset. But while any adaptivity renders classi-
cal statistical theory invalid, folklore and experience
also suggest that not all types of adaptive analysis
are equally at risk for false discoveries. In this work,
we undertake a general and systematic study into the
degree of bias introduced by different forms of adap-
tivity, in which the choice of which function of the
data to report is made after observing and analyz-
ing the dataset. Our main result is an information
theoretic bound on the bias of an arbitrary, adap-
tively chosen function of the data. This bound pro-
vides a quantitative measure of researcher degrees of
freedom, and offers a single lens through which we
investigate different forms of adaptivity.
1.1 Preview of the main result
We consider a general framework in which a dataset
D is drawn from a probability distribution P over
D. Let φ1, ..., φm : D → R denote the set of all anal-
yses that the analyst may want to run on the data.
The number, m, of the φi’s is finite but it could be
arbitrarily large; in particular m can be exponential
in the number of samples in the dataset. Each φi
is a random variable that depends on the particular
realization of the data D ∼ P. After observing D or
some summary statistics of D, the analyst chooses
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to report the value φT (D) for T ∈ {1, ...,m}. For
simplicity, we focus on the case where exactly one
φT is selected and reported, but our results can be
extended to when multiple φi’s are selected. The
selection rule T : D → {1, ...,m} captures how the
analyst uses the data and chooses which result to re-
port. Because the choice T is itself a function of the
realization D, the reported value φT (D) may be sig-
nificantly biased. For example, E[φT (D)] could be
very far from zero even if each fixed function φi(D)
has zero mean.
Example 1. A standard analytics setting is when
D ∈ Rn×d; there are n samples and each sample
is a d-dimensional feature vector. For example, a
sample could be an individual and the d features are
the genotype of the individual at d loci in his/her
genome. Given a vector of phenotypes associated
with each sample (e.g. the blood pressure of each
individual), a common analysis is to regress each ge-
netic locus against the phenotype. Here φi is the es-
timated regression coefficient or effect size of the ith
locus on the phenotype and m = d. In most studies,
d is in the range of 105 − 106 and n is 103. T is the
the analyst’s selection rule for deciding which set of
loci to report as relevant for the phenotype. One
common selection rule T is to rank the φi’s by abso-
lute value and set T to be the indices corresponding
to the top K largest φi’s, where K is a fixed con-
stant set ahead of time. Another selection rule is to
set a p-value threshold and select all the φi’s whose
p-value is smaller than the threshold. Both selection
rules suffer from Winner’s Curse [13], which is the
empirical phenomenon whereby the estimated effect
size φi, where i is selected (i.e. T = i), is larger
than the true effect size of that locus. This selection
bias occurs because the selection policy relies heav-
ily on the realized values φi. There are many other
selection policies. For example, the analyst may run
Lasso on all the loci and T correspond to the sub-
set of loci selected by Lasso. We would like to have
a unified framework to understand and bound the
selection bias of any policy T .
Example 2. In the previous example, the selec-
tion procedure explicitly uses the values of the φi’s.
In many adaptive data analysis, the selection pro-
cedure uses other information contained in D. As
before, let D ∈ Rn×d. Another common goal is to
find a pair of features that are highly correlated with
each other. Here the φi’s are all the pairwise corre-
lation values and m = d(d− 1)/2. The analyst may
perform clustering or principal component analysis
(PCA) on D and based on the output of these ex-
ploratory analyses select which correlation pair φi to
measure on the data and report. This selection pro-

cedure T uses the data D but not the values of φi’s
explicitly, and intuitively it could result in smaller
selection bias. The analyst may also measure just
one φi1 , and based on its value, select another pair to
measure, φi2 , and so on. In the end, she has explic-
itly measured only a few φi’s but they were chosen
adaptively. We would also like a unified framework
to understand the selection bias of these procedures.

In this paper, we bound the degree of bias in terms
of an information–theoretic quantity: the mutual in-
formation between the choice T of the statistic to
report, and the actual realized value of the statis-
tics (φ1(D), ..., φm(D)). We state this result in a
general framework, where φ = (φ1, ..., φm) : Ω →
Rm and T : Ω → {1, ..,m} are any random vari-
ables defined on a common probability space. Let
µ = (µ1, ..., µm) , E[φ] denote the mean of φ. Re-
call that a real-valued random variable X is σ–sub-
Gaussian if for all λ ∈ R, E[eλX ] ≤ eλ

2σ2/2 so that
the moment generating function of X is dominated
by that of a normal random variable. Zero–mean
Gaussian random variables are sub-Gaussian, as are
bounded random variables.
Proposition 1. Suppose that for each i ∈
{1, ...,m}, φi − µi is σ–sub-Gaussian. Then,

|E[φT ]−E[µT ]| ≤ σ
√

2I(T ;φ)

where I denotes mutual information.

The expectation E[φT ] is taken jointly over the ran-
domness in the realized values of φ1, .., φm and the
selection procedure T . It is the expected value of the
reported test statistic when selection and estimation
are performed on the same dataset. The expectation
E[µT ] is taken only over the selection procedure T ,
since µ is a property of the distribution and not of
the realized data D. This is the expected value of
the reported test statistic when, after selection, a
fresh dataset is used for estimation. The difference
|E[φT ] − E[µT ]| quantifies the bias due to the ana-
lyst’s selection process T .

The randomness of φ is due to the randomness in the
realization of the data D ∼ P. This captures how
each test statistics φi varies if a replication dataset is
collected, and hence captures the noise in the statis-
tics. The mutual information I(T ;φ) then quantifies
the dependence of the selection process on the noise
in the test statics. Intuitively, a selection process
that is more sensitive to the noise (high I) is at a
greater risk for bias.

Proposition 1 gently interpolates between two ex-
treme cases. If T is independent of φ, I(T ;φ) = 0
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and therefore EφT = EµT . It makes sense that there
is no bias because the selection does not depend on
the actual values of the statistics. If T = arg max

1≤i≤m
φi,

then I(T ;φ) is the entropy of T , H(T ) = log(m),
and we have that E[φT −µT ] ≤ σ

√
2 log(m). This is

the well known inequality for the maximum of sub-
Gaussian random variables. The coming sections
will explore cases in between these two extremes in
which this bound has interesting implications. Note
that while Prop. 1 focuses on bias, Section 2 provides
mutual information based guarantees for other mea-
sures of the accuracy of the reported statistic φT .

We will frequently apply our results when φi =
n−1∑n

j=1 fi(Xj) is the sample average of some func-
tion fi based on an iid sequence X1, ..., Xn. Note
that if fi(Xj)− E[fi(Xj)] is sub-Gaussian with pa-
rameter σ, then φi−µi is sub-Gaussian with param-
eter σ/

√
n and therefore

|E[φT ]−E[µT ]| ≤ σ
√

2I(T ;φ)
n

.

1.2 Related work
Our paper relates to a large body of work on meth-
ods for providing meaningful statistical inference
and preventing false discovery. Much of this liter-
ature has focused on controlling the false discovery
rate [1, 2] in multiple-hypothesis testing where the
hypotheses are not adaptively chosen. Another line
of work studies confidence intervals and significance
tests for parameter estimates in sparse high dimen-
sional linear regression (see [12, 15, 20] and the refer-
ences therein). In learning theory, PAC-Bayes anal-
ysis gives powerful generalization bounds in terms
of KL-divergence [16]. These techniques bear a re-
semblance to the results in this paper, and it would
be interesting to explore connections between PAC-
Bayes theory and adaptive data analysis.

One recent line of work [9, 18] proposes a framework
for assigning significance and confidence intervals in
selective inference, where model selection and sig-
nificance testing are performed on the same dataset.
These papers propose controlling the probability of
error conditioned on the event that the model was
chosen. While some extremely powerful results can
be derived in the selective inference framework (e.g.
[19]), it requires that the conditional distribution
P(φi = ·|T = i) is known and can be directly an-
alyzed. This requires that the candidate models
and the selection procedure T are mathematically
tractable and specified by the analyst beforehand.
Our approach gives up some of the sharpness of the

selective inference results, but it enables us to for-
malize insights that applies to general analysis pro-
cedures.

Another recent line of work in computer science
[3, 7, 8, 11] has established a powerful connection
between adaptive data analysis and differential pri-
vacy. In their framework, the analyst interacts with
a dataset indirectly, and sees only the noisy output
of a differentially private mechanism. In Section 4,
we specialize our results to this setting, and show
that such a mechanism controls the mutual infor-
mation I(T ;φ). The results from this literature are
designed for worst-case, adversarial data analysts.
We provide guarantees that vary with the selection
rule, but apply to all possible selection procedures,
including ones that are non-differentially private.
Outline. In Sec. 2, we flesh out the main result,
Proposition 1, and show that it is tight by proving
a matching lower bound on bias. We extend it to
sub-exponential random variables and p values, and
show that it directly gives new estimates of order
statistics. Sec. 3 applies our framework to analyze
several basic selection protocols and illustrates when
they do and do not lead to bias. Sec. 4 considers a
general model of an adaptive data analyst and dis-
cusses the information budget framework. It also
discusses connections to differential privacy.

2 Unpacking the main result
This section establishes additional general results
linking the price of adaptivity in data analysis to the
mutual information I(T ;φ). We first present a lower
bound showing that procedures that use a lot of in-
formation can have bias as large as σ

√
2I(T ;φ). We

then provide an analogue of Proposition 1 that ap-
plies to sub-exponential random variables, and show
that mutual information controls other measures of
the cost of adaptivity, such as the average squared
prediction error E[(φT − µT )2]. The final subsec-
tion treats situations in which φ1, .., φm are p-values
corresponding to m different hypothesis tests.

2.1 Matching Lower Bound
This subsection provides a lower bound that matches
Proposition 1, including constants. This shows that
Proposition 1 is tight.
Proposition 2. Let φ = (φ1, φ2, φ3, ...) be a col-
lection of independent normally distributed random
variables with mean 0 and variance σ2. For B > 1,
let TB = arg max

1≤i≤beBc
φi. Then I(TB ;φ) ≤ B and

E[φTB
]− σ

√
2B −→ 0
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as B →∞. In addition, there is a universal numer-
ical constant c > 0 such that

E[φTB
] ≥ cσ

√
2B ∀B ≥ 2.

2.2 Order Statistics of Gaussians
The form of I(T ;φ) makes it particularly easy to
analyze selection policies that depend on the or-
der statistics of φi. We have seen that in the
case of the maximal statistic the bound is tight.
As another illustration, consider the policy that
first orders φi by size and then uniformly ran-
domly selects from the largest m0 φi’s. Let T de-
note the index of the randomly chosen element,
and let φ(1) > φ(2) > ... > φ(m) denote the val-
ues of φi sorted from the largest to the smallest.
We immediately have E

[
1
m0

∑m0
i=1 φ(i)

]
= E[φT ] ≤

σ
√

2(H(T )−H(T |φ)) = σ
√

2(logm− logm0) =
σ
√

2 log m
m0
. For example, if m0 = mα for α < 1,

then this implies E[φT ] ≤ σ
√

2(1− α) log(m). We
have not seen this formula for E

[
1
m0

∑m0
i=1 φ(i)

]
in

literature, though it would not be surprising if it is
known under other contexts.

This bound is also tight as m/m0 → ∞. For con-
venience, we show this when m is divisible by m0.
Consider the following alternative selection policy
T̂ . Randomly partition the φi’s into m0 groups of
size m/m0. Within each group, select the maximal
φi and from these m0 maximal φi’s randomly se-
lect one as φT̂ . Because the average among the m0
group leaders is less than the average among the
φ(1), ..., φ(m0), we have E[φT̂ ] ≤ E[φT ]. Moreover,
each group leader converges to σ

√
2 logm/m0 and

since the groups are independent, the average also
converges to σ

√
2 logm/m0.

2.3 Subexponential random variables
Although sub-Gaussian distributions are commonly
used, it is useful to have results that apply to ran-
dom variables with somewhat heavier tails. Here we
derive an analogue of Proposition 1 that applies to
the broader class of sub-exponential distributions.
Definition 1. A random variable X with mean µ =
E[X] is sub-exponential if there are non-negative pa-
rameters (σ, b) such that

E
[
eλ(X−µ)

]
≤ eσ2λ2/2 for all |λ| < 1

b
.

Proposition 3. Suppose that for each i ∈
{1, ...,m}, φi − µi is sub-exponential with parame-

ters (σ, b). Then

E[φT − µT ] ≤ bI(T ;φ) + σ2

2b .

Moreover, if b ≥ 1, we also have

E[φT − µT ] ≤
√
bI(T ;φ) + σ2

2
√
b
.

This bound on sub-exponential random variables is
also tight. Let φi be independent chi-squared dis-
tributions, χ2

1, and let T be the policy for selecting
the φi with the maximal value. Since χ2

1 is sub-
exponential with b = 2, our bound on E[maxi φi] is
2 logn+o(1). On the other hand, extreme value the-
ory tells us that an(maxi φi − bn)→ Γ, where an =
1/2, bn = 2 logn + o(logn) and P(Γ ≤ x) = e−e

−x .
We see that our bound of 2 logn is actually tight.
2.4 Beyond Bias
While we often focus on the bias E[φT ]−E[µT ], here
we note that our techniques allow us to control other
properties of (φT − µT ). For example, the following
corollary of Proposition 1 controls the mean squared
distance between φT and µT .
Corollary 1. Suppose that for each i ∈ {1, ..,m},
−C ≤ φi − µi ≤ C almost surely. Then,

E[(φT − µT )2 − VT ] ≤ C
√

2I(T ;φ)

where Vi , E[(φi − µi)2] is the variance of φi.

Let D(P||Q) denote the KL-divergence between
probability distributions P and Q. This result will
be used in the next subsection when analyzing the
probability of reporting small p-values. Here φ̃T can
be thought of as the selected test statistic evaluated
on a fresh dataset.
Proposition 4. Let φ̃ denote a random variable
drawn from the marginal distribution of φ, but drawn
independently of T and φ. Then

D
(
P(φT = ·) ||P(φ̃T = ·)

)
≤ I (T ;φ)

2.5 The Probability of Small p–values
Consider choosing to report the p-value φT corre-
sponding to a single hypothesis test from among a
large collection of φ1, ..., φm of observed p-values.
Under the null hypothesis, each p-value φi is uni-
formly distributed, so P(φi ≤ ε) = ε for each
ε ∈ [0, 1]. Suppose the data analyst rejects the null
hypothesis corresponding to T whenever φT ≤ .05.
If T is chosen adaptively so that φT is the smallest p-
value among φ1, ..φ5, then the probability of falsely
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rejecting the null hypothesis is 1 − (.95)5 ≈ .23.
Therefore, at a significance level of .05, even fairly
mild forms of adaptivity can create a substantial risk
of false discovery. Nevertheless, we argue in this sec-
tion that very small p-values are very unlikely unless
the mutual information I(T ;φ) is large.

To build intuition, imagine that φ1, ..., φm
iid∼

Uniform(0, 1). If the hypothesis T = arg mini≤m φi
with the smallest p-value is selected, the reported p-
value is expected to be of order 1/m. In particular,
E[φT ] = 1/(m+ 1), and

P
(
φT ≤

1
m

)
= 1−

(
1− 1

m

)m
−→ 1− 1

e
.

Therefore, when selecting among m ≈ eB hypothe-
ses, one expects to observe p-values as small as ε ≈
e−B but not smaller. Our next proposition extends
this line of reasoning, and replaces B = log(m) with
the mutual information between T and φ. It shows
that when φ1, ..., φm are uniformly distributed, but
not necessarily independent, one is very unlikely to
observe a p value φT much smaller than e−I(T ;φ).
under an arbitrary adaptive selection procedure T .
Proposition 5. Define Zε,i = 1(φi < ε) and let
Zε = (Zε,1, ..., Zε,m). If φi ∼ Uniform(0, 1) for all
i ∈ {1, ..,m} then

P(pT < ε) ≤ ε+

√
I(T ; Zε)
log(1/2ε) ≤ ε+

√
I(T ;φ)

log(1/2ε) .

2.6 Regret analysis and value of information
Consider a general problem of optimization un-
der uncertainty. A decision-maker would like to
choose the action x from a finite set X that solves
maxx∈X fθ(x). Here θ is an unknown parameter that
is drawn from a prior distribution over a set of possi-
ble parameters Θ. We consider the decision-maker’s
expected shortfall in performance due to not know-
ing the parameter θ:

E[max
x∈X

fθ(x)]−max
x∈X

E[fθ(x)].

This measures the value of perfect information about
θ: the expected improvement in decision qual-
ity that would result from resolving uncertainty
about the identity of θ. This is sometimes called
the Bayes risk or Bayesian regret of the decision
arg maxx∈X E[fθ(x)].

Our main result provides an information theoretic
bound on Bayes risk. Let X∗ ∈ arg maxx∈X fθ(x)
denote a true maximizer of the function fθ. Here
X∗ is a random variable, since θ is random, and X∗
is a function of θ. Let µ(x) = E[fθ(x)].

Proposition 6. If for each for each x ∈ X , fθ(x)−
µ(x) is σ sub-Gaussian, then

E[max
x∈X

fθ(x)]−max
x∈X

µ(x) ≤ σ
√

2H(X∗)

3 Selective inference
In this section, we consider several simple but com-
monly used procedures of feature selection and pa-
rameter estimation. In many applications, such fea-
ture selection and estimation are performed on the
same dataset. Our information theoretic bound pro-
vides a unified framework to understand selection
bias in these settings. Our results inform when these
these procedure do lead to selection bias and when
they do not introduce bias. The key idea is to under-
stand which structures in the data and the selection
procedure make the mutual information I(T ;φ) sig-
nificantly smaller than the worst case log(m). We
give several simulation experiments as illustration.
3.1 Variance based selection
Imagine that T is chosen after observing some
dataset D. This dataset determines the values of
φ1, ..., φm, but may also contain a great deal of
other information. Manipulating the mutual in-
formation shows I(T ;φ) = H(T ) − H(T |φ) ≤
H(T ) − I(T ;D|φ) = (1 − α)H(T ) where α =
I(T ;D|φ)/H(T ) captures the fraction of the uncer-
tainty in T that is explained by the data inD beyond
the values φ1, ..., φm. In many cases, instead of be-
ing a function of φ, the choice T is a function of data
that is more loosely coupled with φ, and therefore
we expect that I(T ;φ) is much smaller than H(T )
(which itself can be less than log(m)).

One setting when the selection of T depends on the
statistics of D that are only loosely coupled with φ
is variance based feature selection [14, 21]. Suppose
we have n samples and m bio-markers. Let Xi,j

denote the value of the i-th bio-marker on sample j.
Here D = {Xi,j}. Let φi = n−1∑n

j=1 Xi,j be the
empirical mean values of the i-th biomarker. We
are interested in identifying the markers that show
significant non-zero mean. A filtering step in many
studies is to select markers that have high variance
and remove the rest. The rational is that markers
that do not vary could be measurement errors or
are likely to be less important. A natural question
is whether such variance filtering introduces bias.

In our framework, variance selection is exemplified
by the selection rule T = arg max

1≤i≤m
Vi where Vi =

∑n
j=1(Xi,j−φi)2. Here we consider the extreme case

where only the marker with the largest variance is
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selected; all the discussion applies to softer selection
when we select the top K markers with the largest
variance. The resulting bias is E[φT − µT ]. Propo-
sition 1 states that variance selection has low bias
if I(T ;φ) is small, which is the case if the empirical
means and variances, φi and Vi, are not too depen-
dent. Indeed, when Xi,j are i.i.d. Gaussian samples,
φ1, ..., φm are independent of V1, ..., Vm . Therefore
I(T ;φ) = 0 and we can guarantee that there is no
bias from variance selection.
3.2 Rank selection with signal
Rank selection is the procedure for selecting the φi
with the largest value (or the top K φi’s with the
largest values). It is the simplest selection policy
and the one that we are instinctively most likely to
use. We have seen previously how rank selection
can introduce significant bias. In the bio-marker ex-
ample, suppose there is no signal in the data, then
Xi,j ∼ N (0, 1) and φi ∼ N (0, 1/n). Under rank se-
lection, φT would have a bias close to

√
(2 logm)/n.

A basic question is what is the bias of rank selection
when there is signal in the data. Our framework
cleanly illustrates how signal in the data can reduce
rank selection bias. As before, this insight follows
transparently from studying the mutual information
I(T,φ). Recall that mutual information is bounded
by entropy: I(T ;φ) ≤ H(T ) ≤ log(m). When the
data provides a strong signal of which T to select,
the distribution of T is far from uniform, and H(T )
is much smaller than its worst case value of log(m).

Consider the following simple example. Assume

φi ∼
{
N(µ, σ2) If i = I∗

N(0, σ2) If i 6= I∗

where µ ≥ 0. The data analyst would like to identify
I∗ and report the value of T ∗. To do this, she selects
T = arg maxi φi. When µ = 0, there is no true
signal in the data and T is equally likely to take on
any value in {1, ..,m}, I(T ;φ) = H(T ) = log(m).
As µ increases, however, T concentrates on I∗,
causing H(T ) and the bias E[φT − µT ] to diminish.
This is reflected in Fig.1.

3.3 Regularization via randomized selection
The previous section illustrates how signal in the
data intrinsically reduces selection bias by reduc-
ing the H(T ) term in I(T ;φ) = H(T ) − H(T |φ).
A complementary approach to reduce bias is to in-
crease H(T |φ) by adding randomization to the se-
lection policy T . It’s easy to maximize H(T |φ) by
choosing T uniformly at random from {1, ...,m}, in-

Figure 1: As the signal strength increases (µ in-
creases), the entropy of selection H(T ) decreases,
causing the information upper bound to also de-
crease. The bias of the selection decreases as well.

dependently of φ. Imagine however that we want to
not only ensure that H(T |φ) is large, but want to
choose T such that φT is large. After observing φ,
it’s natural then to set the probability πi of setting
T = i by solving a maximization problem

maximize
π

H(π)

subject to
k∑

i=1
πiφi ≥ b and

k∑

i=1
πi = 1.

The solution π∗ to this problem is the maximum
entropy or “Gibbs” distribution, which sets

π∗i ∝ e−βφi i ∈ {1, ..,m} (1)

for β > 0 that is chosen so that
∑
i π
∗
i φi = b. This

procedure effectively adds stability, or a kind of reg-
ularization, to the selection strategy by adding ran-
domization. Whereas tiny perturbations to φ may
change the identify of T = arg maxi φi, the distribu-
tion π∗ is relatively insensitive to small changes in φ.
Note that the strategy (1) is one of the most widely
studied algorithms in the field of online learning [5],
where it is often called exponential weights. In our
framework it is transparent how it reduces bias.

To illustrate the effect of randomized selection, we
use simulations to explore the tradeoff between bias
and accuracy. We consider the following simple ran-
domization scheme:

1. Take as input parameters β and K, and obser-
vations φ1, ...φm. Here β is the inverse tempera-
ture in the Gibbs distribution and K is number
of φi’s we need to select.
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2. Sample without replacementK indices T1, ...TK
from π∗ given in (1). Report the corresponding
values φT1 , ..., φTk

.

We consider settings where we have two groups of
φi’s: after relabeling assume that µ1 = ... = µN1 =
µ > 0 and µi = 0 for i > N1. We define the bias
of the selection to be 1

K

∑
i(φTi

− µi) and the ac-
curacy of the selection to be |{Ti : Ti < N1}|/K.
In Fig.2, we illustrate the tradeoff between accuracy
and bias for N1 = 1000, n−N1 = 100000 (i.e. there
are many more false signals than true signals), ran-
domization strength β = 2, and the signal strength µ
varying from 1 to 5. As predicted, randomized selec-
tion significantly decreased bias. In the low signal
regime (µ ≤ 1), both rank selection and random-
ized selection have low accuracy because the signal
is overwhelmed by the large number of false posi-
tives. In the high signal regime (µ ≥ 4), both selec-
tion methods have accuracy close to one and rank
selection has significantly less bias. In the interme-
diate regime (1 < µ < 4), randomized selection has
substantially less bias but is less accurate.

Figure 2: Tradeoff between accuracy and bias as the
signal strength µ increases. The two curves illustrate
the tradeoff for the Gibbs randomized selection pro-
cedure and the standard rank selection procedure of
selecting the top K = 100 with the largest φi’s.

4 Controlling bias with information
budget

Given a well-defined selection protocol, the last sec-
tion illustrates how we can reason about and quan-
tify the bias of the protocol via its mutual informa-
tion. In many settings of data analysis, the analysis
process is much more adaptive, possibly involving
many rounds of adaptation. This research degrees
of freedom is ubiquitous and it is often not feasi-

ble to model it by one concise protocol. This takes
us beyond the standard setting of selective inference.
In this section, we show how our mutual information
framework can be straightforwardly used to analyze
bias under a general model of adaptive data analysis,
allowing for arbitrary researcher degrees of freedom.
Our approach naturally suggests the notion of con-
trolling bias by having a limited budget of mutual
information for the entire analysis process. We dis-
cuss the close connections to recent work inspired by
differential privacy [3, 7, 8, 11].
4.1 General model of adaptive data analysis
We consider a general model of adaptive data anal-
ysis similar to that of Dwork et al. [7, 8].

1. At step 1, the analyst selects a hypothesis φT1

to query for T1 ∈ [m] and receives a response
YT1 ∈ R.

2. In the k-th iteration, the analyst chooses a hy-
pothesis φTk

as a function of the results that she
has received so far, {YT1 , T1, ..., YTk−1 , Tk−1},
and receives feedback YTk

.
3. After K iterations, the analyst selects φT ≡
φTK+1 as a function of {YT1 , T1, ..., YTK

, TK}
The selection protocols from the Selective Inference
section can be placed into this framework. Take rank
selection for example, at the k-th step, φk is queried
(i.e. the order is fixed and does not depend on the
previous results) and Yk = φk is returned. The ana-
lyst queries all m φi’s and returns the one with the
max value. In general, YTk

can differ from φYk
and

the number of iterationsK can be much less thanm,
which can be arbitrarily large. This general model
of data analysis is consistent with multiple scenar-
ios. For example, the data, D, could belong to some
warehouse and the analyst can not access the D di-
rectly. She makes queries φTk

and the warehouse re-
turns answers YTk

. The analyst could also have the
data D herself, but implemented a system to return
YTk

= φTk
+ noise in order to reduce overfitting.

To apply our general result, Prop. 1, we want to
exploit the structure of the adaptive analysis model
to decompose I(Tk+1;φ). We prove the following
composition lemma for mutual information.
Lemma 1. Let Hk = (T1, YT1 , T2, YT2 , ..., Tk, YTk

)
denote the history of interaction up to time k. Then,
under the adaptive analysis model

I(Tk+1;φ) ≤ I(Hk;φ) =
k∑

i=1
I(YTi

;φTi
|Hi−1, Ti)

The important takeaway from this Lemma is
that by bounding the conditional mutual in-
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formation between the response and the query,
I(YTi ;φTi |Hi−1, Ti), we can bound I(Tk+1;φ) and
hence bound the bias after k rounds of adaptive
queries. Given a dataset D, we can imagine the
analyst having a (mutual) information budget, I∗,
which is decided a priori based on the size of the
data and her tolerance for bias. At each step of
the adaptive data analysis, how the analyst decides
which hypothesis to test next (as a function of her
analysis history) incurs an information cost quanti-
fied by I(YTi

;φTi
|Hi−1, Ti). The information costs

accumulate additively over the analysis steps, until
it reaches I∗, at which point the guarantee on bias
requires the analysis to stop.

A trivial way to reduce mutual information is to re-
turn a response YTi

that is independent of the query
φTi

, in which case the analyst learns nothing about
the data and incurs no bias. However in order for
the data to be useful for the analyst, we would like
the results of the queries to also be accurate.

As before let µi = E[φi] denote the true answer of
hypothesis φi. We say that the query φi is answered
with accuracy (τ, ε) if P(|Yi−µi| ≥ τ) < ε. A natural
goal would be to answer as many adaptive queries as
possible for given τ, ε. We analyze a stylized case of
the general model to show that we can answer n2−δ

queries accurately, where n is the size of the dataset
and δ is any constant larger than 0.

Gaussian noise protocol. We analyze the fol-
lowing special case.

1. Suppose φi ∼ N(µi, 1
n ) and φ1, ..., φk is jointly

Gaussian for any k.
2. For each query φTi

, the protocol returns a dis-
torted response YTi = φTi + WTi where Wi ∼
N(0, ωn ). Note that unlike (φ1, φ2, ....), the se-
quence (W1,W2, ....) is independent.

We want to know, as we scale n → ∞, how many
queries can be accurately answered as a function of
n by choosing the distortion level ω(n).

Lemma 2. If X ∼ N(0, σ2
1) and Y = X+W where

W ∼ N(0, σ2
2) is independent of X, then

I(X;Y ) = 1
2 log (1 + β) ≤ β

2

where β = σ2
1/σ

2
2 is the signal to noise ratio.

Proposition 7. When φi’s are jointly Gaussian,
the Gaussian noise protocol can answer O(N2−δ)
queries accurately for any δ > 0 and any accuracy
parameters (τ, ε).

4.2 Connections to differential privacy
Adaptive analysis can be viewed as a Markov chain

T ← Y ≡ {YT1 , ..., YTk
} ← D → Φ ≡ {φ1, ..., φm}.

By the information processing inequality [6],
I(T ; Φ) ≤ I(Y ;D) ≤ H(Y ). This motivates two
families of strategies for controlling the mutual in-
formation I(T ; Φ) in adaptive data analysis

1. ensure that the mutual information between
the returned information and the underlying
dataset, I(Y ;D), is small.

2. ensure that the total number of bits of informa-
tion returned to the user, H(Y ), is small.

The first approach is similar to differential privacy
and the second is similar to controlling the descrip-
tion length of the responses.
Differential privacy Let A : D → Y be an
ε-differentially private algorithm, where D is a
dataset of size n. Then I∞(A(D);D) ≤ ln εn,
where I∞(Y ;X) ≡ log maxx P[Y=x]

P[X=x] [8]. Note that
I(T ; Φ) ≤ I(Y ;X) ≤ I∞(A(X);X) ≤ ln εn. There-
fore if the selection policy T corresponds to an
ε-differentially private mechanism, then the selec-
tion bias is bounded by σ

√
2 ln εn. Differential pri-

vacy controls the max-information, I∞, which upper
bounds our mutual information. Our mutual infor-
mation bound can be used to quantify bias for gen-
eral protocols that are not differentially private, e.g.
rank selection.
Minimal feedback The recently proposed Lad-
der Mechanism [3] is an example of the second
strategy, of explicitly minimizing the total amount
of information in the feedback. Briefly, the Lad-
der Mechanism works as follows: at the ith step,
fi : D → [0, 1] is queried. Here φi = 1

n

∑
fi(xj)

is the sample mean of fi. If φi is the minimum
among φ1, ..., φi, then yi = φi discretized into steps
of size η is returned. Otherwise, yi = NONE. Here
|Y| = 1/η. The number of possible distinct trajec-
tories for (y1, ..., yk) is (k/η)1/η and H(Y ) ≤ 1

η log k
η

grows logarithmic in k.

5 Discussion
We have introduced a general information theoretic
approach to quantifying bias in adaptive data anal-
ysis. This conceptual framework lends insight into
when existing analysis procedures lead to severe bias
and when they do not. It also suggests engineer-
ing approaches to designing new analysis protocols
with guaranteed low bias. An interesting direction
of future work is to explore implementations of this
approach in practical analytic settings.
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